xref: /dragonfly/sys/kern/kern_descrip.c (revision 92fc8b5c)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
72  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
73  */
74 
75 #include "opt_compat.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/malloc.h>
79 #include <sys/sysproto.h>
80 #include <sys/conf.h>
81 #include <sys/device.h>
82 #include <sys/file.h>
83 #include <sys/filedesc.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/vnode.h>
87 #include <sys/proc.h>
88 #include <sys/nlookup.h>
89 #include <sys/file.h>
90 #include <sys/stat.h>
91 #include <sys/filio.h>
92 #include <sys/fcntl.h>
93 #include <sys/unistd.h>
94 #include <sys/resourcevar.h>
95 #include <sys/event.h>
96 #include <sys/kern_syscall.h>
97 #include <sys/kcore.h>
98 #include <sys/kinfo.h>
99 #include <sys/un.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <sys/file2.h>
106 #include <sys/spinlock2.h>
107 
108 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
109 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
110 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
111 static void ffree(struct file *fp);
112 
113 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
114 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
115 		     "file desc to leader structures");
116 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
117 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
118 
119 static struct krate krate_uidinfo = { .freq = 1 };
120 
121 static	 d_open_t  fdopen;
122 #define NUMFDESC 64
123 
124 #define CDEV_MAJOR 22
125 static struct dev_ops fildesc_ops = {
126 	{ "FD", 0, 0 },
127 	.d_open =	fdopen,
128 };
129 
130 /*
131  * Descriptor management.
132  */
133 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
134 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin);
135 static int nfiles;		/* actual number of open files */
136 extern int cmask;
137 
138 /*
139  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
140  *
141  * MPSAFE - must be called with fdp->fd_spin exclusively held
142  */
143 static __inline
144 void
145 fdfixup_locked(struct filedesc *fdp, int fd)
146 {
147 	if (fd < fdp->fd_freefile) {
148 	       fdp->fd_freefile = fd;
149 	}
150 	while (fdp->fd_lastfile >= 0 &&
151 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
152 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
153 	) {
154 		--fdp->fd_lastfile;
155 	}
156 }
157 
158 /*
159  * System calls on descriptors.
160  *
161  * MPSAFE
162  */
163 int
164 sys_getdtablesize(struct getdtablesize_args *uap)
165 {
166 	struct proc *p = curproc;
167 	struct plimit *limit = p->p_limit;
168 	int dtsize;
169 
170 	spin_lock(&limit->p_spin);
171 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
172 		dtsize = INT_MAX;
173 	else
174 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
175 	spin_unlock(&limit->p_spin);
176 
177 	if (dtsize > maxfilesperproc)
178 		dtsize = maxfilesperproc;
179 	if (dtsize < minfilesperproc)
180 		dtsize = minfilesperproc;
181 	if (p->p_ucred->cr_uid && dtsize > maxfilesperuser)
182 		dtsize = maxfilesperuser;
183 	uap->sysmsg_result = dtsize;
184 	return (0);
185 }
186 
187 /*
188  * Duplicate a file descriptor to a particular value.
189  *
190  * note: keep in mind that a potential race condition exists when closing
191  * descriptors from a shared descriptor table (via rfork).
192  *
193  * MPSAFE
194  */
195 int
196 sys_dup2(struct dup2_args *uap)
197 {
198 	int error;
199 	int fd = 0;
200 
201 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
202 	uap->sysmsg_fds[0] = fd;
203 
204 	return (error);
205 }
206 
207 /*
208  * Duplicate a file descriptor.
209  *
210  * MPSAFE
211  */
212 int
213 sys_dup(struct dup_args *uap)
214 {
215 	int error;
216 	int fd = 0;
217 
218 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
219 	uap->sysmsg_fds[0] = fd;
220 
221 	return (error);
222 }
223 
224 /*
225  * MPALMOSTSAFE - acquires mplock for fp operations
226  */
227 int
228 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
229 {
230 	struct thread *td = curthread;
231 	struct proc *p = td->td_proc;
232 	struct file *fp;
233 	struct vnode *vp;
234 	u_int newmin;
235 	u_int oflags;
236 	u_int nflags;
237 	int tmp, error, flg = F_POSIX;
238 
239 	KKASSERT(p);
240 
241 	/*
242 	 * Operations on file descriptors that do not require a file pointer.
243 	 */
244 	switch (cmd) {
245 	case F_GETFD:
246 		error = fgetfdflags(p->p_fd, fd, &tmp);
247 		if (error == 0)
248 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
249 		return (error);
250 
251 	case F_SETFD:
252 		if (dat->fc_cloexec & FD_CLOEXEC)
253 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
254 		else
255 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
256 		return (error);
257 	case F_DUPFD:
258 		newmin = dat->fc_fd;
259 		error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
260 		return (error);
261 	default:
262 		break;
263 	}
264 
265 	/*
266 	 * Operations on file pointers
267 	 */
268 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
269 		return (EBADF);
270 
271 	switch (cmd) {
272 	case F_GETFL:
273 		dat->fc_flags = OFLAGS(fp->f_flag);
274 		error = 0;
275 		break;
276 
277 	case F_SETFL:
278 		oflags = fp->f_flag;
279 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
280 		nflags |= oflags & ~FCNTLFLAGS;
281 
282 		error = 0;
283 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
284 			error = EINVAL;
285 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
286 			tmp = nflags & FASYNC;
287 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
288 					 cred, NULL);
289 		}
290 		if (error == 0)
291 			fp->f_flag = nflags;
292 		break;
293 
294 	case F_GETOWN:
295 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
296 				 cred, NULL);
297 		break;
298 
299 	case F_SETOWN:
300 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
301 				 cred, NULL);
302 		break;
303 
304 	case F_SETLKW:
305 		flg |= F_WAIT;
306 		/* Fall into F_SETLK */
307 
308 	case F_SETLK:
309 		if (fp->f_type != DTYPE_VNODE) {
310 			error = EBADF;
311 			break;
312 		}
313 		vp = (struct vnode *)fp->f_data;
314 
315 		/*
316 		 * copyin/lockop may block
317 		 */
318 		if (dat->fc_flock.l_whence == SEEK_CUR)
319 			dat->fc_flock.l_start += fp->f_offset;
320 
321 		switch (dat->fc_flock.l_type) {
322 		case F_RDLCK:
323 			if ((fp->f_flag & FREAD) == 0) {
324 				error = EBADF;
325 				break;
326 			}
327 			p->p_leader->p_flag |= P_ADVLOCK;
328 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
329 			    &dat->fc_flock, flg);
330 			break;
331 		case F_WRLCK:
332 			if ((fp->f_flag & FWRITE) == 0) {
333 				error = EBADF;
334 				break;
335 			}
336 			p->p_leader->p_flag |= P_ADVLOCK;
337 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
338 			    &dat->fc_flock, flg);
339 			break;
340 		case F_UNLCK:
341 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
342 				&dat->fc_flock, F_POSIX);
343 			break;
344 		default:
345 			error = EINVAL;
346 			break;
347 		}
348 
349 		/*
350 		 * It is possible to race a close() on the descriptor while
351 		 * we were blocked getting the lock.  If this occurs the
352 		 * close might not have caught the lock.
353 		 */
354 		if (checkfdclosed(p->p_fd, fd, fp)) {
355 			dat->fc_flock.l_whence = SEEK_SET;
356 			dat->fc_flock.l_start = 0;
357 			dat->fc_flock.l_len = 0;
358 			dat->fc_flock.l_type = F_UNLCK;
359 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
360 					   F_UNLCK, &dat->fc_flock, F_POSIX);
361 		}
362 		break;
363 
364 	case F_GETLK:
365 		if (fp->f_type != DTYPE_VNODE) {
366 			error = EBADF;
367 			break;
368 		}
369 		vp = (struct vnode *)fp->f_data;
370 		/*
371 		 * copyin/lockop may block
372 		 */
373 		if (dat->fc_flock.l_type != F_RDLCK &&
374 		    dat->fc_flock.l_type != F_WRLCK &&
375 		    dat->fc_flock.l_type != F_UNLCK) {
376 			error = EINVAL;
377 			break;
378 		}
379 		if (dat->fc_flock.l_whence == SEEK_CUR)
380 			dat->fc_flock.l_start += fp->f_offset;
381 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
382 			    &dat->fc_flock, F_POSIX);
383 		break;
384 	default:
385 		error = EINVAL;
386 		break;
387 	}
388 
389 	fdrop(fp);
390 	return (error);
391 }
392 
393 /*
394  * The file control system call.
395  *
396  * MPSAFE
397  */
398 int
399 sys_fcntl(struct fcntl_args *uap)
400 {
401 	union fcntl_dat dat;
402 	int error;
403 
404 	switch (uap->cmd) {
405 	case F_DUPFD:
406 		dat.fc_fd = uap->arg;
407 		break;
408 	case F_SETFD:
409 		dat.fc_cloexec = uap->arg;
410 		break;
411 	case F_SETFL:
412 		dat.fc_flags = uap->arg;
413 		break;
414 	case F_SETOWN:
415 		dat.fc_owner = uap->arg;
416 		break;
417 	case F_SETLKW:
418 	case F_SETLK:
419 	case F_GETLK:
420 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
421 			       sizeof(struct flock));
422 		if (error)
423 			return (error);
424 		break;
425 	}
426 
427 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
428 
429 	if (error == 0) {
430 		switch (uap->cmd) {
431 		case F_DUPFD:
432 			uap->sysmsg_result = dat.fc_fd;
433 			break;
434 		case F_GETFD:
435 			uap->sysmsg_result = dat.fc_cloexec;
436 			break;
437 		case F_GETFL:
438 			uap->sysmsg_result = dat.fc_flags;
439 			break;
440 		case F_GETOWN:
441 			uap->sysmsg_result = dat.fc_owner;
442 		case F_GETLK:
443 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
444 			    sizeof(struct flock));
445 			break;
446 		}
447 	}
448 
449 	return (error);
450 }
451 
452 /*
453  * Common code for dup, dup2, and fcntl(F_DUPFD).
454  *
455  * The type flag can be either DUP_FIXED or DUP_VARIABLE.  DUP_FIXED tells
456  * kern_dup() to destructively dup over an existing file descriptor if new
457  * is already open.  DUP_VARIABLE tells kern_dup() to find the lowest
458  * unused file descriptor that is greater than or equal to new.
459  *
460  * MPSAFE
461  */
462 int
463 kern_dup(enum dup_type type, int old, int new, int *res)
464 {
465 	struct thread *td = curthread;
466 	struct proc *p = td->td_proc;
467 	struct filedesc *fdp = p->p_fd;
468 	struct file *fp;
469 	struct file *delfp;
470 	int oldflags;
471 	int holdleaders;
472 	int dtsize;
473 	int error, newfd;
474 
475 	/*
476 	 * Verify that we have a valid descriptor to dup from and
477 	 * possibly to dup to.
