xref: /dragonfly/sys/kern/kern_descrip.c (revision 9ddb8543)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
72  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
73  * $DragonFly: src/sys/kern/kern_descrip.c,v 1.79 2008/08/31 13:18:28 aggelos Exp $
74  */
75 
76 #include "opt_compat.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/conf.h>
82 #include <sys/device.h>
83 #include <sys/filedesc.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/vnode.h>
87 #include <sys/proc.h>
88 #include <sys/nlookup.h>
89 #include <sys/file.h>
90 #include <sys/stat.h>
91 #include <sys/filio.h>
92 #include <sys/fcntl.h>
93 #include <sys/unistd.h>
94 #include <sys/resourcevar.h>
95 #include <sys/event.h>
96 #include <sys/kern_syscall.h>
97 #include <sys/kcore.h>
98 #include <sys/kinfo.h>
99 #include <sys/un.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <sys/file2.h>
106 #include <sys/spinlock2.h>
107 
108 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
109 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
110 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
111 static int checkfpclosed(struct filedesc *fdp, int fd, struct file *fp);
112 static void ffree(struct file *fp);
113 
114 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
115 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
116 		     "file desc to leader structures");
117 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
118 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
119 
120 static	 d_open_t  fdopen;
121 #define NUMFDESC 64
122 
123 #define CDEV_MAJOR 22
124 static struct dev_ops fildesc_ops = {
125 	{ "FD", CDEV_MAJOR, 0 },
126 	.d_open =	fdopen,
127 };
128 
129 static int badfo_readwrite (struct file *fp, struct uio *uio,
130 				struct ucred *cred, int flags);
131 static int badfo_ioctl (struct file *fp, u_long com, caddr_t data,
132 				struct ucred *cred, struct sysmsg *msg);
133 static int badfo_poll (struct file *fp, int events, struct ucred *cred);
134 static int badfo_kqfilter (struct file *fp, struct knote *kn);
135 static int badfo_stat (struct file *fp, struct stat *sb, struct ucred *cred);
136 static int badfo_close (struct file *fp);
137 static int badfo_shutdown (struct file *fp, int how);
138 
139 /*
140  * Descriptor management.
141  */
142 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
143 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin);
144 static int nfiles;		/* actual number of open files */
145 extern int cmask;
146 
147 /*
148  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
149  *
150  * MPSAFE - must be called with fdp->fd_spin exclusively held
151  */
152 static __inline
153 void
154 fdfixup_locked(struct filedesc *fdp, int fd)
155 {
156 	if (fd < fdp->fd_freefile) {
157 	       fdp->fd_freefile = fd;
158 	}
159 	while (fdp->fd_lastfile >= 0 &&
160 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
161 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
162 	) {
163 		--fdp->fd_lastfile;
164 	}
165 }
166 
167 /*
168  * System calls on descriptors.
169  *
170  * MPSAFE
171  */
172 int
173 sys_getdtablesize(struct getdtablesize_args *uap)
174 {
175 	struct proc *p = curproc;
176 	struct plimit *limit = p->p_limit;
177 
178 	spin_lock_rd(&limit->p_spin);
179 	uap->sysmsg_result =
180 	    min((int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
181 	spin_unlock_rd(&limit->p_spin);
182 	return (0);
183 }
184 
185 /*
186  * Duplicate a file descriptor to a particular value.
187  *
188  * note: keep in mind that a potential race condition exists when closing
189  * descriptors from a shared descriptor table (via rfork).
190  *
191  * MPSAFE
192  */
193 int
194 sys_dup2(struct dup2_args *uap)
195 {
196 	int error;
197 	int fd = 0;
198 
199 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
200 	uap->sysmsg_fds[0] = fd;
201 
202 	return (error);
203 }
204 
205 /*
206  * Duplicate a file descriptor.
207  *
208  * MPSAFE
209  */
210 int
211 sys_dup(struct dup_args *uap)
212 {
213 	int error;
214 	int fd = 0;
215 
216 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
217 	uap->sysmsg_fds[0] = fd;
218 
219 	return (error);
220 }
221 
222 /*
223  * MPALMOSTSAFE - acquires mplock for fp operations
224  */
225 int
226 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
227 {
228 	struct thread *td = curthread;
229 	struct proc *p = td->td_proc;
230 	struct file *fp;
231 	struct vnode *vp;
232 	u_int newmin;
233 	u_int oflags;
234 	u_int nflags;
235 	int tmp, error, flg = F_POSIX;
236 
237 	KKASSERT(p);
238 
239 	/*
240 	 * Operations on file descriptors that do not require a file pointer.
241 	 */
242 	switch (cmd) {
243 	case F_GETFD:
244 		error = fgetfdflags(p->p_fd, fd, &tmp);
245 		if (error == 0)
246 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
247 		return (error);
248 
249 	case F_SETFD:
250 		if (dat->fc_cloexec & FD_CLOEXEC)
251 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
252 		else
253 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
254 		return (error);
255 	case F_DUPFD:
256 		newmin = dat->fc_fd;
257 		error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
258 		return (error);
259 	default:
260 		break;
261 	}
262 
263 	/*
264 	 * Operations on file pointers
265 	 */
266 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
267 		return (EBADF);
268 
269 	get_mplock();
270 	switch (cmd) {
271 	case F_GETFL:
272 		dat->fc_flags = OFLAGS(fp->f_flag);
273 		error = 0;
274 		break;
275 
276 	case F_SETFL:
277 		oflags = fp->f_flag;
278 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
279 		nflags |= oflags & ~FCNTLFLAGS;
280 
281 		error = 0;
282 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
283 			error = EINVAL;
284 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
285 			tmp = nflags & FASYNC;
286 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
287 					 cred, NULL);
288 		}
289 		if (error == 0)
290 			fp->f_flag = nflags;
291 		break;
292 
293 	case F_GETOWN:
294 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
295 				 cred, NULL);
296 		break;
297 
298 	case F_SETOWN:
299 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
300 				 cred, NULL);
301 		break;
302 
303 	case F_SETLKW:
304 		flg |= F_WAIT;
305 		/* Fall into F_SETLK */
306 
307 	case F_SETLK:
308 		if (fp->f_type != DTYPE_VNODE) {
309 			error = EBADF;
310 			break;
311 		}
312 		vp = (struct vnode *)fp->f_data;
313 
314 		/*
315 		 * copyin/lockop may block
316 		 */
317 		if (dat->fc_flock.l_whence == SEEK_CUR)
318 			dat->fc_flock.l_start += fp->f_offset;
319 
320 		switch (dat->fc_flock.l_type) {
321 		case F_RDLCK:
322 			if ((fp->f_flag & FREAD) == 0) {
323 				error = EBADF;
324 				break;
325 			}
326 			p->p_leader->p_flag |= P_ADVLOCK;
327 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
328 			    &dat->fc_flock, flg);
329 			break;
330 		case F_WRLCK:
331 			if ((fp->f_flag & FWRITE) == 0) {
332 				error = EBADF;
333 				break;
334 			}
335 			p->p_leader->p_flag |= P_ADVLOCK;
336 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
337 			    &dat->fc_flock, flg);
338 			break;
339 		case F_UNLCK:
340 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
341 				&dat->fc_flock, F_POSIX);
342 			break;
343 		default:
344 			error = EINVAL;
345 			break;
346 		}
347 
348 		/*
349 		 * It is possible to race a close() on the descriptor while
350 		 * we were blocked getting the lock.  If this occurs the
351 		 * close might not have caught the lock.
352 		 */
353 		if (checkfpclosed(p->p_fd, fd, fp)) {
354 			dat->fc_flock.l_whence = SEEK_SET;
355 			dat->fc_flock.l_start = 0;
356 			dat->fc_flock.l_len = 0;
357 			dat->fc_flock.l_type = F_UNLCK;
358 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
359 					   F_UNLCK, &dat->fc_flock, F_POSIX);
360 		}
361 		break;
362 
363 	case F_GETLK:
364 		if (fp->f_type != DTYPE_VNODE) {
365 			error = EBADF;
366 			break;
367 		}
368 		vp = (struct vnode *)fp->f_data;
369 		/*
370 		 * copyin/lockop may block
371 		 */
372 		if (dat->fc_flock.l_type != F_RDLCK &&
373 		    dat->fc_flock.l_type != F_WRLCK &&
374 		    dat->fc_flock.l_type != F_UNLCK) {
375 			error = EINVAL;
376 			break;
377 		}
378 		if (dat->fc_flock.l_whence == SEEK_CUR)
379 			dat->fc_flock.l_start += fp->f_offset;
380 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
381 			    &dat->fc_flock, F_POSIX);
382 		break;
383 	default:
384 		error = EINVAL;
385 		break;
386 	}
387 	rel_mplock();
388 
389 	fdrop(fp);
390 	return (error);
391 }
392 
393 /*
394  * The file control system call.
395  *
396  * MPSAFE
397  */
398 int
399 sys_fcntl(struct fcntl_args *uap)
400 {
401 	union fcntl_dat dat;
402 	int error;
403 
404 	switch (uap->cmd) {
405 	case F_DUPFD:
406 		dat.fc_fd = uap->arg;
407 		break;
408 	case F_SETFD:
409 		dat.fc_cloexec = uap->arg;
410 		break;
411 	case F_SETFL:
412 		dat.fc_flags = uap->arg;
413 		break;
414 	case F_SETOWN:
415 		dat.fc_owner = uap->arg;
416 		break;
417 	case F_SETLKW:
418 	case F_SETLK:
419 	case F_GETLK:
420 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
421 			       sizeof(struct flock));
422 		if (error)
423 			return (error);
424 		break;
425 	}
426 
427 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curproc->p_ucred);
428 
429 	if (error == 0) {
430 		switch (uap->cmd) {
431 		case F_DUPFD:
432 			uap->sysmsg_result = dat.fc_fd;
433 			break;
434 		case F_GETFD:
435 			uap->sysmsg_result = dat.fc_cloexec;
436 			break;
437 		case F_GETFL:
438 			uap->sysmsg_result = dat.fc_flags;
439 			break;
440 		case F_GETOWN:
441 			uap->sysmsg_result = dat.fc_owner;
442 		case F_GETLK:
443 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
444 			    sizeof(struct flock));
445 			break;
446 		}
447 	}
448 
449 	return (error);
450 }
451 
452 /*
453  * Common code for dup, dup2, and fcntl(F_DUPFD).