478 	 *
479 	 * NOTE: maxfilesperuser is not applicable to dup()
480 	 */
481 retry:
482 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
483 		dtsize = INT_MAX;
484 	else
485 		dtsize = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
486 	if (dtsize > maxfilesperproc)
487 		dtsize = maxfilesperproc;
488 	if (dtsize < minfilesperproc)
489 		dtsize = minfilesperproc;
490 
491 	if (new < 0 || new > dtsize)
492 		return (EINVAL);
493 
494 	spin_lock(&fdp->fd_spin);
495 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
496 		spin_unlock(&fdp->fd_spin);
497 		return (EBADF);
498 	}
499 	if (type == DUP_FIXED && old == new) {
500 		*res = new;
501 		spin_unlock(&fdp->fd_spin);
502 		return (0);
503 	}
504 	fp = fdp->fd_files[old].fp;
505 	oldflags = fdp->fd_files[old].fileflags;
506 	fhold(fp);	/* MPSAFE - can be called with a spinlock held */
507 
508 	/*
509 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
510 	 * if the requested descriptor is beyond the current table size.
511 	 *
512 	 * This can block.  Retry if the source descriptor no longer matches
513 	 * or if our expectation in the expansion case races.
514 	 *
515 	 * If we are not expanding or allocating a new decriptor, then reset
516 	 * the target descriptor to a reserved state so we have a uniform
517 	 * setup for the next code block.
518 	 */
519 	if (type == DUP_VARIABLE || new >= fdp->fd_nfiles) {
520 		spin_unlock(&fdp->fd_spin);
521 		error = fdalloc(p, new, &newfd);
522 		spin_lock(&fdp->fd_spin);
523 		if (error) {
524 			spin_unlock(&fdp->fd_spin);
525 			fdrop(fp);
526 			return (error);
527 		}
528 		/*
529 		 * Check for ripout
530 		 */
531 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
532 			fsetfd_locked(fdp, NULL, newfd);
533 			spin_unlock(&fdp->fd_spin);
534 			fdrop(fp);
535 			goto retry;
536 		}
537 		/*
538 		 * Check for expansion race
539 		 */
540 		if (type != DUP_VARIABLE && new != newfd) {
541 			fsetfd_locked(fdp, NULL, newfd);
542 			spin_unlock(&fdp->fd_spin);
543 			fdrop(fp);
544 			goto retry;
545 		}
546 		/*
547 		 * Check for ripout, newfd reused old (this case probably
548 		 * can't occur).
549 		 */
550 		if (old == newfd) {
551 			fsetfd_locked(fdp, NULL, newfd);
552 			spin_unlock(&fdp->fd_spin);
553 			fdrop(fp);
554 			goto retry;
555 		}
556 		new = newfd;
557 		delfp = NULL;
558 	} else {
559 		if (fdp->fd_files[new].reserved) {
560 			spin_unlock(&fdp->fd_spin);
561 			fdrop(fp);
562 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
563 			tsleep(fdp, 0, "fdres", hz);
564 			goto retry;
565 		}
566 
567 		/*
568 		 * If the target descriptor was never allocated we have
569 		 * to allocate it.  If it was we have to clean out the
570 		 * old descriptor.  delfp inherits the ref from the
571 		 * descriptor table.
572 		 */
573 		delfp = fdp->fd_files[new].fp;
574 		fdp->fd_files[new].fp = NULL;
575 		fdp->fd_files[new].reserved = 1;
576 		if (delfp == NULL) {
577 			fdreserve_locked(fdp, new, 1);
578 			if (new > fdp->fd_lastfile)
579 				fdp->fd_lastfile = new;
580 		}
581 
582 	}
583 
584 	/*
585 	 * NOTE: still holding an exclusive spinlock
586 	 */
587 
588 	/*
589 	 * If a descriptor is being overwritten we may hve to tell
590 	 * fdfree() to sleep to ensure that all relevant process
591 	 * leaders can be traversed in closef().
592 	 */
593 	if (delfp != NULL && p->p_fdtol != NULL) {
594 		fdp->fd_holdleaderscount++;
595 		holdleaders = 1;
596 	} else {
597 		holdleaders = 0;
598 	}
599 	KASSERT(delfp == NULL || type == DUP_FIXED,
600 		("dup() picked an open file"));
601 
602 	/*
603 	 * Duplicate the source descriptor, update lastfile.  If the new
604 	 * descriptor was not allocated and we aren't replacing an existing
605 	 * descriptor we have to mark the descriptor as being in use.
606 	 *
607 	 * The fd_files[] array inherits fp's hold reference.
608 	 */
609 	fsetfd_locked(fdp, fp, new);
610 	fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
611 	spin_unlock(&fdp->fd_spin);
612 	fdrop(fp);
613 	*res = new;
614 
615 	/*
616 	 * If we dup'd over a valid file, we now own the reference to it
617 	 * and must dispose of it using closef() semantics (as if a
618 	 * close() were performed on it).
619 	 */
620 	if (delfp) {
621 		if (SLIST_FIRST(&delfp->f_klist))
622 			knote_fdclose(delfp, fdp, new);
623 		closef(delfp, p);
624 		if (holdleaders) {
625 			spin_lock(&fdp->fd_spin);
626 			fdp->fd_holdleaderscount--;
627 			if (fdp->fd_holdleaderscount == 0 &&
628 			    fdp->fd_holdleaderswakeup != 0) {
629 				fdp->fd_holdleaderswakeup = 0;
630 				spin_unlock(&fdp->fd_spin);
631 				wakeup(&fdp->fd_holdleaderscount);
632 			} else {
633 				spin_unlock(&fdp->fd_spin);
634 			}
635 		}
636 	}
637 	return (0);
638 }
639 
640 /*
641  * If sigio is on the list associated with a process or process group,
642  * disable signalling from the device, remove sigio from the list and
643  * free sigio.
644  *
645  * MPSAFE
646  */
647 void
648 funsetown(struct sigio **sigiop)
649 {
650 	struct pgrp *pgrp;
651 	struct proc *p;
652 	struct sigio *sigio;
653 
654 	if ((sigio = *sigiop) != NULL) {
655 		lwkt_gettoken(&proc_token);	/* protect sigio */
656 		KKASSERT(sigiop == sigio->sio_myref);
657 		sigio = *sigiop;
658 		*sigiop = NULL;
659 		lwkt_reltoken(&proc_token);
660 	}
661 	if (sigio == NULL)
662 		return;
663 
664 	if (sigio->sio_pgid < 0) {
665 		pgrp = sigio->sio_pgrp;
666 		sigio->sio_pgrp = NULL;
667 		lwkt_gettoken(&pgrp->pg_token);
668 		SLIST_REMOVE(&pgrp->pg_sigiolst, sigio, sigio, sio_pgsigio);
669 		lwkt_reltoken(&pgrp->pg_token);
670 		pgrel(pgrp);
671 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
672 		p = sigio->sio_proc;
673 		sigio->sio_proc = NULL;
674 		PHOLD(p);
675 		lwkt_gettoken(&p->p_token);
676 		SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
677 		lwkt_reltoken(&p->p_token);
678 		PRELE(p);
679 	}
680 	crfree(sigio->sio_ucred);
681 	sigio->sio_ucred = NULL;
682 	kfree(sigio, M_SIGIO);
683 }
684 
685 /*
686  * Free a list of sigio structures.  Caller is responsible for ensuring
687  * that the list is MPSAFE.
688  *
689  * MPSAFE
690  */
691 void
692 funsetownlst(struct sigiolst *sigiolst)
693 {
694 	struct sigio *sigio;
695 
696 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
697 		funsetown(sigio->sio_myref);
698 }
699 
700 /*
701  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
702  *
703  * After permission checking, add a sigio structure to the sigio list for
704  * the process or process group.
705  *
706  * MPSAFE
707  */
708 int
709 fsetown(pid_t pgid, struct sigio **sigiop)
710 {
711 	struct proc *proc = NULL;
712 	struct pgrp *pgrp = NULL;
713 	struct sigio *sigio;
714 	int error;
715 
716 	if (pgid == 0) {
717 		funsetown(sigiop);
718 		return (0);
719 	}
720 
721 	if (pgid > 0) {
722 		proc = pfind(pgid);
723 		if (proc == NULL) {
724 			error = ESRCH;
725 			goto done;
726 		}
727 
728 		/*
729 		 * Policy - Don't allow a process to FSETOWN a process
730 		 * in another session.
731 		 *
732 		 * Remove this test to allow maximum flexibility or
733 		 * restrict FSETOWN to the current process or process
734 		 * group for maximum safety.
735 		 */
736 		if (proc->p_session != curproc->p_session) {
737 			error = EPERM;
738 			goto done;
739 		}
740 	} else /* if (pgid < 0) */ {
741 		pgrp = pgfind(-pgid);
742 		if (pgrp == NULL) {
743 			error = ESRCH;
744 			goto done;
745 		}
746 
747 		/*
748 		 * Policy - Don't allow a process to FSETOWN a process
749 		 * in another session.
750 		 *
751 		 * Remove this test to allow maximum flexibility or
752 		 * restrict FSETOWN to the current process or process
753 		 * group for maximum safety.
754 		 */
755 		if (pgrp->pg_session != curproc->p_session) {
756 			error = EPERM;
757 			goto done;
758 		}
759 	}
760 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK | M_ZERO);
761 	if (pgid > 0) {
762 		KKASSERT(pgrp == NULL);
763 		lwkt_gettoken(&proc->p_token);
764 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
765 		sigio->sio_proc = proc;
766 		lwkt_reltoken(&proc->p_token);
767 	} else {
768 		KKASSERT(proc == NULL);
769 		lwkt_gettoken(&pgrp->pg_token);
770 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
771 		sigio->sio_pgrp = pgrp;
772 		lwkt_reltoken(&pgrp->pg_token);
773 		pgrp = NULL;
774 	}
775 	sigio->sio_pgid = pgid;
776 	sigio->sio_ucred = crhold(curthread->td_ucred);
777 	/* It would be convenient if p_ruid was in ucred. */
778 	sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
779 	sigio->sio_myref = sigiop;
780 
781 	lwkt_gettoken(&proc_token);
782 	while (*sigiop)
783 		funsetown(sigiop);
784 	*sigiop = sigio;
785 	lwkt_reltoken(&proc_token);
786 	error = 0;
787 done:
788 	if (pgrp)
789 		pgrel(pgrp);
790 	if (proc)
791 		PRELE(proc);
792 	return (error);
793 }
794 
795 /*
796  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
797  *
798  * MPSAFE
799  */
800 pid_t
801 fgetown(struct sigio **sigiop)
802 {
803 	struct sigio *sigio;
804 	pid_t own;
805 
806 	lwkt_gettoken(&proc_token);
807 	sigio = *sigiop;
808 	own = (sigio != NULL ? sigio->sio_pgid : 0);
809 	lwkt_reltoken(&proc_token);
810 
811 	return (own);
812 }
813 
814 /*
815  * Close many file descriptors.