454  *
455  * The type flag can be either DUP_FIXED or DUP_VARIABLE.  DUP_FIXED tells
456  * kern_dup() to destructively dup over an existing file descriptor if new
457  * is already open.  DUP_VARIABLE tells kern_dup() to find the lowest
458  * unused file descriptor that is greater than or equal to new.
459  *
460  * MPSAFE
461  */
462 int
463 kern_dup(enum dup_type type, int old, int new, int *res)
464 {
465 	struct thread *td = curthread;
466 	struct proc *p = td->td_proc;
467 	struct filedesc *fdp = p->p_fd;
468 	struct file *fp;
469 	struct file *delfp;
470 	int oldflags;
471 	int holdleaders;
472 	int error, newfd;
473 
474 	/*
475 	 * Verify that we have a valid descriptor to dup from and
476 	 * possibly to dup to.
477 	 */
478 retry:
479 	spin_lock_wr(&fdp->fd_spin);
480 	if (new < 0 || new > p->p_rlimit[RLIMIT_NOFILE].rlim_cur ||
481 	    new >= maxfilesperproc) {
482 		spin_unlock_wr(&fdp->fd_spin);
483 		return (EINVAL);
484 	}
485 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
486 		spin_unlock_wr(&fdp->fd_spin);
487 		return (EBADF);
488 	}
489 	if (type == DUP_FIXED && old == new) {
490 		*res = new;
491 		spin_unlock_wr(&fdp->fd_spin);
492 		return (0);
493 	}
494 	fp = fdp->fd_files[old].fp;
495 	oldflags = fdp->fd_files[old].fileflags;
496 	fhold(fp);	/* MPSAFE - can be called with a spinlock held */
497 
498 	/*
499 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
500 	 * if the requested descriptor is beyond the current table size.
501 	 *
502 	 * This can block.  Retry if the source descriptor no longer matches
503 	 * or if our expectation in the expansion case races.
504 	 *
505 	 * If we are not expanding or allocating a new decriptor, then reset
506 	 * the target descriptor to a reserved state so we have a uniform
507 	 * setup for the next code block.
508 	 */
509 	if (type == DUP_VARIABLE || new >= fdp->fd_nfiles) {
510 		spin_unlock_wr(&fdp->fd_spin);
511 		error = fdalloc(p, new, &newfd);
512 		spin_lock_wr(&fdp->fd_spin);
513 		if (error) {
514 			spin_unlock_wr(&fdp->fd_spin);
515 			fdrop(fp);
516 			return (error);
517 		}
518 		/*
519 		 * Check for ripout
520 		 */
521 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
522 			fsetfd_locked(fdp, NULL, newfd);
523 			spin_unlock_wr(&fdp->fd_spin);
524 			fdrop(fp);
525 			goto retry;
526 		}
527 		/*
528 		 * Check for expansion race
529 		 */
530 		if (type != DUP_VARIABLE && new != newfd) {
531 			fsetfd_locked(fdp, NULL, newfd);
532 			spin_unlock_wr(&fdp->fd_spin);
533 			fdrop(fp);
534 			goto retry;
535 		}
536 		/*
537 		 * Check for ripout, newfd reused old (this case probably
538 		 * can't occur).
539 		 */
540 		if (old == newfd) {
541 			fsetfd_locked(fdp, NULL, newfd);
542 			spin_unlock_wr(&fdp->fd_spin);
543 			fdrop(fp);
544 			goto retry;
545 		}
546 		new = newfd;
547 		delfp = NULL;
548 	} else {
549 		if (fdp->fd_files[new].reserved) {
550 			spin_unlock_wr(&fdp->fd_spin);
551 			fdrop(fp);
552 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
553 			tsleep(fdp, 0, "fdres", hz);
554 			goto retry;
555 		}
556 
557 		/*
558 		 * If the target descriptor was never allocated we have
559 		 * to allocate it.  If it was we have to clean out the
560 		 * old descriptor.  delfp inherits the ref from the
561 		 * descriptor table.
562 		 */
563 		delfp = fdp->fd_files[new].fp;
564 		fdp->fd_files[new].fp = NULL;
565 		fdp->fd_files[new].reserved = 1;
566 		if (delfp == NULL) {
567 			fdreserve_locked(fdp, new, 1);
568 			if (new > fdp->fd_lastfile)
569 				fdp->fd_lastfile = new;
570 		}
571 
572 	}
573 
574 	/*
575 	 * NOTE: still holding an exclusive spinlock
576 	 */
577 
578 	/*
579 	 * If a descriptor is being overwritten we may hve to tell
580 	 * fdfree() to sleep to ensure that all relevant process
581 	 * leaders can be traversed in closef().
582 	 */
583 	if (delfp != NULL && p->p_fdtol != NULL) {
584 		fdp->fd_holdleaderscount++;
585 		holdleaders = 1;
586 	} else {
587 		holdleaders = 0;
588 	}
589 	KASSERT(delfp == NULL || type == DUP_FIXED,
590 		("dup() picked an open file"));
591 
592 	/*
593 	 * Duplicate the source descriptor, update lastfile.  If the new
594 	 * descriptor was not allocated and we aren't replacing an existing
595 	 * descriptor we have to mark the descriptor as being in use.
596 	 *
597 	 * The fd_files[] array inherits fp's hold reference.
598 	 */
599 	fsetfd_locked(fdp, fp, new);
600 	fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
601 	spin_unlock_wr(&fdp->fd_spin);
602 	fdrop(fp);
603 	*res = new;
604 
605 	/*
606 	 * If we dup'd over a valid file, we now own the reference to it
607 	 * and must dispose of it using closef() semantics (as if a
608 	 * close() were performed on it).
609 	 */
610 	if (delfp) {
611 		closef(delfp, p);
612 		if (holdleaders) {
613 			spin_lock_wr(&fdp->fd_spin);
614 			fdp->fd_holdleaderscount--;
615 			if (fdp->fd_holdleaderscount == 0 &&
616 			    fdp->fd_holdleaderswakeup != 0) {
617 				fdp->fd_holdleaderswakeup = 0;
618 				spin_unlock_wr(&fdp->fd_spin);
619 				wakeup(&fdp->fd_holdleaderscount);
620 			} else {
621 				spin_unlock_wr(&fdp->fd_spin);
622 			}
623 		}
624 	}
625 	return (0);
626 }
627 
628 /*
629  * If sigio is on the list associated with a process or process group,
630  * disable signalling from the device, remove sigio from the list and
631  * free sigio.
632  */
633 void
634 funsetown(struct sigio *sigio)
635 {
636 	if (sigio == NULL)
637 		return;
638 	crit_enter();
639 	*(sigio->sio_myref) = NULL;
640 	crit_exit();
641 	if (sigio->sio_pgid < 0) {
642 		SLIST_REMOVE(&sigio->sio_pgrp->pg_sigiolst, sigio,
643 			     sigio, sio_pgsigio);
644 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
645 		SLIST_REMOVE(&sigio->sio_proc->p_sigiolst, sigio,
646 			     sigio, sio_pgsigio);
647 	}
648 	crfree(sigio->sio_ucred);
649 	kfree(sigio, M_SIGIO);
650 }
651 
652 /* Free a list of sigio structures. */
653 void
654 funsetownlst(struct sigiolst *sigiolst)
655 {
656 	struct sigio *sigio;
657 
658 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
659 		funsetown(sigio);
660 }
661 
662 /*
663  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
664  *
665  * After permission checking, add a sigio structure to the sigio list for
666  * the process or process group.
667  */
668 int
669 fsetown(pid_t pgid, struct sigio **sigiop)
670 {
671 	struct proc *proc;
672 	struct pgrp *pgrp;
673 	struct sigio *sigio;
674 
675 	if (pgid == 0) {
676 		funsetown(*sigiop);
677 		return (0);
678 	}
679 	if (pgid > 0) {
680 		proc = pfind(pgid);
681 		if (proc == NULL)
682 			return (ESRCH);
683 
684 		/*
685 		 * Policy - Don't allow a process to FSETOWN a process
686 		 * in another session.
687 		 *
688 		 * Remove this test to allow maximum flexibility or
689 		 * restrict FSETOWN to the current process or process
690 		 * group for maximum safety.
691 		 */
692 		if (proc->p_session != curproc->p_session)
693 			return (EPERM);
694 
695 		pgrp = NULL;
696 	} else /* if (pgid < 0) */ {
697 		pgrp = pgfind(-pgid);
698 		if (pgrp == NULL)
699 			return (ESRCH);
700 
701 		/*
702 		 * Policy - Don't allow a process to FSETOWN a process
703 		 * in another session.
704 		 *
705 		 * Remove this test to allow maximum flexibility or
706 		 * restrict FSETOWN to the current process or process
707 		 * group for maximum safety.
708 		 */
709 		if (pgrp->pg_session != curproc->p_session)
710 			return (EPERM);
711 
712 		proc = NULL;
713 	}
714 	funsetown(*sigiop);
715 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
716 	if (pgid > 0) {
717 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
718 		sigio->sio_proc = proc;
719 	} else {
720 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
721 		sigio->sio_pgrp = pgrp;
722 	}
723 	sigio->sio_pgid = pgid;
724 	sigio->sio_ucred = crhold(curproc->p_ucred);
725 	/* It would be convenient if p_ruid was in ucred. */
726 	sigio->sio_ruid = curproc->p_ucred->cr_ruid;
727 	sigio->sio_myref = sigiop;
728 	crit_enter();
729 	*sigiop = sigio;
730 	crit_exit();
731 	return (0);
732 }
733 
734 /*
735  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
736  */
737 pid_t
738 fgetown(struct sigio *sigio)
739 {
740 	return (sigio != NULL ? sigio->sio_pgid : 0);
741 }
742 
743 /*
744  * Close many file descriptors.