816  *
817  * MPSAFE
818  */
819 int
820 sys_closefrom(struct closefrom_args *uap)
821 {
822 	return(kern_closefrom(uap->fd));
823 }
824 
825 /*
826  * Close all file descriptors greater then or equal to fd
827  *
828  * MPSAFE
829  */
830 int
831 kern_closefrom(int fd)
832 {
833 	struct thread *td = curthread;
834 	struct proc *p = td->td_proc;
835 	struct filedesc *fdp;
836 
837 	KKASSERT(p);
838 	fdp = p->p_fd;
839 
840 	if (fd < 0)
841 		return (EINVAL);
842 
843 	/*
844 	 * NOTE: This function will skip unassociated descriptors and
845 	 * reserved descriptors that have not yet been assigned.
846 	 * fd_lastfile can change as a side effect of kern_close().
847 	 */
848 	spin_lock(&fdp->fd_spin);
849 	while (fd <= fdp->fd_lastfile) {
850 		if (fdp->fd_files[fd].fp != NULL) {
851 			spin_unlock(&fdp->fd_spin);
852 			/* ok if this races another close */
853 			if (kern_close(fd) == EINTR)
854 				return (EINTR);
855 			spin_lock(&fdp->fd_spin);
856 		}
857 		++fd;
858 	}
859 	spin_unlock(&fdp->fd_spin);
860 	return (0);
861 }
862 
863 /*
864  * Close a file descriptor.
865  *
866  * MPSAFE
867  */
868 int
869 sys_close(struct close_args *uap)
870 {
871 	return(kern_close(uap->fd));
872 }
873 
874 /*
875  * MPSAFE
876  */
877 int
878 kern_close(int fd)
879 {
880 	struct thread *td = curthread;
881 	struct proc *p = td->td_proc;
882 	struct filedesc *fdp;
883 	struct file *fp;
884 	int error;
885 	int holdleaders;
886 
887 	KKASSERT(p);
888 	fdp = p->p_fd;
889 
890 	spin_lock(&fdp->fd_spin);
891 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
892 		spin_unlock(&fdp->fd_spin);
893 		return (EBADF);
894 	}
895 	holdleaders = 0;
896 	if (p->p_fdtol != NULL) {
897 		/*
898 		 * Ask fdfree() to sleep to ensure that all relevant
899 		 * process leaders can be traversed in closef().
900 		 */
901 		fdp->fd_holdleaderscount++;
902 		holdleaders = 1;
903 	}
904 
905 	/*
906 	 * we now hold the fp reference that used to be owned by the descriptor
907 	 * array.
908 	 */
909 	spin_unlock(&fdp->fd_spin);
910 	if (SLIST_FIRST(&fp->f_klist))
911 		knote_fdclose(fp, fdp, fd);
912 	error = closef(fp, p);
913 	if (holdleaders) {
914 		spin_lock(&fdp->fd_spin);
915 		fdp->fd_holdleaderscount--;
916 		if (fdp->fd_holdleaderscount == 0 &&
917 		    fdp->fd_holdleaderswakeup != 0) {
918 			fdp->fd_holdleaderswakeup = 0;
919 			spin_unlock(&fdp->fd_spin);
920 			wakeup(&fdp->fd_holdleaderscount);
921 		} else {
922 			spin_unlock(&fdp->fd_spin);
923 		}
924 	}
925 	return (error);
926 }
927 
928 /*
929  * shutdown_args(int fd, int how)
930  */
931 int
932 kern_shutdown(int fd, int how)
933 {
934 	struct thread *td = curthread;
935 	struct proc *p = td->td_proc;
936 	struct file *fp;
937 	int error;
938 
939 	KKASSERT(p);
940 
941 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
942 		return (EBADF);
943 	error = fo_shutdown(fp, how);
944 	fdrop(fp);
945 
946 	return (error);
947 }
948 
949 /*
950  * MPALMOSTSAFE
951  */
952 int
953 sys_shutdown(struct shutdown_args *uap)
954 {
955 	int error;
956 
957 	error = kern_shutdown(uap->s, uap->how);
958 
959 	return (error);
960 }
961 
962 /*
963  * MPSAFE
964  */
965 int
966 kern_fstat(int fd, struct stat *ub)
967 {
968 	struct thread *td = curthread;
969 	struct proc *p = td->td_proc;
970 	struct file *fp;
971 	int error;
972 
973 	KKASSERT(p);
974 
975 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
976 		return (EBADF);
977 	error = fo_stat(fp, ub, td->td_ucred);
978 	fdrop(fp);
979 
980 	return (error);
981 }
982 
983 /*
984  * Return status information about a file descriptor.
985  *
986  * MPSAFE
987  */
988 int
989 sys_fstat(struct fstat_args *uap)
990 {
991 	struct stat st;
992 	int error;
993 
994 	error = kern_fstat(uap->fd, &st);
995 
996 	if (error == 0)
997 		error = copyout(&st, uap->sb, sizeof(st));
998 	return (error);
999 }
1000 
1001 /*
1002  * Return pathconf information about a file descriptor.
1003  *
1004  * MPALMOSTSAFE
1005  */
1006 int
1007 sys_fpathconf(struct fpathconf_args *uap)
1008 {
1009 	struct thread *td = curthread;
1010 	struct proc *p = td->td_proc;
1011 	struct file *fp;
1012 	struct vnode *vp;
1013 	int error = 0;
1014 
1015 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
1016 		return (EBADF);
1017 
1018 	switch (fp->f_type) {
1019 	case DTYPE_PIPE:
1020 	case DTYPE_SOCKET:
1021 		if (uap->name != _PC_PIPE_BUF) {
1022 			error = EINVAL;
1023 		} else {
1024 			uap->sysmsg_result = PIPE_BUF;
1025 			error = 0;
1026 		}
1027 		break;
1028 	case DTYPE_FIFO:
1029 	case DTYPE_VNODE:
1030 		vp = (struct vnode *)fp->f_data;
1031 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
1032 		break;
1033 	default:
1034 		error = EOPNOTSUPP;
1035 		break;
1036 	}
1037 	fdrop(fp);
1038 	return(error);
1039 }
1040 
1041 static int fdexpand;
1042 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0,
1043     "Number of times a file table has been expanded");
1044 
1045 /*
1046  * Grow the file table so it can hold through descriptor (want).
1047  *
1048  * The fdp's spinlock must be held exclusively on entry and may be held
1049  * exclusively on return.  The spinlock may be cycled by the routine.
1050  *
1051  * MPSAFE
1052  */
1053 static void
1054 fdgrow_locked(struct filedesc *fdp, int want)
1055 {
1056 	struct fdnode *newfiles;
1057 	struct fdnode *oldfiles;
1058 	int nf, extra;
1059 
1060 	nf = fdp->fd_nfiles;
1061 	do {
1062 		/* nf has to be of the form 2^n - 1 */
1063 		nf = 2 * nf + 1;
1064 	} while (nf <= want);
1065 
1066 	spin_unlock(&fdp->fd_spin);
1067 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
1068 	spin_lock(&fdp->fd_spin);
1069 
1070 	/*
1071 	 * We could have raced another extend while we were not holding
1072 	 * the spinlock.
1073 	 */
1074 	if (fdp->fd_nfiles >= nf) {
1075 		spin_unlock(&fdp->fd_spin);
1076 		kfree(newfiles, M_FILEDESC);
1077 		spin_lock(&fdp->fd_spin);
1078 		return;
1079 	}
1080 	/*
1081 	 * Copy the existing ofile and ofileflags arrays
1082 	 * and zero the new portion of each array.
1083 	 */
1084 	extra = nf - fdp->fd_nfiles;
1085 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1086 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1087 
1088 	oldfiles = fdp->fd_files;
1089 	fdp->fd_files = newfiles;
1090 	fdp->fd_nfiles = nf;
1091 
1092 	if (oldfiles != fdp->fd_builtin_files) {
1093 		spin_unlock(&fdp->fd_spin);
1094 		kfree(oldfiles, M_FILEDESC);
1095 		spin_lock(&fdp->fd_spin);
1096 	}
1097 	fdexpand++;
1098 }
1099 
1100 /*
1101  * Number of nodes in right subtree, including the root.
1102  */
1103 static __inline int
1104 right_subtree_size(int n)
1105 {
1106 	return (n ^ (n | (n + 1)));
1107 }
1108 
1109 /*
1110  * Bigger ancestor.
1111  */
1112 static __inline int
1113 right_ancestor(int n)
1114 {
1115 	return (n | (n + 1));
1116 }
1117 
1118 /*
1119  * Smaller ancestor.
1120  */
1121 static __inline int
1122 left_ancestor(int n)
1123 {
1124 	return ((n & (n + 1)) - 1);
1125 }
1126 
1127 /*
1128  * Traverse the in-place binary tree buttom-up adjusting the allocation
1129  * count so scans can determine where free descriptors are located.
1130  *
1131  * MPSAFE - caller must be holding an exclusive spinlock on fdp
1132  */
1133 static
1134 void
1135 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1136 {
1137 	while (fd >= 0) {
1138 		fdp->fd_files[fd].allocated += incr;
1139 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1140 		fd = left_ancestor(fd);
1141 	}
1142 }
1143 
1144 /*
1145  * Reserve a file descriptor for the process.  If no error occurs, the
1146  * caller MUST at some point call fsetfd() or assign a file pointer
1147  * or dispose of the reservation.
1148  *
1149  * MPSAFE
1150  */
1151 int
1152 fdalloc(struct proc *p, int want, int *result)
1153 {
1154 	struct filedesc *fdp = p->p_fd;
1155 	struct uidinfo *uip;
1156 	int fd, rsize, rsum, node, lim;
1157 
1158 	/*
1159 	 * Check dtable size limit
1160 	 */
1161 	spin_lock(&p->p_limit->p_spin);
1162 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1163 		lim = INT_MAX;
1164 	else
1165 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1166 	spin_unlock(&p->p_limit->p_spin);
1167 
1168 	if (lim > maxfilesperproc)
1169 		lim = maxfilesperproc;
1170 	if (lim < minfilesperproc)
1171 		lim = minfilesperproc;
1172 	if (want >= lim)
1173 		return (EMFILE);
1174 
1175 	/*
1176 	 * Check that the user has not run out of descriptors (non-root only).
1177 	 * As a safety measure the dtable is allowed to have at least
1178 	 * minfilesperproc open fds regardless of the maxfilesperuser limit.
1179 	 */
1180 	if (p->p_ucred->cr_uid && fdp->fd_nfiles >= minfilesperproc) {
1181 		uip = p->p_ucred->cr_uidinfo;
1182 		if (uip->ui_openfiles > maxfilesperuser) {
1183 			krateprintf(&krate_uidinfo,
1184 				    "Warning: user %d pid %d (%s) ran out of "
1185 				    "file descriptors (%d/%d)\n",
1186 				    p->p_ucred->cr_uid, (int)p->p_pid,
1187 				    p->p_comm,
1188 				    uip->ui_openfiles, maxfilesperuser);
1189 			return(ENFILE);
1190 		}
1191 	}
1192 
1193 	/*
1194 	 * Grow the dtable if necessary
1195 	 */
1196 	spin_lock(&fdp->fd_spin);
1197 	if (want >= fdp->fd_nfiles)
1198 		fdgrow_locked(fdp, want);
1199 
1200 	/*
1201 	 * Search for a free descriptor starting at the higher
1202 	 * of want or fd_freefile.  If that fails, consider
1203 	 * expanding the ofile array.
1204 	 *
1205 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1206 	 * count.  If we happen to see a value of 0 then we can shortcut
1207 	 * our search.  Otherwise we run through through the tree going
1208 	 * down branches we know have free descriptor(s) until we hit a
1209 	 * leaf node.  The leaf node will be free but will not necessarily
1210 	 * have an allocated field of 0.
1211 	 */
1212 retry:
1213 	/* move up the tree looking for a subtree with a free node */
1214 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1215 	     fd = right_ancestor(fd)) {
1216 		if (fdp->fd_files[fd].allocated == 0)
1217 			goto found;
1218 
1219 		rsize = right_subtree_size(fd);
1220 		if (fdp->fd_files[fd].allocated == rsize)
1221 			continue;	/* right subtree full */
1222 
1223 		/*
1224 		 * Free fd is in the right subtree of the tree rooted at fd.
1225 		 * Call that subtree R.  Look for the smallest (leftmost)
1226 		 * subtree of R with an unallocated fd: continue moving
1227 		 * down the left branch until encountering a full left
1228 		 * subtree, then move to the right.
1229 		 */
1230 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1231 			node = fd + rsize;
1232 			rsum += fdp->fd_files[node].allocated;
1233 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1234 				fd = node;	/* move to the right */
1235 				if (fdp->fd_files[node].allocated == 0)
1236 					goto found;
1237 				rsum = 0;
1238 			}
1239 		}
1240 		goto found;
1241 	}
1242 
1243 	/*
1244 	 * No space in current array.  Expand?
1245 	 */
1246 	if (fdp->fd_nfiles >= lim) {
1247 		spin_unlock(&fdp->fd_spin);
1248 		return (EMFILE);
1249 	}
1250 	fdgrow_locked(fdp, want);
1251 	goto retry;
1252 
1253 found:
1254 	KKASSERT(fd < fdp->fd_nfiles);
1255 	if (fd > fdp->fd_lastfile)
1256 		fdp->fd_lastfile = fd;
1257 	if (want <= fdp->fd_freefile)
1258 		fdp->fd_freefile = fd;
1259 	*result = fd;
1260 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1261 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1262 	fdp->fd_files[fd].fileflags = 0;
1263 	fdp->fd_files[fd].reserved = 1;
1264 	fdreserve_locked(fdp, fd, 1);
1265 	spin_unlock(&fdp->fd_spin);
1266 	return (0);
1267 }
1268 
1269 /*
1270  * Check to see whether n user file descriptors
1271  * are available to the process p.
1272  *
1273  * MPSAFE
1274  */
1275 int
1276 fdavail(struct proc *p, int n)
1277 {
1278 	struct filedesc *fdp = p->p_fd;
1279 	struct fdnode *fdnode;
1280 	int i, lim, last;
1281 
1282 	spin_lock(&p->p_limit->p_spin);
1283 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1284 		lim = INT_MAX;
1285 	else
1286 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1287 	spin_unlock(&p->p_limit->p_spin);
1288 
1289 	if (lim > maxfilesperproc)
1290 		lim = maxfilesperproc;
1291 	if (lim < minfilesperproc)
1292 		lim = minfilesperproc;
1293 
1294 	spin_lock(&fdp->fd_spin);
1295 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1296 		spin_unlock(&fdp->fd_spin);
1297 		return (1);
1298 	}
1299 	last = min(fdp->fd_nfiles, lim);
1300 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1301 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1302 		if (fdnode->fp == NULL && --n <= 0) {
1303 			spin_unlock(&fdp->fd_spin);
1304 			return (1);
1305 		}
1306 	}
1307 	spin_unlock(&fdp->fd_spin);
1308 	return (0);
1309 }
1310 
1311 /*
1312  * Revoke open descriptors referencing (f_data, f_type)
1313  *
1314  * Any revoke executed within a prison is only able to
1315  * revoke descriptors for processes within that prison.
1316  *
1317  * Returns 0 on success or an error code.
1318  */
1319 struct fdrevoke_info {
1320 	void *data;
1321 	short type;
1322 	short unused;
1323 	int count;
1324 	int intransit;
1325 	struct ucred *cred;
1326 	struct file *nfp;
1327 };
1328 
1329 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1330 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1331 
1332 int
1333 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1334 {
1335 	struct fdrevoke_info info;
1336 	int error;
1337 
1338 	bzero(&info, sizeof(info));
1339 	info.data = f_data;
1340 	info.type = f_type;
1341 	info.cred = cred;
1342 	error = falloc(NULL, &info.nfp, NULL);
1343 	if (error)
1344 		return (error);
1345 
1346 	/*
1347 	 * Scan the file pointer table once.  dups do not dup file pointers,
1348 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1349 	 * being revoked.
1350 	 */
1351 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1352 
1353 	/*
1354 	 * If any fps were marked track down the related descriptors
1355 	 * and close them.  Any dup()s at this point will notice
1356 	 * the FREVOKED already set in the fp and do the right thing.
1357 	 *
1358 	 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1359 	 * socket) bumped the intransit counter and will require a
1360 	 * scan.  Races against fps leaving the socket are closed by
1361 	 * the socket code checking for FREVOKED.
1362 	 */
1363 	if (info.count)
1364 		allproc_scan(fdrevoke_proc_callback, &info);
1365 	if (info.intransit)
1366 		unp_revoke_gc(info.nfp);
1367 	fdrop(info.nfp);
1368 	return(0);
1369 }
1370 
1371 /*
1372  * Locate matching file pointers directly.
1373  *
1374  * WARNING: allfiles_scan_exclusive() holds a spinlock through these calls!
1375  */
1376 static int
1377 fdrevoke_check_callback(struct file *fp, void *vinfo)
1378 {
1379 	struct fdrevoke_info *info = vinfo;
1380 
1381 	/*
1382 	 * File pointers already flagged for revokation are skipped.
1383 	 */
1384 	if (fp->f_flag & FREVOKED)
1385 		return(0);
1386 
1387 	/*
1388 	 * If revoking from a prison file pointers created outside of
1389 	 * that prison, or file pointers without creds, cannot be revoked.
1390 	 */
1391 	if (info->cred->cr_prison &&
1392 	    (fp->f_cred == NULL ||
1393 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1394 		return(0);
1395 	}
1396 
1397 	/*
1398 	 * If the file pointer matches then mark it for revocation.  The
1399 	 * flag is currently only used by unp_revoke_gc().
1400 	 *
1401 	 * info->count is a heuristic and can race in a SMP environment.
1402 	 */
1403 	if (info->data == fp->f_data && info->type == fp->f_type) {
1404 		atomic_set_int(&fp->f_flag, FREVOKED);
1405 		info->count += fp->f_count;
1406 		if (fp->f_msgcount)
1407 			++info->intransit;
1408 	}
1409 	return(0);
1410 }
1411 
1412 /*
1413  * Locate matching file pointers via process descriptor tables.
1414  */
1415 static int
1416 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1417 {
1418 	struct fdrevoke_info *info = vinfo;
1419 	struct filedesc *fdp;
1420 	struct file *fp;
1421 	int n;
1422 
1423 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1424 		return(0);
1425 	if (info->cred->cr_prison &&
1426 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1427 		return(0);
1428 	}
1429 
1430 	/*
1431 	 * If the controlling terminal of the process matches the
1432 	 * vnode being revoked we clear the controlling terminal.
1433 	 *
1434 	 * The normal spec_close() may not catch this because it
1435 	 * uses curproc instead of p.
1436 	 */
1437 	if (p->p_session && info->type == DTYPE_VNODE &&
1438 	    info->data == p->p_session->s_ttyvp) {
1439 		p->p_session->s_ttyvp = NULL;
1440 		vrele(info->data);
1441 	}
1442 
1443 	/*
1444 	 * Softref the fdp to prevent it from being destroyed
1445 	 */
1446 	spin_lock(&p->p_spin);
1447 	if ((fdp = p->p_fd) == NULL) {
1448 		spin_unlock(&p->p_spin);
1449 		return(0);
1450 	}
1451 	atomic_add_int(&fdp->fd_softrefs, 1);
1452 	spin_unlock(&p->p_spin);
1453 
1454 	/*
1455 	 * Locate and close any matching file descriptors.
1456 	 */
1457 	spin_lock(&fdp->fd_spin);
1458 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1459 		if ((fp = fdp->fd_files[n].fp) == NULL)
1460 			continue;
1461 		if (fp->f_flag & FREVOKED) {
1462 			fhold(info->nfp);
1463 			fdp->fd_files[n].fp = info->nfp;
1464 			spin_unlock(&fdp->fd_spin);
1465 			knote_fdclose(fp, fdp, n);	/* XXX */
1466 			closef(fp, p);
1467 			spin_lock(&fdp->fd_spin);
1468 			--info->count;
1469 		}
1470 	}
1471 	spin_unlock(&fdp->fd_spin);
1472 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1473 	return(0);
1474 }
1475 
1476 /*
1477  * falloc:
1478  *	Create a new open file structure and reserve a file decriptor
1479  *	for the process that refers to it.
1480  *
1481  *	Root creds are checked using lp, or assumed if lp is NULL.  If
1482  *	resultfd is non-NULL then lp must also be non-NULL.  No file
1483  *	descriptor is reserved (and no process context is needed) if
1484  *	resultfd is NULL.
1485  *
1486  *	A file pointer with a refcount of 1 is returned.  Note that the
1487  *	file pointer is NOT associated with the descriptor.  If falloc
1488  *	returns success, fsetfd() MUST be called to either associate the
1489  *	file pointer or clear the reservation.
1490  *
1491  * MPSAFE
1492  */
1493 int
1494 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
1495 {
1496 	static struct timeval lastfail;
1497 	static int curfail;
1498 	struct file *fp;
1499 	struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
1500 	int error;
1501 
1502 	fp = NULL;
1503 
1504 	/*
1505 	 * Handle filetable full issues and root overfill.
1506 	 */
1507 	if (nfiles >= maxfiles - maxfilesrootres &&
1508 	    (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
1509 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1510 			kprintf("kern.maxfiles limit exceeded by uid %d, "
1511 				"please see tuning(7).\n",
1512 				cred->cr_ruid);
1513 		}
1514 		error = ENFILE;
1515 		goto done;
1516 	}
1517 
1518 	/*
1519 	 * Allocate a new file descriptor.