745  *
746  * MPSAFE
747  */
748 int
749 sys_closefrom(struct closefrom_args *uap)
750 {
751 	return(kern_closefrom(uap->fd));
752 }
753 
754 /*
755  * Close all file descriptors greater then or equal to fd
756  *
757  * MPSAFE
758  */
759 int
760 kern_closefrom(int fd)
761 {
762 	struct thread *td = curthread;
763 	struct proc *p = td->td_proc;
764 	struct filedesc *fdp;
765 
766 	KKASSERT(p);
767 	fdp = p->p_fd;
768 
769 	if (fd < 0)
770 		return (EINVAL);
771 
772 	/*
773 	 * NOTE: This function will skip unassociated descriptors and
774 	 * reserved descriptors that have not yet been assigned.
775 	 * fd_lastfile can change as a side effect of kern_close().
776 	 */
777 	spin_lock_wr(&fdp->fd_spin);
778 	while (fd <= fdp->fd_lastfile) {
779 		if (fdp->fd_files[fd].fp != NULL) {
780 			spin_unlock_wr(&fdp->fd_spin);
781 			/* ok if this races another close */
782 			if (kern_close(fd) == EINTR)
783 				return (EINTR);
784 			spin_lock_wr(&fdp->fd_spin);
785 		}
786 		++fd;
787 	}
788 	spin_unlock_wr(&fdp->fd_spin);
789 	return (0);
790 }
791 
792 /*
793  * Close a file descriptor.
794  *
795  * MPSAFE
796  */
797 int
798 sys_close(struct close_args *uap)
799 {
800 	return(kern_close(uap->fd));
801 }
802 
803 /*
804  * MPALMOSTSAFE - acquires mplock around knote_fdclose() calls
805  */
806 int
807 kern_close(int fd)
808 {
809 	struct thread *td = curthread;
810 	struct proc *p = td->td_proc;
811 	struct filedesc *fdp;
812 	struct file *fp;
813 	int error;
814 	int holdleaders;
815 
816 	KKASSERT(p);
817 	fdp = p->p_fd;
818 
819 	spin_lock_wr(&fdp->fd_spin);
820 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
821 		spin_unlock_wr(&fdp->fd_spin);
822 		return (EBADF);
823 	}
824 	holdleaders = 0;
825 	if (p->p_fdtol != NULL) {
826 		/*
827 		 * Ask fdfree() to sleep to ensure that all relevant
828 		 * process leaders can be traversed in closef().
829 		 */
830 		fdp->fd_holdleaderscount++;
831 		holdleaders = 1;
832 	}
833 
834 	/*
835 	 * we now hold the fp reference that used to be owned by the descriptor
836 	 * array.
837 	 */
838 	spin_unlock_wr(&fdp->fd_spin);
839 	if (fd < fdp->fd_knlistsize) {
840 		get_mplock();
841 		if (fd < fdp->fd_knlistsize)
842 			knote_fdclose(p, fd);
843 		rel_mplock();
844 	}
845 	error = closef(fp, p);
846 	if (holdleaders) {
847 		spin_lock_wr(&fdp->fd_spin);
848 		fdp->fd_holdleaderscount--;
849 		if (fdp->fd_holdleaderscount == 0 &&
850 		    fdp->fd_holdleaderswakeup != 0) {
851 			fdp->fd_holdleaderswakeup = 0;
852 			spin_unlock_wr(&fdp->fd_spin);
853 			wakeup(&fdp->fd_holdleaderscount);
854 		} else {
855 			spin_unlock_wr(&fdp->fd_spin);
856 		}
857 	}
858 	return (error);
859 }
860 
861 /*
862  * shutdown_args(int fd, int how)
863  */
864 int
865 kern_shutdown(int fd, int how)
866 {
867 	struct thread *td = curthread;
868 	struct proc *p = td->td_proc;
869 	struct file *fp;
870 	int error;
871 
872 	KKASSERT(p);
873 
874 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
875 		return (EBADF);
876 	error = fo_shutdown(fp, how);
877 	fdrop(fp);
878 
879 	return (error);
880 }
881 
882 int
883 sys_shutdown(struct shutdown_args *uap)
884 {
885 	int error;
886 
887 	error = kern_shutdown(uap->s, uap->how);
888 
889 	return (error);
890 }
891 
892 /*
893  * MPSAFE
894  */
895 int
896 kern_fstat(int fd, struct stat *ub)
897 {
898 	struct thread *td = curthread;
899 	struct proc *p = td->td_proc;
900 	struct file *fp;
901 	int error;
902 
903 	KKASSERT(p);
904 
905 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
906 		return (EBADF);
907 	error = fo_stat(fp, ub, p->p_ucred);
908 	fdrop(fp);
909 
910 	return (error);
911 }
912 
913 /*
914  * Return status information about a file descriptor.
915  *
916  * MPSAFE
917  */
918 int
919 sys_fstat(struct fstat_args *uap)
920 {
921 	struct stat st;
922 	int error;
923 
924 	error = kern_fstat(uap->fd, &st);
925 
926 	if (error == 0)
927 		error = copyout(&st, uap->sb, sizeof(st));
928 	return (error);
929 }
930 
931 /*
932  * Return pathconf information about a file descriptor.
933  */
934 /* ARGSUSED */
935 int
936 sys_fpathconf(struct fpathconf_args *uap)
937 {
938 	struct thread *td = curthread;
939 	struct proc *p = td->td_proc;
940 	struct file *fp;
941 	struct vnode *vp;
942 	int error = 0;
943 
944 	KKASSERT(p);
945 
946 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
947 		return (EBADF);
948 
949 	switch (fp->f_type) {
950 	case DTYPE_PIPE:
951 	case DTYPE_SOCKET:
952 		if (uap->name != _PC_PIPE_BUF) {
953 			error = EINVAL;
954 		} else {
955 			uap->sysmsg_result = PIPE_BUF;
956 			error = 0;
957 		}
958 		break;
959 	case DTYPE_FIFO:
960 	case DTYPE_VNODE:
961 		vp = (struct vnode *)fp->f_data;
962 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
963 		break;
964 	default:
965 		error = EOPNOTSUPP;
966 		break;
967 	}
968 	fdrop(fp);
969 	return(error);
970 }
971 
972 static int fdexpand;
973 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0, "");
974 
975 /*
976  * Grow the file table so it can hold through descriptor (want).
977  *
978  * The fdp's spinlock must be held exclusively on entry and may be held
979  * exclusively on return.  The spinlock may be cycled by the routine.
980  *
981  * MPSAFE
982  */
983 static void
984 fdgrow_locked(struct filedesc *fdp, int want)
985 {
986 	struct fdnode *newfiles;
987 	struct fdnode *oldfiles;
988 	int nf, extra;
989 
990 	nf = fdp->fd_nfiles;
991 	do {
992 		/* nf has to be of the form 2^n - 1 */
993 		nf = 2 * nf + 1;
994 	} while (nf <= want);
995 
996 	spin_unlock_wr(&fdp->fd_spin);
997 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
998 	spin_lock_wr(&fdp->fd_spin);
999 
1000 	/*
1001 	 * We could have raced another extend while we were not holding
1002 	 * the spinlock.
1003 	 */
1004 	if (fdp->fd_nfiles >= nf) {
1005 		spin_unlock_wr(&fdp->fd_spin);
1006 		kfree(newfiles, M_FILEDESC);
1007 		spin_lock_wr(&fdp->fd_spin);
1008 		return;
1009 	}
1010 	/*
1011 	 * Copy the existing ofile and ofileflags arrays
1012 	 * and zero the new portion of each array.
1013 	 */
1014 	extra = nf - fdp->fd_nfiles;
1015 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1016 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1017 
1018 	oldfiles = fdp->fd_files;
1019 	fdp->fd_files = newfiles;
1020 	fdp->fd_nfiles = nf;
1021 
1022 	if (oldfiles != fdp->fd_builtin_files) {
1023 		spin_unlock_wr(&fdp->fd_spin);
1024 		kfree(oldfiles, M_FILEDESC);
1025 		spin_lock_wr(&fdp->fd_spin);
1026 	}
1027 	fdexpand++;
1028 }
1029 
1030 /*
1031  * Number of nodes in right subtree, including the root.
1032  */
1033 static __inline int
1034 right_subtree_size(int n)
1035 {
1036 	return (n ^ (n | (n + 1)));
1037 }
1038 
1039 /*
1040  * Bigger ancestor.
1041  */
1042 static __inline int
1043 right_ancestor(int n)
1044 {
1045 	return (n | (n + 1));
1046 }
1047 
1048 /*
1049  * Smaller ancestor.
1050  */
1051 static __inline int
1052 left_ancestor(int n)
1053 {
1054 	return ((n & (n + 1)) - 1);
1055 }
1056 
1057 /*
1058  * Traverse the in-place binary tree buttom-up adjusting the allocation
1059  * count so scans can determine where free descriptors are located.
1060  *
1061  * MPSAFE - caller must be holding an exclusive spinlock on fdp
1062  */
1063 static
1064 void
1065 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1066 {
1067 	while (fd >= 0) {
1068 		fdp->fd_files[fd].allocated += incr;
1069 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1070 		fd = left_ancestor(fd);
1071 	}
1072 }
1073 
1074 /*
1075  * Reserve a file descriptor for the process.  If no error occurs, the
1076  * caller MUST at some point call fsetfd() or assign a file pointer
1077  * or dispose of the reservation.