1520 	 */
1521 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1522 	spin_init(&fp->f_spin);
1523 	SLIST_INIT(&fp->f_klist);
1524 	fp->f_count = 1;
1525 	fp->f_ops = &badfileops;
1526 	fp->f_seqcount = 1;
1527 	fsetcred(fp, cred);
1528 	spin_lock(&filehead_spin);
1529 	nfiles++;
1530 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1531 	spin_unlock(&filehead_spin);
1532 	if (resultfd) {
1533 		if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
1534 			fdrop(fp);
1535 			fp = NULL;
1536 		}
1537 	} else {
1538 		error = 0;
1539 	}
1540 done:
1541 	*resultfp = fp;
1542 	return (error);
1543 }
1544 
1545 /*
1546  * Check for races against a file descriptor by determining that the
1547  * file pointer is still associated with the specified file descriptor,
1548  * and a close is not currently in progress.
1549  *
1550  * MPSAFE
1551  */
1552 int
1553 checkfdclosed(struct filedesc *fdp, int fd, struct file *fp)
1554 {
1555 	int error;
1556 
1557 	spin_lock(&fdp->fd_spin);
1558 	if ((unsigned)fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1559 		error = EBADF;
1560 	else
1561 		error = 0;
1562 	spin_unlock(&fdp->fd_spin);
1563 	return (error);
1564 }
1565 
1566 /*
1567  * Associate a file pointer with a previously reserved file descriptor.
1568  * This function always succeeds.
1569  *
1570  * If fp is NULL, the file descriptor is returned to the pool.
1571  */
1572 
1573 /*
1574  * MPSAFE (exclusive spinlock must be held on call)
1575  */
1576 static void
1577 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1578 {
1579 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1580 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1581 	if (fp) {
1582 		fhold(fp);
1583 		fdp->fd_files[fd].fp = fp;
1584 		fdp->fd_files[fd].reserved = 0;
1585 	} else {
1586 		fdp->fd_files[fd].reserved = 0;
1587 		fdreserve_locked(fdp, fd, -1);
1588 		fdfixup_locked(fdp, fd);
1589 	}
1590 }
1591 
1592 /*
1593  * MPSAFE
1594  */
1595 void
1596 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
1597 {
1598 	spin_lock(&fdp->fd_spin);
1599 	fsetfd_locked(fdp, fp, fd);
1600 	spin_unlock(&fdp->fd_spin);
1601 }
1602 
1603 /*
1604  * MPSAFE (exclusive spinlock must be held on call)
1605  */
1606 static
1607 struct file *
1608 funsetfd_locked(struct filedesc *fdp, int fd)
1609 {
1610 	struct file *fp;
1611 
1612 	if ((unsigned)fd >= fdp->fd_nfiles)
1613 		return (NULL);
1614 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1615 		return (NULL);
1616 	fdp->fd_files[fd].fp = NULL;
1617 	fdp->fd_files[fd].fileflags = 0;
1618 
1619 	fdreserve_locked(fdp, fd, -1);
1620 	fdfixup_locked(fdp, fd);
1621 	return(fp);
1622 }
1623 
1624 /*
1625  * MPSAFE
1626  */
1627 int
1628 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1629 {
1630 	int error;
1631 
1632 	spin_lock(&fdp->fd_spin);
1633 	if (((u_int)fd) >= fdp->fd_nfiles) {
1634 		error = EBADF;
1635 	} else if (fdp->fd_files[fd].fp == NULL) {
1636 		error = EBADF;
1637 	} else {
1638 		*flagsp = fdp->fd_files[fd].fileflags;
1639 		error = 0;
1640 	}
1641 	spin_unlock(&fdp->fd_spin);
1642 	return (error);
1643 }
1644 
1645 /*
1646  * MPSAFE
1647  */
1648 int
1649 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1650 {
1651 	int error;
1652 
1653 	spin_lock(&fdp->fd_spin);
1654 	if (((u_int)fd) >= fdp->fd_nfiles) {
1655 		error = EBADF;
1656 	} else if (fdp->fd_files[fd].fp == NULL) {
1657 		error = EBADF;
1658 	} else {
1659 		fdp->fd_files[fd].fileflags |= add_flags;
1660 		error = 0;
1661 	}
1662 	spin_unlock(&fdp->fd_spin);
1663 	return (error);
1664 }
1665 
1666 /*
1667  * MPSAFE
1668  */
1669 int
1670 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1671 {
1672 	int error;
1673 
1674 	spin_lock(&fdp->fd_spin);
1675 	if (((u_int)fd) >= fdp->fd_nfiles) {
1676 		error = EBADF;
1677 	} else if (fdp->fd_files[fd].fp == NULL) {
1678 		error = EBADF;
1679 	} else {
1680 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1681 		error = 0;
1682 	}
1683 	spin_unlock(&fdp->fd_spin);
1684 	return (error);
1685 }
1686 
1687 /*
1688  * Set/Change/Clear the creds for a fp and synchronize the uidinfo.
1689  */
1690 void
1691 fsetcred(struct file *fp, struct ucred *ncr)
1692 {
1693 	struct ucred *ocr;
1694 	struct uidinfo *uip;
1695 
1696 	ocr = fp->f_cred;
1697 	if (ocr == NULL || ncr == NULL || ocr->cr_uidinfo != ncr->cr_uidinfo) {
1698 		if (ocr) {
1699 			uip = ocr->cr_uidinfo;
1700 			atomic_add_int(&uip->ui_openfiles, -1);
1701 		}
1702 		if (ncr) {
1703 			uip = ncr->cr_uidinfo;
1704 			atomic_add_int(&uip->ui_openfiles, 1);
1705 		}
1706 	}
1707 	if (ncr)
1708 		crhold(ncr);
1709 	fp->f_cred = ncr;
1710 	if (ocr)
1711 		crfree(ocr);
1712 }
1713 
1714 /*
1715  * Free a file descriptor.
1716  */
1717 static
1718 void
1719 ffree(struct file *fp)
1720 {
1721 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1722 	spin_lock(&filehead_spin);
1723 	LIST_REMOVE(fp, f_list);
1724 	nfiles--;
1725 	spin_unlock(&filehead_spin);
1726 	fsetcred(fp, NULL);
1727 	if (fp->f_nchandle.ncp)
1728 	    cache_drop(&fp->f_nchandle);
1729 	kfree(fp, M_FILE);
1730 }
1731 
1732 /*
1733  * called from init_main, initialize filedesc0 for proc0.
1734  */
1735 void
1736 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1737 {
1738 	p0->p_fd = fdp0;
1739 	p0->p_fdtol = NULL;
1740 	fdp0->fd_refcnt = 1;
1741 	fdp0->fd_cmask = cmask;
1742 	fdp0->fd_files = fdp0->fd_builtin_files;
1743 	fdp0->fd_nfiles = NDFILE;
1744 	fdp0->fd_lastfile = -1;
1745 	spin_init(&fdp0->fd_spin);
1746 }
1747 
1748 /*
1749  * Build a new filedesc structure.
1750  *
1751  * NOT MPSAFE (vref)
1752  */
1753 struct filedesc *
1754 fdinit(struct proc *p)
1755 {
1756 	struct filedesc *newfdp;
1757 	struct filedesc *fdp = p->p_fd;
1758 
1759 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1760 	spin_lock(&fdp->fd_spin);
1761 	if (fdp->fd_cdir) {
1762 		newfdp->fd_cdir = fdp->fd_cdir;
1763 		vref(newfdp->fd_cdir);
1764 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1765 	}
1766 
1767 	/*
1768 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1769 	 * proc0, but should unconditionally exist in other processes.
1770 	 */
1771 	if (fdp->fd_rdir) {
1772 		newfdp->fd_rdir = fdp->fd_rdir;
1773 		vref(newfdp->fd_rdir);
1774 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1775 	}
1776 	if (fdp->fd_jdir) {
1777 		newfdp->fd_jdir = fdp->fd_jdir;
1778 		vref(newfdp->fd_jdir);
1779 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1780 	}
1781 	spin_unlock(&fdp->fd_spin);
1782 
1783 	/* Create the file descriptor table. */
1784 	newfdp->fd_refcnt = 1;
1785 	newfdp->fd_cmask = cmask;
1786 	newfdp->fd_files = newfdp->fd_builtin_files;
1787 	newfdp->fd_nfiles = NDFILE;
1788 	newfdp->fd_lastfile = -1;
1789 	spin_init(&newfdp->fd_spin);
1790 
1791 	return (newfdp);
1792 }
1793 
1794 /*
1795  * Share a filedesc structure.
1796  *
1797  * MPSAFE
1798  */
1799 struct filedesc *
1800 fdshare(struct proc *p)
1801 {
1802 	struct filedesc *fdp;
1803 
1804 	fdp = p->p_fd;
1805 	spin_lock(&fdp->fd_spin);
1806 	fdp->fd_refcnt++;
1807 	spin_unlock(&fdp->fd_spin);
1808 	return (fdp);
1809 }
1810 
1811 /*
1812  * Copy a filedesc structure.
1813  *
1814  * MPSAFE
1815  */
1816 int
1817 fdcopy(struct proc *p, struct filedesc **fpp)
1818 {
1819 	struct filedesc *fdp = p->p_fd;
1820 	struct filedesc *newfdp;
1821 	struct fdnode *fdnode;
1822 	int i;
1823 	int ni;
1824 
1825 	/*
1826 	 * Certain daemons might not have file descriptors.
1827 	 */
1828 	if (fdp == NULL)
1829 		return (0);
1830 
1831 	/*
1832 	 * Allocate the new filedesc and fd_files[] array.  This can race
1833 	 * with operations by other threads on the fdp so we have to be
1834 	 * careful.
1835 	 */
1836 	newfdp = kmalloc(sizeof(struct filedesc),
1837 			 M_FILEDESC, M_WAITOK | M_ZERO | M_NULLOK);
1838 	if (newfdp == NULL) {
1839 		*fpp = NULL;
1840 		return (-1);
1841 	}
1842 again:
1843 	spin_lock(&fdp->fd_spin);
1844 	if (fdp->fd_lastfile < NDFILE) {
1845 		newfdp->fd_files = newfdp->fd_builtin_files;
1846 		i = NDFILE;
1847 	} else {
1848 		/*
1849 		 * We have to allocate (N^2-1) entries for our in-place
1850 		 * binary tree.  Allow the table to shrink.
1851 		 */
1852 		i = fdp->fd_nfiles;
1853 		ni = (i - 1) / 2;
1854 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1855 			i = ni;
1856 			ni = (i - 1) / 2;
1857 		}
1858 		spin_unlock(&fdp->fd_spin);
1859 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1860 					  M_FILEDESC, M_WAITOK | M_ZERO);
1861 
1862 		/*
1863 		 * Check for race, retry
1864 		 */
1865 		spin_lock(&fdp->fd_spin);
1866 		if (i <= fdp->fd_lastfile) {
1867 			spin_unlock(&fdp->fd_spin);
1868 			kfree(newfdp->fd_files, M_FILEDESC);
1869 			goto again;
1870 		}
1871 	}
1872 
1873 	/*
1874 	 * Dup the remaining fields. vref() and cache_hold() can be
1875 	 * safely called while holding the read spinlock on fdp.