1078  *
1079  * MPSAFE
1080  */
1081 int
1082 fdalloc(struct proc *p, int want, int *result)
1083 {
1084 	struct filedesc *fdp = p->p_fd;
1085 	int fd, rsize, rsum, node, lim;
1086 
1087 	spin_lock_rd(&p->p_limit->p_spin);
1088 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1089 	spin_unlock_rd(&p->p_limit->p_spin);
1090 	if (want >= lim)
1091 		return (EMFILE);
1092 	spin_lock_wr(&fdp->fd_spin);
1093 	if (want >= fdp->fd_nfiles)
1094 		fdgrow_locked(fdp, want);
1095 
1096 	/*
1097 	 * Search for a free descriptor starting at the higher
1098 	 * of want or fd_freefile.  If that fails, consider
1099 	 * expanding the ofile array.
1100 	 *
1101 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1102 	 * count.  If we happen to see a value of 0 then we can shortcut
1103 	 * our search.  Otherwise we run through through the tree going
1104 	 * down branches we know have free descriptor(s) until we hit a
1105 	 * leaf node.  The leaf node will be free but will not necessarily
1106 	 * have an allocated field of 0.
1107 	 */
1108 retry:
1109 	/* move up the tree looking for a subtree with a free node */
1110 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1111 	     fd = right_ancestor(fd)) {
1112 		if (fdp->fd_files[fd].allocated == 0)
1113 			goto found;
1114 
1115 		rsize = right_subtree_size(fd);
1116 		if (fdp->fd_files[fd].allocated == rsize)
1117 			continue;	/* right subtree full */
1118 
1119 		/*
1120 		 * Free fd is in the right subtree of the tree rooted at fd.
1121 		 * Call that subtree R.  Look for the smallest (leftmost)
1122 		 * subtree of R with an unallocated fd: continue moving
1123 		 * down the left branch until encountering a full left
1124 		 * subtree, then move to the right.
1125 		 */
1126 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1127 			node = fd + rsize;
1128 			rsum += fdp->fd_files[node].allocated;
1129 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1130 				fd = node;	/* move to the right */
1131 				if (fdp->fd_files[node].allocated == 0)
1132 					goto found;
1133 				rsum = 0;
1134 			}
1135 		}
1136 		goto found;
1137 	}
1138 
1139 	/*
1140 	 * No space in current array.  Expand?
1141 	 */
1142 	if (fdp->fd_nfiles >= lim) {
1143 		spin_unlock_wr(&fdp->fd_spin);
1144 		return (EMFILE);
1145 	}
1146 	fdgrow_locked(fdp, want);
1147 	goto retry;
1148 
1149 found:
1150 	KKASSERT(fd < fdp->fd_nfiles);
1151 	if (fd > fdp->fd_lastfile)
1152 		fdp->fd_lastfile = fd;
1153 	if (want <= fdp->fd_freefile)
1154 		fdp->fd_freefile = fd;
1155 	*result = fd;
1156 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1157 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1158 	fdp->fd_files[fd].fileflags = 0;
1159 	fdp->fd_files[fd].reserved = 1;
1160 	fdreserve_locked(fdp, fd, 1);
1161 	spin_unlock_wr(&fdp->fd_spin);
1162 	return (0);
1163 }
1164 
1165 /*
1166  * Check to see whether n user file descriptors
1167  * are available to the process p.
1168  *
1169  * MPSAFE
1170  */
1171 int
1172 fdavail(struct proc *p, int n)
1173 {
1174 	struct filedesc *fdp = p->p_fd;
1175 	struct fdnode *fdnode;
1176 	int i, lim, last;
1177 
1178 	spin_lock_rd(&p->p_limit->p_spin);
1179 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1180 	spin_unlock_rd(&p->p_limit->p_spin);
1181 
1182 	spin_lock_rd(&fdp->fd_spin);
1183 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1184 		spin_unlock_rd(&fdp->fd_spin);
1185 		return (1);
1186 	}
1187 	last = min(fdp->fd_nfiles, lim);
1188 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1189 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1190 		if (fdnode->fp == NULL && --n <= 0) {
1191 			spin_unlock_rd(&fdp->fd_spin);
1192 			return (1);
1193 		}
1194 	}
1195 	spin_unlock_rd(&fdp->fd_spin);
1196 	return (0);
1197 }
1198 
1199 /*
1200  * Revoke open descriptors referencing (f_data, f_type)
1201  *
1202  * Any revoke executed within a prison is only able to
1203  * revoke descriptors for processes within that prison.
1204  *
1205  * Returns 0 on success or an error code.
1206  */
1207 struct fdrevoke_info {
1208 	void *data;
1209 	short type;
1210 	short unused;
1211 	int count;
1212 	int intransit;
1213 	struct ucred *cred;
1214 	struct file *nfp;
1215 };
1216 
1217 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1218 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1219 
1220 int
1221 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1222 {
1223 	struct fdrevoke_info info;
1224 	int error;
1225 
1226 	bzero(&info, sizeof(info));
1227 	info.data = f_data;
1228 	info.type = f_type;
1229 	info.cred = cred;
1230 	error = falloc(NULL, &info.nfp, NULL);
1231 	if (error)
1232 		return (error);
1233 
1234 	/*
1235 	 * Scan the file pointer table once.  dups do not dup file pointers,
1236 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1237 	 * being revoked.
1238 	 */
1239 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1240 
1241 	/*
1242 	 * If any fps were marked track down the related descriptors
1243 	 * and close them.  Any dup()s at this point will notice
1244 	 * the FREVOKED already set in the fp and do the right thing.
1245 	 *
1246 	 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1247 	 * socket) bumped the intransit counter and will require a
1248 	 * scan.  Races against fps leaving the socket are closed by
1249 	 * the socket code checking for FREVOKED.
1250 	 */
1251 	if (info.count)
1252 		allproc_scan(fdrevoke_proc_callback, &info);
1253 	if (info.intransit)
1254 		unp_revoke_gc(info.nfp);
1255 	fdrop(info.nfp);
1256 	return(0);
1257 }
1258 
1259 /*
1260  * Locate matching file pointers directly.
1261  */
1262 static int
1263 fdrevoke_check_callback(struct file *fp, void *vinfo)
1264 {
1265 	struct fdrevoke_info *info = vinfo;
1266 
1267 	/*
1268 	 * File pointers already flagged for revokation are skipped.
1269 	 */
1270 	if (fp->f_flag & FREVOKED)
1271 		return(0);
1272 
1273 	/*
1274 	 * If revoking from a prison file pointers created outside of
1275 	 * that prison, or file pointers without creds, cannot be revoked.
1276 	 */
1277 	if (info->cred->cr_prison &&
1278 	    (fp->f_cred == NULL ||
1279 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1280 		return(0);
1281 	}
1282 
1283 	/*
1284 	 * If the file pointer matches then mark it for revocation.  The
1285 	 * flag is currently only used by unp_revoke_gc().
1286 	 *
1287 	 * info->count is a heuristic and can race in a SMP environment.
1288 	 */
1289 	if (info->data == fp->f_data && info->type == fp->f_type) {
1290 		atomic_set_int(&fp->f_flag, FREVOKED);
1291 		info->count += fp->f_count;
1292 		if (fp->f_msgcount)
1293 			++info->intransit;
1294 	}
1295 	return(0);
1296 }
1297 
1298 /*
1299  * Locate matching file pointers via process descriptor tables.
1300  */
1301 static int
1302 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1303 {
1304 	struct fdrevoke_info *info = vinfo;
1305 	struct filedesc *fdp;
1306 	struct file *fp;
1307 	int n;
1308 
1309 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1310 		return(0);
1311 	if (info->cred->cr_prison &&
1312 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1313 		return(0);
1314 	}
1315 
1316 	/*
1317 	 * If the controlling terminal of the process matches the
1318 	 * vnode being revoked we clear the controlling terminal.
1319 	 *
1320 	 * The normal spec_close() may not catch this because it
1321 	 * uses curproc instead of p.
1322 	 */
1323 	if (p->p_session && info->type == DTYPE_VNODE &&
1324 	    info->data == p->p_session->s_ttyvp) {
1325 		p->p_session->s_ttyvp = NULL;
1326 		vrele(info->data);
1327 	}
1328 
1329 	/*
1330 	 * Softref the fdp to prevent it from being destroyed
1331 	 */
1332 	spin_lock_wr(&p->p_spin);
1333 	if ((fdp = p->p_fd) == NULL) {
1334 		spin_unlock_wr(&p->p_spin);
1335 		return(0);
1336 	}
1337 	atomic_add_int(&fdp->fd_softrefs, 1);
1338 	spin_unlock_wr(&p->p_spin);
1339 
1340 	/*
1341 	 * Locate and close any matching file descriptors.
1342 	 */
1343 	spin_lock_wr(&fdp->fd_spin);
1344 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1345 		if ((fp = fdp->fd_files[n].fp) == NULL)
1346 			continue;
1347 		if (fp->f_flag & FREVOKED) {
1348 			fhold(info->nfp);
1349 			fdp->fd_files[n].fp = info->nfp;
1350 			spin_unlock_wr(&fdp->fd_spin);
1351 			closef(fp, p);
1352 			spin_lock_wr(&fdp->fd_spin);
1353 			--info->count;
1354 		}
1355 	}
1356 	spin_unlock_wr(&fdp->fd_spin);
1357 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1358 	return(0);
1359 }
1360 
1361 /*
1362  * falloc:
1363  *	Create a new open file structure and reserve a file decriptor
1364  *	for the process that refers to it.
1365  *
1366  *	Root creds are checked using p, or assumed if p is NULL.  If
1367  *	resultfd is non-NULL then p must also be non-NULL.  No file
1368  *	descriptor is reserved if resultfd is NULL.
1369  *
1370  *	A file pointer with a refcount of 1 is returned.  Note that the
1371  *	file pointer is NOT associated with the descriptor.  If falloc
1372  *	returns success, fsetfd() MUST be called to either associate the
1373  *	file pointer or clear the reservation.
1374  *
1375  * MPSAFE
1376  */
1377 int
1378 falloc(struct proc *p, struct file **resultfp, int *resultfd)
1379 {
1380 	static struct timeval lastfail;
1381 	static int curfail;
1382 	struct file *fp;
1383 	int error;
1384 
1385 	fp = NULL;
1386 
1387 	/*
1388 	 * Handle filetable full issues and root overfill.
1389 	 */
1390 	if (nfiles >= maxfiles - maxfilesrootres &&
1391 	    ((p && p->p_ucred->cr_ruid != 0) || nfiles >= maxfiles)) {
1392 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1393 			kprintf("kern.maxfiles limit exceeded by uid %d, please see tuning(7).\n",
1394 				(p ? p->p_ucred->cr_ruid : -1));
1395 		}
1396 		error = ENFILE;
1397 		goto done;
1398 	}
1399 
1400 	/*
1401 	 * Allocate a new file descriptor.
1402 	 */
1403 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1404 	spin_init(&fp->f_spin);
1405 	fp->f_count = 1;
1406 	fp->f_ops = &badfileops;
1407 	fp->f_seqcount = 1;
1408 	if (p)
1409 		fp->f_cred = crhold(p->p_ucred);
1410 	else
1411 		fp->f_cred = crhold(proc0.p_ucred);
1412 	spin_lock_wr(&filehead_spin);
1413 	nfiles++;
1414 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1415 	spin_unlock_wr(&filehead_spin);
1416 	if (resultfd) {
1417 		if ((error = fdalloc(p, 0, resultfd)) != 0) {
1418 			fdrop(fp);
1419 			fp = NULL;
1420 		}
1421 	} else {
1422 		error = 0;
1423 	}
1424 done:
1425 	*resultfp = fp;
1426 	return (error);
1427 }
1428 
1429 /*
1430  * MPSAFE
1431  */
1432 static
1433 int
1434 checkfpclosed(struct filedesc *fdp, int fd, struct file *fp)
1435 {
1436 	int error;
1437 
1438 	spin_lock_rd(&fdp->fd_spin);
1439 	if ((unsigned) fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1440 		error = EBADF;
1441 	else
1442 		error = 0;
1443 	spin_unlock_rd(&fdp->fd_spin);
1444 	return (error);
1445 }
1446 
1447 /*
1448  * Associate a file pointer with a previously reserved file descriptor.
1449  * This function always succeeds.
1450  *
1451  * If fp is NULL, the file descriptor is returned to the pool.
1452  */
1453 
1454 /*
1455  * MPSAFE (exclusive spinlock must be held on call)
1456  */
1457 static void
1458 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1459 {
1460 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1461 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1462 	if (fp) {
1463 		fhold(fp);
1464 		fdp->fd_files[fd].fp = fp;
1465 		fdp->fd_files[fd].reserved = 0;
1466 		if (fp->f_type == DTYPE_KQUEUE) {
1467 			if (fdp->fd_knlistsize < 0)
1468 				fdp->fd_knlistsize = 0;
1469 		}
1470 	} else {
1471 		fdp->fd_files[fd].reserved = 0;
1472 		fdreserve_locked(fdp, fd, -1);
1473 		fdfixup_locked(fdp, fd);
1474 	}
1475 }
1476 
1477 /*
1478  * MPSAFE
1479  */
1480 void
1481 fsetfd(struct proc *p, struct file *fp, int fd)
1482 {
1483 	struct filedesc *fdp = p->p_fd;
1484 
1485 	spin_lock_wr(&fdp->fd_spin);
1486 	fsetfd_locked(fdp, fp, fd);
1487 	spin_unlock_wr(&fdp->fd_spin);
1488 }
1489 
1490 /*
1491  * MPSAFE (exclusive spinlock must be held on call)
1492  */
1493 static
1494 struct file *
1495 funsetfd_locked(struct filedesc *fdp, int fd)
1496 {
1497 	struct file *fp;
1498 
1499 	if ((unsigned)fd >= fdp->fd_nfiles)
1500 		return (NULL);
1501 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1502 		return (NULL);
1503 	fdp->fd_files[fd].fp = NULL;
1504 	fdp->fd_files[fd].fileflags = 0;
1505 
1506 	fdreserve_locked(fdp, fd, -1);
1507 	fdfixup_locked(fdp, fd);
1508 	return(fp);
1509 }
1510 
1511 /*
1512  * MPSAFE
1513  */
1514 int
1515 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1516 {
1517 	int error;
1518 
1519 	spin_lock_rd(&fdp->fd_spin);
1520 	if (((u_int)fd) >= fdp->fd_nfiles) {
1521 		error = EBADF;
1522 	} else if (fdp->fd_files[fd].fp == NULL) {
1523 		error = EBADF;
1524 	} else {
1525 		*flagsp = fdp->fd_files[fd].fileflags;
1526 		error = 0;
1527 	}
1528 	spin_unlock_rd(&fdp->fd_spin);
1529 	return (error);
1530 }
1531 
1532 /*
1533  * MPSAFE
1534  */
1535 int
1536 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1537 {
1538 	int error;
1539 
1540 	spin_lock_wr(&fdp->fd_spin);
1541 	if (((u_int)fd) >= fdp->fd_nfiles) {
1542 		error = EBADF;
1543 	} else if (fdp->fd_files[fd].fp == NULL) {
1544 		error = EBADF;
1545 	} else {
1546 		fdp->fd_files[fd].fileflags |= add_flags;
1547 		error = 0;
1548 	}
1549 	spin_unlock_wr(&fdp->fd_spin);
1550 	return (error);
1551 }
1552 
1553 /*
1554  * MPSAFE
1555  */
1556 int
1557 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1558 {
1559 	int error;
1560 
1561 	spin_lock_wr(&fdp->fd_spin);
1562 	if (((u_int)fd) >= fdp->fd_nfiles) {
1563 		error = EBADF;
1564 	} else if (fdp->fd_files[fd].fp == NULL) {
1565 		error = EBADF;
1566 	} else {
1567 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1568 		error = 0;
1569 	}
1570 	spin_unlock_wr(&fdp->fd_spin);
1571 	return (error);
1572 }
1573 
1574 void
1575 fsetcred(struct file *fp, struct ucred *cr)
1576 {
1577 	crhold(cr);
1578 	crfree(fp->f_cred);
1579 	fp->f_cred = cr;
1580 }
1581 
1582 /*
1583  * Free a file descriptor.
1584  */
1585 static
1586 void
1587 ffree(struct file *fp)
1588 {
1589 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1590 	spin_lock_wr(&filehead_spin);
1591 	LIST_REMOVE(fp, f_list);
1592 	nfiles--;
1593 	spin_unlock_wr(&filehead_spin);
1594 	crfree(fp->f_cred);
1595 	if (fp->f_nchandle.ncp)
1596 	    cache_drop(&fp->f_nchandle);
1597 	kfree(fp, M_FILE);
1598 }
1599 
1600 /*
1601  * called from init_main, initialize filedesc0 for proc0.
1602  */
1603 void
1604 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1605 {
1606 	p0->p_fd = fdp0;
1607 	p0->p_fdtol = NULL;
1608 	fdp0->fd_refcnt = 1;
1609 	fdp0->fd_cmask = cmask;
1610 	fdp0->fd_files = fdp0->fd_builtin_files;
1611 	fdp0->fd_nfiles = NDFILE;
1612 	fdp0->fd_lastfile = -1;
1613 	spin_init(&fdp0->fd_spin);
1614 }
1615 
1616 /*
1617  * Build a new filedesc structure.
1618  *
1619  * NOT MPSAFE (vref)
1620  */
1621 struct filedesc *
1622 fdinit(struct proc *p)
1623 {
1624 	struct filedesc *newfdp;
1625 	struct filedesc *fdp = p->p_fd;
1626 
1627 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1628 	spin_lock_rd(&fdp->fd_spin);
1629 	if (fdp->fd_cdir) {
1630 		newfdp->fd_cdir = fdp->fd_cdir;
1631 		vref(newfdp->fd_cdir);
1632 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1633 	}
1634 
1635 	/*
1636 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1637 	 * proc0, but should unconditionally exist in other processes.
1638 	 */
1639 	if (fdp->fd_rdir) {
1640 		newfdp->fd_rdir = fdp->fd_rdir;
1641 		vref(newfdp->fd_rdir);
1642 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1643 	}
1644 	if (fdp->fd_jdir) {
1645 		newfdp->fd_jdir = fdp->fd_jdir;
1646 		vref(newfdp->fd_jdir);
1647 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1648 	}
1649 	spin_unlock_rd(&fdp->fd_spin);
1650 
1651 	/* Create the file descriptor table. */
1652 	newfdp->fd_refcnt = 1;
1653 	newfdp->fd_cmask = cmask;
1654 	newfdp->fd_files = newfdp->fd_builtin_files;
1655 	newfdp->fd_nfiles = NDFILE;
1656 	newfdp->fd_knlistsize = -1;
1657 	newfdp->fd_lastfile = -1;
1658 	spin_init(&newfdp->fd_spin);
1659 
1660 	return (newfdp);
1661 }
1662 
1663 /*
1664  * Share a filedesc structure.
1665  *
1666  * MPSAFE
1667  */
1668 struct filedesc *
1669 fdshare(struct proc *p)
1670 {
1671 	struct filedesc *fdp;
1672 
1673 	fdp = p->p_fd;
1674 	spin_lock_wr(&fdp->fd_spin);
1675 	fdp->fd_refcnt++;
1676 	spin_unlock_wr(&fdp->fd_spin);
1677 	return (fdp);
1678 }
1679 
1680 /*
1681  * Copy a filedesc structure.
1682  *
1683  * MPSAFE
1684  */
1685 struct filedesc *
1686 fdcopy(struct proc *p)
1687 {
1688 	struct filedesc *fdp = p->p_fd;
1689 	struct filedesc *newfdp;
1690 	struct fdnode *fdnode;
1691 	int i;
1692 	int ni;
1693 
1694 	/*
1695 	 * Certain daemons might not have file descriptors.