1876 	 *
1877 	 * The read spinlock on fdp is still being held.
1878 	 *
1879 	 * NOTE: vref and cache_hold calls for the case where the vnode
1880 	 * or cache entry already has at least one ref may be called
1881 	 * while holding spin locks.
1882 	 */
1883 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1884 		vref(newfdp->fd_cdir);
1885 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1886 	}
1887 	/*
1888 	 * We must check for fd_rdir here, at least for now because
1889 	 * the init process is created before we have access to the
1890 	 * rootvode to take a reference to it.
1891 	 */
1892 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1893 		vref(newfdp->fd_rdir);
1894 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1895 	}
1896 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1897 		vref(newfdp->fd_jdir);
1898 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1899 	}
1900 	newfdp->fd_refcnt = 1;
1901 	newfdp->fd_nfiles = i;
1902 	newfdp->fd_lastfile = fdp->fd_lastfile;
1903 	newfdp->fd_freefile = fdp->fd_freefile;
1904 	newfdp->fd_cmask = fdp->fd_cmask;
1905 	spin_init(&newfdp->fd_spin);
1906 
1907 	/*
1908 	 * Copy the descriptor table through (i).  This also copies the
1909 	 * allocation state.   Then go through and ref the file pointers
1910 	 * and clean up any KQ descriptors.
1911 	 *
1912 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1913 	 * copied files yet we can ignore the return value from funsetfd().
1914 	 *
1915 	 * The read spinlock on fdp is still being held.
1916 	 */
1917 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1918 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1919 		fdnode = &newfdp->fd_files[i];
1920 		if (fdnode->reserved) {
1921 			fdreserve_locked(newfdp, i, -1);
1922 			fdnode->reserved = 0;
1923 			fdfixup_locked(newfdp, i);
1924 		} else if (fdnode->fp) {
1925 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1926 				(void)funsetfd_locked(newfdp, i);
1927 			} else {
1928 				fhold(fdnode->fp);
1929 			}
1930 		}
1931 	}
1932 	spin_unlock(&fdp->fd_spin);
1933 	*fpp = newfdp;
1934 	return (0);
1935 }
1936 
1937 /*
1938  * Release a filedesc structure.
1939  *
1940  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1941  */
1942 void
1943 fdfree(struct proc *p, struct filedesc *repl)
1944 {
1945 	struct filedesc *fdp;
1946 	struct fdnode *fdnode;
1947 	int i;
1948 	struct filedesc_to_leader *fdtol;
1949 	struct file *fp;
1950 	struct vnode *vp;
1951 	struct flock lf;
1952 
1953 	/*
1954 	 * Certain daemons might not have file descriptors.
1955 	 */
1956 	fdp = p->p_fd;
1957 	if (fdp == NULL) {
1958 		p->p_fd = repl;
1959 		return;
1960 	}
1961 
1962 	/*
1963 	 * Severe messing around to follow.
1964 	 */
1965 	spin_lock(&fdp->fd_spin);
1966 
1967 	/* Check for special need to clear POSIX style locks */
1968 	fdtol = p->p_fdtol;
1969 	if (fdtol != NULL) {
1970 		KASSERT(fdtol->fdl_refcount > 0,
1971 			("filedesc_to_refcount botch: fdl_refcount=%d",
1972 			 fdtol->fdl_refcount));
1973 		if (fdtol->fdl_refcount == 1 &&
1974 		    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1975 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
1976 				fdnode = &fdp->fd_files[i];
1977 				if (fdnode->fp == NULL ||
1978 				    fdnode->fp->f_type != DTYPE_VNODE) {
1979 					continue;
1980 				}
1981 				fp = fdnode->fp;
1982 				fhold(fp);
1983 				spin_unlock(&fdp->fd_spin);
1984 
1985 				lf.l_whence = SEEK_SET;
1986 				lf.l_start = 0;
1987 				lf.l_len = 0;
1988 				lf.l_type = F_UNLCK;
1989 				vp = (struct vnode *)fp->f_data;
1990 				(void) VOP_ADVLOCK(vp,
1991 						   (caddr_t)p->p_leader,
1992 						   F_UNLCK,
1993 						   &lf,
1994 						   F_POSIX);
1995 				fdrop(fp);
1996 				spin_lock(&fdp->fd_spin);
1997 			}
1998 		}
1999 	retry:
2000 		if (fdtol->fdl_refcount == 1) {
2001 			if (fdp->fd_holdleaderscount > 0 &&
2002 			    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2003 				/*
2004 				 * close() or do_dup() has cleared a reference
2005 				 * in a shared file descriptor table.
2006 				 */
2007 				fdp->fd_holdleaderswakeup = 1;
2008 				ssleep(&fdp->fd_holdleaderscount,
2009 				       &fdp->fd_spin, 0, "fdlhold", 0);
2010 				goto retry;
2011 			}
2012 			if (fdtol->fdl_holdcount > 0) {
2013 				/*
2014 				 * Ensure that fdtol->fdl_leader
2015 				 * remains valid in closef().
2016 				 */
2017 				fdtol->fdl_wakeup = 1;
2018 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
2019 				goto retry;
2020 			}
2021 		}
2022 		fdtol->fdl_refcount--;
2023 		if (fdtol->fdl_refcount == 0 &&
2024 		    fdtol->fdl_holdcount == 0) {
2025 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2026 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2027 		} else {
2028 			fdtol = NULL;
2029 		}
2030 		p->p_fdtol = NULL;
2031 		if (fdtol != NULL) {
2032 			spin_unlock(&fdp->fd_spin);
2033 			kfree(fdtol, M_FILEDESC_TO_LEADER);
2034 			spin_lock(&fdp->fd_spin);
2035 		}
2036 	}
2037 	if (--fdp->fd_refcnt > 0) {
2038 		spin_unlock(&fdp->fd_spin);
2039 		spin_lock(&p->p_spin);
2040 		p->p_fd = repl;
2041 		spin_unlock(&p->p_spin);
2042 		return;
2043 	}
2044 
2045 	/*
2046 	 * Even though we are the last reference to the structure allproc
2047 	 * scans may still reference the structure.  Maintain proper
2048 	 * locks until we can replace p->p_fd.
2049 	 *
2050 	 * Also note that kqueue's closef still needs to reference the
2051 	 * fdp via p->p_fd, so we have to close the descriptors before
2052 	 * we replace p->p_fd.
2053 	 */
2054 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
2055 		if (fdp->fd_files[i].fp) {
2056 			fp = funsetfd_locked(fdp, i);
2057 			if (fp) {
2058 				spin_unlock(&fdp->fd_spin);
2059 				if (SLIST_FIRST(&fp->f_klist))
2060 					knote_fdclose(fp, fdp, i);
2061 				closef(fp, p);
2062 				spin_lock(&fdp->fd_spin);
2063 			}
2064 		}
2065 	}
2066 	spin_unlock(&fdp->fd_spin);
2067 
2068 	/*
2069 	 * Interlock against an allproc scan operations (typically frevoke).
2070 	 */
2071 	spin_lock(&p->p_spin);
2072 	p->p_fd = repl;
2073 	spin_unlock(&p->p_spin);
2074 
2075 	/*
2076 	 * Wait for any softrefs to go away.  This race rarely occurs so
2077 	 * we can use a non-critical-path style poll/sleep loop.  The
2078 	 * race only occurs against allproc scans.
2079 	 *
2080 	 * No new softrefs can occur with the fdp disconnected from the
2081 	 * process.
2082 	 */
2083 	if (fdp->fd_softrefs) {
2084 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
2085 		while (fdp->fd_softrefs)
2086 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
2087 	}
2088 
2089 	if (fdp->fd_files != fdp->fd_builtin_files)
2090 		kfree(fdp->fd_files, M_FILEDESC);
2091 	if (fdp->fd_cdir) {
2092 		cache_drop(&fdp->fd_ncdir);
2093 		vrele(fdp->fd_cdir);
2094 	}
2095 	if (fdp->fd_rdir) {
2096 		cache_drop(&fdp->fd_nrdir);
2097 		vrele(fdp->fd_rdir);
2098 	}
2099 	if (fdp->fd_jdir) {
2100 		cache_drop(&fdp->fd_njdir);
2101 		vrele(fdp->fd_jdir);
2102 	}
2103 	kfree(fdp, M_FILEDESC);
2104 }
2105 
2106 /*
2107  * Retrieve and reference the file pointer associated with a descriptor.
2108  *
2109  * MPSAFE
2110  */
2111 struct file *
2112 holdfp(struct filedesc *fdp, int fd, int flag)
2113 {
2114 	struct file* fp;
2115 
2116 	spin_lock(&fdp->fd_spin);
2117 	if (((u_int)fd) >= fdp->fd_nfiles) {
2118 		fp = NULL;
2119 		goto done;
2120 	}
2121 	if ((fp = fdp->fd_files[fd].fp) == NULL)
2122 		goto done;
2123 	if ((fp->f_flag & flag) == 0 && flag != -1) {
2124 		fp = NULL;
2125 		goto done;
2126 	}
2127 	fhold(fp);
2128 done:
2129 	spin_unlock(&fdp->fd_spin);
2130 	return (fp);
2131 }
2132 
2133 /*
2134  * holdsock() - load the struct file pointer associated
2135  * with a socket into *fpp.  If an error occurs, non-zero
2136  * will be returned and *fpp will be set to NULL.
2137  *
2138  * MPSAFE
2139  */
2140 int
2141 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2142 {
2143 	struct file *fp;
2144 	int error;
2145 
2146 	spin_lock(&fdp->fd_spin);
2147 	if ((unsigned)fd >= fdp->fd_nfiles) {
2148 		error = EBADF;
2149 		fp = NULL;
2150 		goto done;
2151 	}
2152 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2153 		error = EBADF;
2154 		goto done;
2155 	}
2156 	if (fp->f_type != DTYPE_SOCKET) {
2157 		error = ENOTSOCK;
2158 		goto done;
2159 	}
2160 	fhold(fp);
2161 	error = 0;
2162 done:
2163 	spin_unlock(&fdp->fd_spin);
2164 	*fpp = fp;
2165 	return (error);
2166 }
2167 
2168 /*
2169  * Convert a user file descriptor to a held file pointer.
2170  *
2171  * MPSAFE
2172  */
2173 int
2174 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2175 {
2176 	struct file *fp;
2177 	int error;
2178 
2179 	spin_lock(&fdp->fd_spin);
2180 	if ((unsigned)fd >= fdp->fd_nfiles) {
2181 		error = EBADF;
2182 		fp = NULL;
2183 		goto done;
2184 	}
2185 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2186 		error = EBADF;
2187 		goto done;
2188 	}
2189 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2190 		fp = NULL;
2191 		error = EINVAL;
2192 		goto done;
2193 	}
2194 	fhold(fp);
2195 	error = 0;
2196 done:
2197 	spin_unlock(&fdp->fd_spin);
2198 	*fpp = fp;
2199 	return (error);
2200 }
2201 
2202 /*
2203  * For setugid programs, we don't want to people to use that setugidness
2204  * to generate error messages which write to a file which otherwise would
2205  * otherwise be off-limits to the process.
2206  *
2207  * This is a gross hack to plug the hole.  A better solution would involve
2208  * a special vop or other form of generalized access control mechanism.  We
2209  * go ahead and just reject all procfs file systems accesses as dangerous.
2210  *
2211  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2212  * sufficient.  We also don't for check setugidness since we know we are.
2213  */
2214 static int
2215 is_unsafe(struct file *fp)
2216 {
2217 	if (fp->f_type == DTYPE_VNODE &&
2218 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2219 		return (1);
2220 	return (0);
2221 }
2222 
2223 /*
2224  * Make this setguid thing safe, if at all possible.
2225  *
2226  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2227  */
2228 void
2229 setugidsafety(struct proc *p)
2230 {
2231 	struct filedesc *fdp = p->p_fd;
2232 	int i;
2233 
2234 	/* Certain daemons might not have file descriptors. */
2235 	if (fdp == NULL)
2236 		return;
2237 
2238 	/*
2239 	 * note: fdp->fd_files may be reallocated out from under us while
2240 	 * we are blocked in a close.  Be careful!
2241 	 */
2242 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2243 		if (i > 2)
2244 			break;
2245 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2246 			struct file *fp;
2247 
2248 			/*
2249 			 * NULL-out descriptor prior to close to avoid
2250 			 * a race while close blocks.
2251 			 */
2252 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2253 				knote_fdclose(fp, fdp, i);
2254 				closef(fp, p);
2255 			}
2256 		}
2257 	}
2258 }
2259 
2260 /*
2261  * Close any files on exec?
2262  *
2263  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2264  */
2265 void
2266 fdcloseexec(struct proc *p)
2267 {
2268 	struct filedesc *fdp = p->p_fd;
2269 	int i;
2270 
2271 	/* Certain daemons might not have file descriptors. */
2272 	if (fdp == NULL)
2273 		return;
2274 
2275 	/*
2276 	 * We cannot cache fd_files since operations may block and rip
2277 	 * them out from under us.
2278 	 */
2279 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2280 		if (fdp->fd_files[i].fp != NULL &&
2281 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2282 			struct file *fp;
2283 
2284 			/*
2285 			 * NULL-out descriptor prior to close to avoid
2286 			 * a race while close blocks.
2287 			 */
2288 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2289 				knote_fdclose(fp, fdp, i);
2290 				closef(fp, p);
2291 			}
2292 		}
2293 	}
2294 }
2295 
2296 /*
2297  * It is unsafe for set[ug]id processes to be started with file
2298  * descriptors 0..2 closed, as these descriptors are given implicit
2299  * significance in the Standard C library.  fdcheckstd() will create a
2300  * descriptor referencing /dev/null for each of stdin, stdout, and
2301  * stderr that is not already open.
2302  *
2303  * NOT MPSAFE - calls falloc, vn_open, etc
2304  */
2305 int
2306 fdcheckstd(struct lwp *lp)
2307 {
2308 	struct nlookupdata nd;
2309 	struct filedesc *fdp;
2310 	struct file *fp;
2311 	int retval;
2312 	int i, error, flags, devnull;
2313 
2314 	fdp = lp->lwp_proc->p_fd;
2315 	if (fdp == NULL)
2316 		return (0);
2317 	devnull = -1;
2318 	error = 0;
2319 	for (i = 0; i < 3; i++) {
2320 		if (fdp->fd_files[i].fp != NULL)
2321 			continue;
2322 		if (devnull < 0) {
2323 			if ((error = falloc(lp, &fp, &devnull)) != 0)
2324 				break;
2325 
2326 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2327 						NLC_FOLLOW|NLC_LOCKVP);
2328 			flags = FREAD | FWRITE;
2329 			if (error == 0)
2330 				error = vn_open(&nd, fp, flags, 0);
2331 			if (error == 0)
2332 				fsetfd(fdp, fp, devnull);
2333 			else
2334 				fsetfd(fdp, NULL, devnull);
2335 			fdrop(fp);
2336 			nlookup_done(&nd);
2337 			if (error)
2338 				break;
2339 			KKASSERT(i == devnull);
2340 		} else {
2341 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2342 			if (error != 0)
2343 				break;
2344 		}
2345 	}
2346 	return (error);
2347 }
2348 
2349 /*
2350  * Internal form of close.
2351  * Decrement reference count on file structure.
2352  * Note: td and/or p may be NULL when closing a file
2353  * that was being passed in a message.
2354  *
2355  * MPALMOSTSAFE - acquires mplock for VOP operations
2356  */
2357 int
2358 closef(struct file *fp, struct proc *p)
2359 {
2360 	struct vnode *vp;
2361 	struct flock lf;
2362 	struct filedesc_to_leader *fdtol;
2363 
2364 	if (fp == NULL)
2365 		return (0);
2366 
2367 	/*
2368 	 * POSIX record locking dictates that any close releases ALL
2369 	 * locks owned by this process.  This is handled by setting
2370 	 * a flag in the unlock to free ONLY locks obeying POSIX
2371 	 * semantics, and not to free BSD-style file locks.
2372 	 * If the descriptor was in a message, POSIX-style locks
2373 	 * aren't passed with the descriptor.
2374 	 */
2375 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2376 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2377 	) {
2378 		if ((p->p_leader->p_flag & P_ADVLOCK) != 0) {
2379 			lf.l_whence = SEEK_SET;
2380 			lf.l_start = 0;
2381 			lf.l_len = 0;
2382 			lf.l_type = F_UNLCK;
2383 			vp = (struct vnode *)fp->f_data;
2384 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2385 					   &lf, F_POSIX);
2386 		}
2387 		fdtol = p->p_fdtol;
2388 		if (fdtol != NULL) {
2389 			lwkt_gettoken(&p->p_token);
2390 			/*
2391 			 * Handle special case where file descriptor table
2392 			 * is shared between multiple process leaders.
2393 			 */
2394 			for (fdtol = fdtol->fdl_next;
2395 			     fdtol != p->p_fdtol;
2396 			     fdtol = fdtol->fdl_next) {
2397 				if ((fdtol->fdl_leader->p_flag &
2398 				     P_ADVLOCK) == 0)
2399 					continue;
2400 				fdtol->fdl_holdcount++;
2401 				lf.l_whence = SEEK_SET;
2402 				lf.l_start = 0;
2403 				lf.l_len = 0;
2404 				lf.l_type = F_UNLCK;
2405 				vp = (struct vnode *)fp->f_data;
2406 				(void) VOP_ADVLOCK(vp,
2407 						   (caddr_t)fdtol->fdl_leader,
2408 						   F_UNLCK, &lf, F_POSIX);
2409 				fdtol->fdl_holdcount--;
2410 				if (fdtol->fdl_holdcount == 0 &&
2411 				    fdtol->fdl_wakeup != 0) {
2412 					fdtol->fdl_wakeup = 0;
2413 					wakeup(fdtol);
2414 				}
2415 			}
2416 			lwkt_reltoken(&p->p_token);
2417 		}
2418 	}
2419 	return (fdrop(fp));
2420 }
2421 
2422 /*
2423  * MPSAFE
2424  *
2425  * fhold() can only be called if f_count is already at least 1 (i.e. the
2426  * caller of fhold() already has a reference to the file pointer in some
2427  * manner or other).
2428  *
2429  * f_count is not spin-locked.  Instead, atomic ops are used for
2430  * incrementing, decrementing, and handling the 1->0 transition.
2431  */
2432 void
2433 fhold(struct file *fp)
2434 {
2435 	atomic_add_int(&fp->f_count, 1);
2436 }
2437 
2438 /*
2439  * fdrop() - drop a reference to a descriptor
2440  *
2441  * MPALMOSTSAFE - acquires mplock for final close sequence
2442  */
2443 int
2444 fdrop(struct file *fp)
2445 {
2446 	struct flock lf;
2447 	struct vnode *vp;
2448 	int error;
2449 
2450 	/*
2451 	 * A combined fetch and subtract is needed to properly detect
2452 	 * 1->0 transitions, otherwise two cpus dropping from a ref
2453 	 * count of 2 might both try to run the 1->0 code.
2454 	 */
2455 	if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2456 		return (0);
2457 
2458 	KKASSERT(SLIST_FIRST(&fp->f_klist) == NULL);
2459 
2460 	/*
2461 	 * The last reference has gone away, we own the fp structure free
2462 	 * and clear.
2463 	 */
2464 	if (fp->f_count < 0)
2465 		panic("fdrop: count < 0");
2466 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2467 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2468 	) {
2469 		lf.l_whence = SEEK_SET;
2470 		lf.l_start = 0;
2471 		lf.l_len = 0;
2472 		lf.l_type = F_UNLCK;
2473 		vp = (struct vnode *)fp->f_data;
2474 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2475 	}
2476 	if (fp->f_ops != &badfileops)
2477 		error = fo_close(fp);
2478 	else
2479 		error = 0;
2480 	ffree(fp);
2481 	return (error);
2482 }
2483 
2484 /*
2485  * Apply an advisory lock on a file descriptor.
2486  *
2487  * Just attempt to get a record lock of the requested type on
2488  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2489  *
2490  * MPALMOSTSAFE
2491  */
2492 int
2493 sys_flock(struct flock_args *uap)
2494 {
2495 	struct proc *p = curproc;
2496 	struct file *fp;
2497 	struct vnode *vp;
2498 	struct flock lf;
2499 	int error;
2500 
2501 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2502 		return (EBADF);
2503 	if (fp->f_type != DTYPE_VNODE) {
2504 		error = EOPNOTSUPP;
2505 		goto done;
2506 	}
2507 	vp = (struct vnode *)fp->f_data;
2508 	lf.l_whence = SEEK_SET;
2509 	lf.l_start = 0;
2510 	lf.l_len = 0;
2511 	if (uap->how & LOCK_UN) {
2512 		lf.l_type = F_UNLCK;
2513 		fp->f_flag &= ~FHASLOCK;
2514 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2515 		goto done;
2516 	}
2517 	if (uap->how & LOCK_EX)
2518 		lf.l_type = F_WRLCK;
2519 	else if (uap->how & LOCK_SH)
2520 		lf.l_type = F_RDLCK;
2521 	else {
2522 		error = EBADF;
2523 		goto done;
2524 	}
2525 	fp->f_flag |= FHASLOCK;
2526 	if (uap->how & LOCK_NB)
2527 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2528 	else
2529 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2530 done:
2531 	fdrop(fp);
2532 	return (error);
2533 }
2534 
2535 /*
2536  * File Descriptor pseudo-device driver (/dev/fd/).
2537  *
2538  * Opening minor device N dup()s the file (if any) connected to file
2539  * descriptor N belonging to the calling process.  Note that this driver
2540  * consists of only the ``open()'' routine, because all subsequent
2541  * references to this file will be direct to the other driver.