1696 	 */
1697 	if (fdp == NULL)
1698 		return (NULL);
1699 
1700 	/*
1701 	 * Allocate the new filedesc and fd_files[] array.  This can race
1702 	 * with operations by other threads on the fdp so we have to be
1703 	 * careful.
1704 	 */
1705 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK | M_ZERO);
1706 again:
1707 	spin_lock_rd(&fdp->fd_spin);
1708 	if (fdp->fd_lastfile < NDFILE) {
1709 		newfdp->fd_files = newfdp->fd_builtin_files;
1710 		i = NDFILE;
1711 	} else {
1712 		/*
1713 		 * We have to allocate (N^2-1) entries for our in-place
1714 		 * binary tree.  Allow the table to shrink.
1715 		 */
1716 		i = fdp->fd_nfiles;
1717 		ni = (i - 1) / 2;
1718 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1719 			i = ni;
1720 			ni = (i - 1) / 2;
1721 		}
1722 		spin_unlock_rd(&fdp->fd_spin);
1723 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1724 					  M_FILEDESC, M_WAITOK | M_ZERO);
1725 
1726 		/*
1727 		 * Check for race, retry
1728 		 */
1729 		spin_lock_rd(&fdp->fd_spin);
1730 		if (i <= fdp->fd_lastfile) {
1731 			spin_unlock_rd(&fdp->fd_spin);
1732 			kfree(newfdp->fd_files, M_FILEDESC);
1733 			goto again;
1734 		}
1735 	}
1736 
1737 	/*
1738 	 * Dup the remaining fields. vref() and cache_hold() can be
1739 	 * safely called while holding the read spinlock on fdp.
1740 	 *
1741 	 * The read spinlock on fdp is still being held.
1742 	 *
1743 	 * NOTE: vref and cache_hold calls for the case where the vnode
1744 	 * or cache entry already has at least one ref may be called
1745 	 * while holding spin locks.
1746 	 */
1747 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1748 		vref(newfdp->fd_cdir);
1749 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1750 	}
1751 	/*
1752 	 * We must check for fd_rdir here, at least for now because
1753 	 * the init process is created before we have access to the
1754 	 * rootvode to take a reference to it.
1755 	 */
1756 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1757 		vref(newfdp->fd_rdir);
1758 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1759 	}
1760 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1761 		vref(newfdp->fd_jdir);
1762 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1763 	}
1764 	newfdp->fd_refcnt = 1;
1765 	newfdp->fd_nfiles = i;
1766 	newfdp->fd_lastfile = fdp->fd_lastfile;
1767 	newfdp->fd_freefile = fdp->fd_freefile;
1768 	newfdp->fd_cmask = fdp->fd_cmask;
1769 	newfdp->fd_knlist = NULL;
1770 	newfdp->fd_knlistsize = -1;
1771 	newfdp->fd_knhash = NULL;
1772 	newfdp->fd_knhashmask = 0;
1773 	spin_init(&newfdp->fd_spin);
1774 
1775 	/*
1776 	 * Copy the descriptor table through (i).  This also copies the
1777 	 * allocation state.   Then go through and ref the file pointers
1778 	 * and clean up any KQ descriptors.
1779 	 *
1780 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1781 	 * copied files yet we can ignore the return value from funsetfd().
1782 	 *
1783 	 * The read spinlock on fdp is still being held.
1784 	 */
1785 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1786 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1787 		fdnode = &newfdp->fd_files[i];
1788 		if (fdnode->reserved) {
1789 			fdreserve_locked(newfdp, i, -1);
1790 			fdnode->reserved = 0;
1791 			fdfixup_locked(newfdp, i);
1792 		} else if (fdnode->fp) {
1793 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1794 				(void)funsetfd_locked(newfdp, i);
1795 			} else {
1796 				fhold(fdnode->fp);
1797 			}
1798 		}
1799 	}
1800 	spin_unlock_rd(&fdp->fd_spin);
1801 	return (newfdp);
1802 }
1803 
1804 /*
1805  * Release a filedesc structure.
1806  *
1807  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1808  */
1809 void
1810 fdfree(struct proc *p, struct filedesc *repl)
1811 {
1812 	struct filedesc *fdp;
1813 	struct fdnode *fdnode;
1814 	int i;
1815 	struct filedesc_to_leader *fdtol;
1816 	struct file *fp;
1817 	struct vnode *vp;
1818 	struct flock lf;
1819 
1820 	/*
1821 	 * Certain daemons might not have file descriptors.
1822 	 */
1823 	fdp = p->p_fd;
1824 	if (fdp == NULL) {
1825 		p->p_fd = repl;
1826 		return;
1827 	}
1828 
1829 	/*
1830 	 * Severe messing around to follow.
1831 	 */
1832 	spin_lock_wr(&fdp->fd_spin);
1833 
1834 	/* Check for special need to clear POSIX style locks */
1835 	fdtol = p->p_fdtol;
1836 	if (fdtol != NULL) {
1837 		KASSERT(fdtol->fdl_refcount > 0,
1838 			("filedesc_to_refcount botch: fdl_refcount=%d",
1839 			 fdtol->fdl_refcount));
1840 		if (fdtol->fdl_refcount == 1 &&
1841 		    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1842 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
1843 				fdnode = &fdp->fd_files[i];
1844 				if (fdnode->fp == NULL ||
1845 				    fdnode->fp->f_type != DTYPE_VNODE) {
1846 					continue;
1847 				}
1848 				fp = fdnode->fp;
1849 				fhold(fp);
1850 				spin_unlock_wr(&fdp->fd_spin);
1851 
1852 				lf.l_whence = SEEK_SET;
1853 				lf.l_start = 0;
1854 				lf.l_len = 0;
1855 				lf.l_type = F_UNLCK;
1856 				vp = (struct vnode *)fp->f_data;
1857 				(void) VOP_ADVLOCK(vp,
1858 						   (caddr_t)p->p_leader,
1859 						   F_UNLCK,
1860 						   &lf,
1861 						   F_POSIX);
1862 				fdrop(fp);
1863 				spin_lock_wr(&fdp->fd_spin);
1864 			}
1865 		}
1866 	retry:
1867 		if (fdtol->fdl_refcount == 1) {
1868 			if (fdp->fd_holdleaderscount > 0 &&
1869 			    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1870 				/*
1871 				 * close() or do_dup() has cleared a reference
1872 				 * in a shared file descriptor table.
1873 				 */
1874 				fdp->fd_holdleaderswakeup = 1;
1875 				ssleep(&fdp->fd_holdleaderscount,
1876 				       &fdp->fd_spin, 0, "fdlhold", 0);
1877 				goto retry;
1878 			}
1879 			if (fdtol->fdl_holdcount > 0) {
1880 				/*
1881 				 * Ensure that fdtol->fdl_leader
1882 				 * remains valid in closef().
1883 				 */
1884 				fdtol->fdl_wakeup = 1;
1885 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
1886 				goto retry;
1887 			}
1888 		}
1889 		fdtol->fdl_refcount--;
1890 		if (fdtol->fdl_refcount == 0 &&
1891 		    fdtol->fdl_holdcount == 0) {
1892 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
1893 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
1894 		} else {
1895 			fdtol = NULL;
1896 		}
1897 		p->p_fdtol = NULL;
1898 		if (fdtol != NULL) {
1899 			spin_unlock_wr(&fdp->fd_spin);
1900 			kfree(fdtol, M_FILEDESC_TO_LEADER);
1901 			spin_lock_wr(&fdp->fd_spin);
1902 		}
1903 	}
1904 	if (--fdp->fd_refcnt > 0) {
1905 		spin_unlock_wr(&fdp->fd_spin);
1906 		spin_lock_wr(&p->p_spin);
1907 		p->p_fd = repl;
1908 		spin_unlock_wr(&p->p_spin);
1909 		return;
1910 	}
1911 
1912 	/*
1913 	 * Even though we are the last reference to the structure allproc
1914 	 * scans may still reference the structure.  Maintain proper
1915 	 * locks until we can replace p->p_fd.
1916 	 *
1917 	 * Also note that kqueue's closef still needs to reference the
1918 	 * fdp via p->p_fd, so we have to close the descriptors before
1919 	 * we replace p->p_fd.
1920 	 */
1921 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
1922 		if (fdp->fd_files[i].fp) {
1923 			fp = funsetfd_locked(fdp, i);
1924 			if (fp) {
1925 				spin_unlock_wr(&fdp->fd_spin);
1926 				closef(fp, p);
1927 				spin_lock_wr(&fdp->fd_spin);
1928 			}
1929 		}
1930 	}
1931 	spin_unlock_wr(&fdp->fd_spin);
1932 
1933 	/*
1934 	 * Interlock against an allproc scan operations (typically frevoke).
1935 	 */
1936 	spin_lock_wr(&p->p_spin);
1937 	p->p_fd = repl;
1938 	spin_unlock_wr(&p->p_spin);
1939 
1940 	/*
1941 	 * Wait for any softrefs to go away.  This race rarely occurs so
1942 	 * we can use a non-critical-path style poll/sleep loop.  The
1943 	 * race only occurs against allproc scans.
1944 	 *
1945 	 * No new softrefs can occur with the fdp disconnected from the
1946 	 * process.
1947 	 */
1948 	if (fdp->fd_softrefs) {
1949 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
1950 		while (fdp->fd_softrefs)
1951 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
1952 	}
1953 
1954 	if (fdp->fd_files != fdp->fd_builtin_files)
1955 		kfree(fdp->fd_files, M_FILEDESC);
1956 	if (fdp->fd_cdir) {
1957 		cache_drop(&fdp->fd_ncdir);
1958 		vrele(fdp->fd_cdir);
1959 	}
1960 	if (fdp->fd_rdir) {
1961 		cache_drop(&fdp->fd_nrdir);
1962 		vrele(fdp->fd_rdir);
1963 	}
1964 	if (fdp->fd_jdir) {
1965 		cache_drop(&fdp->fd_njdir);
1966 		vrele(fdp->fd_jdir);
1967 	}
1968 	if (fdp->fd_knlist)
1969 		kfree(fdp->fd_knlist, M_KQUEUE);
1970 	if (fdp->fd_knhash)
1971 		kfree(fdp->fd_knhash, M_KQUEUE);
1972 	kfree(fdp, M_FILEDESC);
1973 }
1974 
1975 /*
1976  * Retrieve and reference the file pointer associated with a descriptor.