2542  */
2543 static int
2544 fdopen(struct dev_open_args *ap)
2545 {
2546 	thread_t td = curthread;
2547 
2548 	KKASSERT(td->td_lwp != NULL);
2549 
2550 	/*
2551 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2552 	 * the file descriptor being sought for duplication. The error
2553 	 * return ensures that the vnode for this device will be released
2554 	 * by vn_open. Open will detect this special error and take the
2555 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2556 	 * will simply report the error.
2557 	 */
2558 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2559 	return (ENODEV);
2560 }
2561 
2562 /*
2563  * The caller has reserved the file descriptor dfd for us.  On success we
2564  * must fsetfd() it.  On failure the caller will clean it up.
2565  *
2566  * MPSAFE
2567  */
2568 int
2569 dupfdopen(struct filedesc *fdp, int dfd, int sfd, int mode, int error)
2570 {
2571 	struct file *wfp;
2572 	struct file *xfp;
2573 	int werror;
2574 
2575 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2576 		return (EBADF);
2577 
2578 	/*
2579 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2580 	 * will dup a dummy descriptor instead of the real one.
2581 	 */
2582 	if (wfp->f_flag & FREVOKED) {
2583 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2584 		fdrop(wfp);
2585 		wfp = NULL;
2586 		werror = falloc(NULL, &wfp, NULL);
2587 		if (werror)
2588 			return (werror);
2589 	}
2590 
2591 	/*
2592 	 * There are two cases of interest here.
2593 	 *
2594 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2595 	 *
2596 	 * For ENXIO steal away the file structure from sfd and store it
2597 	 * dfd.  sfd is effectively closed by this operation.
2598 	 *
2599 	 * Any other error code is just returned.
2600 	 */
2601 	switch (error) {
2602 	case ENODEV:
2603 		/*
2604 		 * Check that the mode the file is being opened for is a
2605 		 * subset of the mode of the existing descriptor.
2606 		 */
2607 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2608 			error = EACCES;
2609 			break;
2610 		}
2611 		spin_lock(&fdp->fd_spin);
2612 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2613 		fsetfd_locked(fdp, wfp, dfd);
2614 		spin_unlock(&fdp->fd_spin);
2615 		error = 0;
2616 		break;
2617 	case ENXIO:
2618 		/*
2619 		 * Steal away the file pointer from dfd, and stuff it into indx.
2620 		 */
2621 		spin_lock(&fdp->fd_spin);
2622 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2623 		fsetfd(fdp, wfp, dfd);
2624 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL) {
2625 			spin_unlock(&fdp->fd_spin);
2626 			fdrop(xfp);
2627 		} else {
2628 			spin_unlock(&fdp->fd_spin);
2629 		}
2630 		error = 0;
2631 		break;
2632 	default:
2633 		break;
2634 	}
2635 	fdrop(wfp);
2636 	return (error);
2637 }
2638 
2639 /*
2640  * NOT MPSAFE - I think these refer to a common file descriptor table
2641  * and we need to spinlock that to link fdtol in.
2642  */
2643 struct filedesc_to_leader *
2644 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2645 			 struct proc *leader)
2646 {
2647 	struct filedesc_to_leader *fdtol;
2648 
2649 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2650 			M_FILEDESC_TO_LEADER, M_WAITOK | M_ZERO);
2651 	fdtol->fdl_refcount = 1;
2652 	fdtol->fdl_holdcount = 0;
2653 	fdtol->fdl_wakeup = 0;
2654 	fdtol->fdl_leader = leader;
2655 	if (old != NULL) {
2656 		fdtol->fdl_next = old->fdl_next;
2657 		fdtol->fdl_prev = old;
2658 		old->fdl_next = fdtol;
2659 		fdtol->fdl_next->fdl_prev = fdtol;
2660 	} else {
2661 		fdtol->fdl_next = fdtol;
2662 		fdtol->fdl_prev = fdtol;
2663 	}
2664 	return fdtol;
2665 }
2666 
2667 /*
2668  * Scan all file pointers in the system.  The callback is made with
2669  * the master list spinlock held exclusively.
2670  *
2671  * MPSAFE
2672  */
2673 void
2674 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2675 {
2676 	struct file *fp;
2677 	int res;
2678 
2679 	spin_lock(&filehead_spin);
2680 	LIST_FOREACH(fp, &filehead, f_list) {
2681 		res = callback(fp, data);
2682 		if (res < 0)
2683 			break;
2684 	}
2685 	spin_unlock(&filehead_spin);
2686 }
2687 
2688 /*
2689  * Get file structures.
2690  *
2691  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2692  */
2693 
2694 struct sysctl_kern_file_info {
2695 	int count;
2696 	int error;
2697 	struct sysctl_req *req;
2698 };
2699 
2700 static int sysctl_kern_file_callback(struct proc *p, void *data);
2701 
2702 static int
2703 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2704 {
2705 	struct sysctl_kern_file_info info;
2706 
2707 	/*
2708 	 * Note: because the number of file descriptors is calculated
2709 	 * in different ways for sizing vs returning the data,
2710 	 * there is information leakage from the first loop.  However,
2711 	 * it is of a similar order of magnitude to the leakage from
2712 	 * global system statistics such as kern.openfiles.
2713 	 *
2714 	 * When just doing a count, note that we cannot just count
2715 	 * the elements and add f_count via the filehead list because
2716 	 * threaded processes share their descriptor table and f_count might
2717 	 * still be '1' in that case.
2718 	 *
2719 	 * Since the SYSCTL op can block, we must hold the process to
2720 	 * prevent it being ripped out from under us either in the
2721 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2722 	 * process may be in varying states of disrepair.  If the process
2723 	 * is in SZOMB we may have caught it just as it is being removed
2724 	 * from the allproc list, we must skip it in that case to maintain
2725 	 * an unbroken chain through the allproc list.
2726 	 */
2727 	info.count = 0;
2728 	info.error = 0;
2729 	info.req = req;
2730 	allproc_scan(sysctl_kern_file_callback, &info);
2731 
2732 	/*
2733 	 * When just calculating the size, overestimate a bit to try to
2734 	 * prevent system activity from causing the buffer-fill call
2735 	 * to fail later on.
2736 	 */
2737 	if (req->oldptr == NULL) {
2738 		info.count = (info.count + 16) + (info.count / 10);
2739 		info.error = SYSCTL_OUT(req, NULL,
2740 					info.count * sizeof(struct kinfo_file));
2741 	}
2742 	return (info.error);
2743 }
2744 
2745 static int
2746 sysctl_kern_file_callback(struct proc *p, void *data)
2747 {
2748 	struct sysctl_kern_file_info *info = data;
2749 	struct kinfo_file kf;
2750 	struct filedesc *fdp;
2751 	struct file *fp;
2752 	uid_t uid;
2753 	int n;
2754 
2755 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2756 		return(0);
2757 	if (!PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0)
2758 		return(0);
2759 
2760 	/*
2761 	 * Softref the fdp to prevent it from being destroyed
2762 	 */
2763 	spin_lock(&p->p_spin);
2764 	if ((fdp = p->p_fd) == NULL) {
2765 		spin_unlock(&p->p_spin);
2766 		return(0);
2767 	}
2768 	atomic_add_int(&fdp->fd_softrefs, 1);
2769 	spin_unlock(&p->p_spin);
2770 
2771 	/*
2772 	 * The fdp's own spinlock prevents the contents from being
2773 	 * modified.
2774 	 */
2775 	spin_lock(&fdp->fd_spin);
2776 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2777 		if ((fp = fdp->fd_files[n].fp) == NULL)
2778 			continue;
2779 		if (info->req->oldptr == NULL) {
2780 			++info->count;
2781 		} else {
2782 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2783 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2784 			spin_unlock(&fdp->fd_spin);
2785 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2786 			spin_lock(&fdp->fd_spin);
2787 			if (info->error)
2788 				break;
2789 		}
2790 	}
2791 	spin_unlock(&fdp->fd_spin);
2792 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2793 	if (info->error)
2794 		return(-1);
2795 	return(0);
2796 }
2797 
2798 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2799     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2800 
2801 SYSCTL_INT(_kern, OID_AUTO, minfilesperproc, CTLFLAG_RW,
2802     &minfilesperproc, 0, "Minimum files allowed open per process");
2803 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2804     &maxfilesperproc, 0, "Maximum files allowed open per process");
2805 SYSCTL_INT(_kern, OID_AUTO, maxfilesperuser, CTLFLAG_RW,
2806     &maxfilesperuser, 0, "Maximum files allowed open per user");
2807 
2808 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2809     &maxfiles, 0, "Maximum number of files");
2810 
2811 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2812     &maxfilesrootres, 0, "Descriptors reserved for root use");
2813 
2814 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2815 	&nfiles, 0, "System-wide number of open files");
2816 
2817 static void
2818 fildesc_drvinit(void *unused)
2819 {
2820 	int fd;
2821 
2822 	for (fd = 0; fd < NUMFDESC; fd++) {
2823 		make_dev(&fildesc_ops, fd,
2824 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2825 	}
2826 
2827 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2828 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2829 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2830 }
2831 
2832 /*
2833  * MPSAFE
2834  */
2835 struct fileops badfileops = {
2836 	.fo_read = badfo_readwrite,
2837 	.fo_write = badfo_readwrite,
2838 	.fo_ioctl = badfo_ioctl,
2839 	.fo_kqfilter = badfo_kqfilter,
2840 	.fo_stat = badfo_stat,
2841 	.fo_close = badfo_close,
2842 	.fo_shutdown = badfo_shutdown
2843 };
2844 
2845 int
2846 badfo_readwrite(
2847 	struct file *fp,
2848 	struct uio *uio,
2849 	struct ucred *cred,
2850 	int flags
2851 ) {
2852 	return (EBADF);
2853 }
2854 
2855 int
2856 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2857 	    struct ucred *cred, struct sysmsg *msgv)
2858 {
2859 	return (EBADF);
2860 }
2861 
2862 /*
2863  * Must return an error to prevent registration, typically
2864  * due to a revoked descriptor (file_filtops assigned).
2865  */
2866 int
2867 badfo_kqfilter(struct file *fp, struct knote *kn)
2868 {
2869 	return (EOPNOTSUPP);
2870 }
2871 
2872 /*
2873  * MPSAFE
2874  */
2875 int
2876 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2877 {
2878 	return (EBADF);
2879 }
2880 
2881 /*
2882  * MPSAFE
2883  */
2884 int
2885 badfo_close(struct file *fp)
2886 {
2887 	return (EBADF);
2888 }
2889 
2890 /*
2891  * MPSAFE
2892  */
2893 int
2894 badfo_shutdown(struct file *fp, int how)
2895 {
2896 	return (EBADF);
2897 }
2898 
2899 /*
2900  * MPSAFE
2901  */
2902 int
2903 nofo_shutdown(struct file *fp, int how)
2904 {
2905 	return (EOPNOTSUPP);
2906 }
2907 
2908 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2909 					fildesc_drvinit,NULL)
2910