1977  *
1978  * MPSAFE
1979  */
1980 struct file *
1981 holdfp(struct filedesc *fdp, int fd, int flag)
1982 {
1983 	struct file* fp;
1984 
1985 	spin_lock_rd(&fdp->fd_spin);
1986 	if (((u_int)fd) >= fdp->fd_nfiles) {
1987 		fp = NULL;
1988 		goto done;
1989 	}
1990 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1991 		goto done;
1992 	if ((fp->f_flag & flag) == 0 && flag != -1) {
1993 		fp = NULL;
1994 		goto done;
1995 	}
1996 	fhold(fp);
1997 done:
1998 	spin_unlock_rd(&fdp->fd_spin);
1999 	return (fp);
2000 }
2001 
2002 /*
2003  * holdsock() - load the struct file pointer associated
2004  * with a socket into *fpp.  If an error occurs, non-zero
2005  * will be returned and *fpp will be set to NULL.
2006  *
2007  * MPSAFE
2008  */
2009 int
2010 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2011 {
2012 	struct file *fp;
2013 	int error;
2014 
2015 	spin_lock_rd(&fdp->fd_spin);
2016 	if ((unsigned)fd >= fdp->fd_nfiles) {
2017 		error = EBADF;
2018 		fp = NULL;
2019 		goto done;
2020 	}
2021 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2022 		error = EBADF;
2023 		goto done;
2024 	}
2025 	if (fp->f_type != DTYPE_SOCKET) {
2026 		error = ENOTSOCK;
2027 		goto done;
2028 	}
2029 	fhold(fp);
2030 	error = 0;
2031 done:
2032 	spin_unlock_rd(&fdp->fd_spin);
2033 	*fpp = fp;
2034 	return (error);
2035 }
2036 
2037 /*
2038  * Convert a user file descriptor to a held file pointer.
2039  *
2040  * MPSAFE
2041  */
2042 int
2043 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2044 {
2045 	struct file *fp;
2046 	int error;
2047 
2048 	spin_lock_rd(&fdp->fd_spin);
2049 	if ((unsigned)fd >= fdp->fd_nfiles) {
2050 		error = EBADF;
2051 		fp = NULL;
2052 		goto done;
2053 	}
2054 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2055 		error = EBADF;
2056 		goto done;
2057 	}
2058 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2059 		fp = NULL;
2060 		error = EINVAL;
2061 		goto done;
2062 	}
2063 	fhold(fp);
2064 	error = 0;
2065 done:
2066 	spin_unlock_rd(&fdp->fd_spin);
2067 	*fpp = fp;
2068 	return (error);
2069 }
2070 
2071 /*
2072  * For setugid programs, we don't want to people to use that setugidness
2073  * to generate error messages which write to a file which otherwise would
2074  * otherwise be off-limits to the process.
2075  *
2076  * This is a gross hack to plug the hole.  A better solution would involve
2077  * a special vop or other form of generalized access control mechanism.  We
2078  * go ahead and just reject all procfs file systems accesses as dangerous.
2079  *
2080  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2081  * sufficient.  We also don't for check setugidness since we know we are.
2082  */
2083 static int
2084 is_unsafe(struct file *fp)
2085 {
2086 	if (fp->f_type == DTYPE_VNODE &&
2087 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2088 		return (1);
2089 	return (0);
2090 }
2091 
2092 /*
2093  * Make this setguid thing safe, if at all possible.
2094  *
2095  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2096  */
2097 void
2098 setugidsafety(struct proc *p)
2099 {
2100 	struct filedesc *fdp = p->p_fd;
2101 	int i;
2102 
2103 	/* Certain daemons might not have file descriptors. */
2104 	if (fdp == NULL)
2105 		return;
2106 
2107 	/*
2108 	 * note: fdp->fd_files may be reallocated out from under us while
2109 	 * we are blocked in a close.  Be careful!
2110 	 */
2111 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2112 		if (i > 2)
2113 			break;
2114 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2115 			struct file *fp;
2116 
2117 			if (i < fdp->fd_knlistsize)
2118 				knote_fdclose(p, i);
2119 			/*
2120 			 * NULL-out descriptor prior to close to avoid
2121 			 * a race while close blocks.
2122 			 */
2123 			if ((fp = funsetfd_locked(fdp, i)) != NULL)
2124 				closef(fp, p);
2125 		}
2126 	}
2127 }
2128 
2129 /*
2130  * Close any files on exec?
2131  *
2132  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2133  */
2134 void
2135 fdcloseexec(struct proc *p)
2136 {
2137 	struct filedesc *fdp = p->p_fd;
2138 	int i;
2139 
2140 	/* Certain daemons might not have file descriptors. */
2141 	if (fdp == NULL)
2142 		return;
2143 
2144 	/*
2145 	 * We cannot cache fd_files since operations may block and rip
2146 	 * them out from under us.
2147 	 */
2148 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2149 		if (fdp->fd_files[i].fp != NULL &&
2150 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2151 			struct file *fp;
2152 
2153 			if (i < fdp->fd_knlistsize)
2154 				knote_fdclose(p, i);
2155 			/*
2156 			 * NULL-out descriptor prior to close to avoid
2157 			 * a race while close blocks.
2158 			 */
2159 			if ((fp = funsetfd_locked(fdp, i)) != NULL)
2160 				closef(fp, p);
2161 		}
2162 	}
2163 }
2164 
2165 /*
2166  * It is unsafe for set[ug]id processes to be started with file
2167  * descriptors 0..2 closed, as these descriptors are given implicit
2168  * significance in the Standard C library.  fdcheckstd() will create a
2169  * descriptor referencing /dev/null for each of stdin, stdout, and
2170  * stderr that is not already open.
2171  *
2172  * NOT MPSAFE - calls falloc, vn_open, etc
2173  */
2174 int
2175 fdcheckstd(struct proc *p)
2176 {
2177 	struct nlookupdata nd;
2178 	struct filedesc *fdp;
2179 	struct file *fp;
2180 	int retval;
2181 	int i, error, flags, devnull;
2182 
2183 	fdp = p->p_fd;
2184 	if (fdp == NULL)
2185 		return (0);
2186 	devnull = -1;
2187 	error = 0;
2188 	for (i = 0; i < 3; i++) {
2189 		if (fdp->fd_files[i].fp != NULL)
2190 			continue;
2191 		if (devnull < 0) {
2192 			if ((error = falloc(p, &fp, &devnull)) != 0)
2193 				break;
2194 
2195 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2196 						NLC_FOLLOW|NLC_LOCKVP);
2197 			flags = FREAD | FWRITE;
2198 			if (error == 0)
2199 				error = vn_open(&nd, fp, flags, 0);
2200 			if (error == 0)
2201 				fsetfd(p, fp, devnull);
2202 			else
2203 				fsetfd(p, NULL, devnull);
2204 			fdrop(fp);
2205 			nlookup_done(&nd);
2206 			if (error)
2207 				break;
2208 			KKASSERT(i == devnull);
2209 		} else {
2210 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2211 			if (error != 0)
2212 				break;
2213 		}
2214 	}
2215 	return (error);
2216 }
2217 
2218 /*
2219  * Internal form of close.
2220  * Decrement reference count on file structure.
2221  * Note: td and/or p may be NULL when closing a file
2222  * that was being passed in a message.
2223  *
2224  * MPALMOSTSAFE - acquires mplock for VOP operations
2225  */
2226 int
2227 closef(struct file *fp, struct proc *p)
2228 {
2229 	struct vnode *vp;
2230 	struct flock lf;
2231 	struct filedesc_to_leader *fdtol;
2232 
2233 	if (fp == NULL)
2234 		return (0);
2235 
2236 	/*
2237 	 * POSIX record locking dictates that any close releases ALL
2238 	 * locks owned by this process.  This is handled by setting
2239 	 * a flag in the unlock to free ONLY locks obeying POSIX
2240 	 * semantics, and not to free BSD-style file locks.
2241 	 * If the descriptor was in a message, POSIX-style locks
2242 	 * aren't passed with the descriptor.
2243 	 */
2244 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2245 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2246 	) {
2247 		get_mplock();
2248 		if ((p->p_leader->p_flag & P_ADVLOCK) != 0) {
2249 			lf.l_whence = SEEK_SET;
2250 			lf.l_start = 0;
2251 			lf.l_len = 0;
2252 			lf.l_type = F_UNLCK;
2253 			vp = (struct vnode *)fp->f_data;
2254 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2255 					   &lf, F_POSIX);
2256 		}
2257 		fdtol = p->p_fdtol;
2258 		if (fdtol != NULL) {
2259 			/*
2260 			 * Handle special case where file descriptor table
2261 			 * is shared between multiple process leaders.
2262 			 */
2263 			for (fdtol = fdtol->fdl_next;
2264 			     fdtol != p->p_fdtol;
2265 			     fdtol = fdtol->fdl_next) {
2266 				if ((fdtol->fdl_leader->p_flag &
2267 				     P_ADVLOCK) == 0)
2268 					continue;
2269 				fdtol->fdl_holdcount++;
2270 				lf.l_whence = SEEK_SET;
2271 				lf.l_start = 0;
2272 				lf.l_len = 0;
2273 				lf.l_type = F_UNLCK;
2274 				vp = (struct vnode *)fp->f_data;
2275 				(void) VOP_ADVLOCK(vp,
2276 						   (caddr_t)fdtol->fdl_leader,
2277 						   F_UNLCK, &lf, F_POSIX);
2278 				fdtol->fdl_holdcount--;
2279 				if (fdtol->fdl_holdcount == 0 &&
2280 				    fdtol->fdl_wakeup != 0) {
2281 					fdtol->fdl_wakeup = 0;
2282 					wakeup(fdtol);
2283 				}
2284 			}
2285 		}
2286 		rel_mplock();
2287 	}
2288 	return (fdrop(fp));
2289 }
2290 
2291 /*
2292  * MPSAFE
2293  *
2294  * fhold() can only be called if f_count is already at least 1 (i.e. the
2295  * caller of fhold() already has a reference to the file pointer in some
2296  * manner or other).
2297  *
2298  * f_count is not spin-locked.  Instead, atomic ops are used for
2299  * incrementing, decrementing, and handling the 1->0 transition.
2300  */
2301 void
2302 fhold(struct file *fp)
2303 {
2304 	atomic_add_int(&fp->f_count, 1);
2305 }
2306 
2307 /*
2308  * fdrop() - drop a reference to a descriptor
2309  *
2310  * MPALMOSTSAFE - acquires mplock for final close sequence
2311  */
2312 int
2313 fdrop(struct file *fp)
2314 {
2315 	struct flock lf;
2316 	struct vnode *vp;
2317 	int error;
2318 
2319 	/*
2320 	 * A combined fetch and subtract is needed to properly detect
2321 	 * 1->0 transitions, otherwise two cpus dropping from a ref
2322 	 * count of 2 might both try to run the 1->0 code.
2323 	 */
2324 	if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2325 		return (0);
2326 
2327 	get_mplock();
2328 
2329 	/*
2330 	 * The last reference has gone away, we own the fp structure free
2331 	 * and clear.
2332 	 */
2333 	if (fp->f_count < 0)
2334 		panic("fdrop: count < 0");
2335 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2336 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2337 	) {
2338 		lf.l_whence = SEEK_SET;
2339 		lf.l_start = 0;
2340 		lf.l_len = 0;
2341 		lf.l_type = F_UNLCK;
2342 		vp = (struct vnode *)fp->f_data;
2343 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2344 	}
2345 	if (fp->f_ops != &badfileops)
2346 		error = fo_close(fp);
2347 	else
2348 		error = 0;
2349 	ffree(fp);
2350 	rel_mplock();
2351 	return (error);
2352 }
2353 
2354 /*
2355  * Apply an advisory lock on a file descriptor.
2356  *
2357  * Just attempt to get a record lock of the requested type on
2358  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2359  */
2360 int
2361 sys_flock(struct flock_args *uap)
2362 {
2363 	struct proc *p = curproc;
2364 	struct file *fp;
2365 	struct vnode *vp;
2366 	struct flock lf;
2367 	int error;
2368 
2369 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2370 		return (EBADF);
2371 	if (fp->f_type != DTYPE_VNODE) {
2372 		error = EOPNOTSUPP;
2373 		goto done;
2374 	}
2375 	vp = (struct vnode *)fp->f_data;
2376 	lf.l_whence = SEEK_SET;
2377 	lf.l_start = 0;
2378 	lf.l_len = 0;
2379 	if (uap->how & LOCK_UN) {
2380 		lf.l_type = F_UNLCK;
2381 		fp->f_flag &= ~FHASLOCK;
2382 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2383 		goto done;
2384 	}
2385 	if (uap->how & LOCK_EX)
2386 		lf.l_type = F_WRLCK;
2387 	else if (uap->how & LOCK_SH)
2388 		lf.l_type = F_RDLCK;
2389 	else {
2390 		error = EBADF;
2391 		goto done;
2392 	}
2393 	fp->f_flag |= FHASLOCK;
2394 	if (uap->how & LOCK_NB)
2395 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2396 	else
2397 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2398 done:
2399 	fdrop(fp);
2400 	return (error);
2401 }
2402 
2403 /*
2404  * File Descriptor pseudo-device driver (/dev/fd/).
2405  *
2406  * Opening minor device N dup()s the file (if any) connected to file
2407  * descriptor N belonging to the calling process.  Note that this driver
2408  * consists of only the ``open()'' routine, because all subsequent
2409  * references to this file will be direct to the other driver.
2410  */
2411 /* ARGSUSED */
2412 static int
2413 fdopen(struct dev_open_args *ap)
2414 {
2415 	thread_t td = curthread;
2416 
2417 	KKASSERT(td->td_lwp != NULL);
2418 
2419 	/*
2420 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2421 	 * the file descriptor being sought for duplication. The error
2422 	 * return ensures that the vnode for this device will be released
2423 	 * by vn_open. Open will detect this special error and take the
2424 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2425 	 * will simply report the error.
2426 	 */
2427 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2428 	return (ENODEV);
2429 }
2430 
2431 /*
2432  * The caller has reserved the file descriptor dfd for us.  On success we
2433  * must fsetfd() it.  On failure the caller will clean it up.
2434  *
2435  * NOT MPSAFE - isn't getting spinlocks, possibly other things
2436  */
2437 int
2438 dupfdopen(struct proc *p, int dfd, int sfd, int mode, int error)
2439 {
2440 	struct filedesc *fdp = p->p_fd;
2441 	struct file *wfp;
2442 	struct file *xfp;
2443 	int werror;
2444 
2445 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2446 		return (EBADF);
2447 
2448 	/*
2449 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2450 	 * will dup a dummy descriptor instead of the real one.
2451 	 */
2452 	if (wfp->f_flag & FREVOKED) {
2453 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2454 		fdrop(wfp);
2455 		wfp = NULL;
2456 		werror = falloc(NULL, &wfp, NULL);
2457 		if (werror)
2458 			return (werror);
2459 	}
2460 
2461 	/*
2462 	 * There are two cases of interest here.
2463 	 *
2464 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2465 	 *
2466 	 * For ENXIO steal away the file structure from sfd and store it
2467 	 * dfd.  sfd is effectively closed by this operation.
2468 	 *
2469 	 * Any other error code is just returned.
2470 	 */
2471 	switch (error) {
2472 	case ENODEV:
2473 		/*
2474 		 * Check that the mode the file is being opened for is a
2475 		 * subset of the mode of the existing descriptor.
2476 		 */
2477 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2478 			error = EACCES;
2479 			break;
2480 		}
2481 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2482 		fsetfd(p, wfp, dfd);
2483 		error = 0;
2484 		break;
2485 	case ENXIO:
2486 		/*
2487 		 * Steal away the file pointer from dfd, and stuff it into indx.
2488 		 */
2489 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2490 		fsetfd(p, wfp, dfd);
2491 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL)
2492 			fdrop(xfp);
2493 		error = 0;
2494 		break;
2495 	default:
2496 		break;
2497 	}
2498 	fdrop(wfp);
2499 	return (error);
2500 }
2501 
2502 /*
2503  * NOT MPSAFE - I think these refer to a common file descriptor table
2504  * and we need to spinlock that to link fdtol in.
2505  */
2506 struct filedesc_to_leader *
2507 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2508 			 struct proc *leader)
2509 {
2510 	struct filedesc_to_leader *fdtol;
2511 
2512 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2513 			M_FILEDESC_TO_LEADER, M_WAITOK);
2514 	fdtol->fdl_refcount = 1;
2515 	fdtol->fdl_holdcount = 0;
2516 	fdtol->fdl_wakeup = 0;
2517 	fdtol->fdl_leader = leader;
2518 	if (old != NULL) {
2519 		fdtol->fdl_next = old->fdl_next;
2520 		fdtol->fdl_prev = old;
2521 		old->fdl_next = fdtol;
2522 		fdtol->fdl_next->fdl_prev = fdtol;
2523 	} else {
2524 		fdtol->fdl_next = fdtol;
2525 		fdtol->fdl_prev = fdtol;
2526 	}
2527 	return fdtol;
2528 }
2529 
2530 /*
2531  * Scan all file pointers in the system.  The callback is made with
2532  * the master list spinlock held exclusively.
2533  *
2534  * MPSAFE
2535  */
2536 void
2537 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2538 {
2539 	struct file *fp;
2540 	int res;
2541 
2542 	spin_lock_wr(&filehead_spin);
2543 	LIST_FOREACH(fp, &filehead, f_list) {
2544 		res = callback(fp, data);
2545 		if (res < 0)
2546 			break;
2547 	}
2548 	spin_unlock_wr(&filehead_spin);
2549 }
2550 
2551 /*
2552  * Get file structures.
2553  *
2554  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2555  */
2556 
2557 struct sysctl_kern_file_info {
2558 	int count;
2559 	int error;
2560 	struct sysctl_req *req;
2561 };
2562 
2563 static int sysctl_kern_file_callback(struct proc *p, void *data);
2564 
2565 static int
2566 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2567 {
2568 	struct sysctl_kern_file_info info;
2569 
2570 	/*
2571 	 * Note: because the number of file descriptors is calculated
2572 	 * in different ways for sizing vs returning the data,
2573 	 * there is information leakage from the first loop.  However,
2574 	 * it is of a similar order of magnitude to the leakage from
2575 	 * global system statistics such as kern.openfiles.
2576 	 *
2577 	 * When just doing a count, note that we cannot just count
2578 	 * the elements and add f_count via the filehead list because
2579 	 * threaded processes share their descriptor table and f_count might
2580 	 * still be '1' in that case.
2581 	 *
2582 	 * Since the SYSCTL op can block, we must hold the process to
2583 	 * prevent it being ripped out from under us either in the
2584 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2585 	 * process may be in varying states of disrepair.  If the process
2586 	 * is in SZOMB we may have caught it just as it is being removed
2587 	 * from the allproc list, we must skip it in that case to maintain
2588 	 * an unbroken chain through the allproc list.
2589 	 */
2590 	info.count = 0;
2591 	info.error = 0;
2592 	info.req = req;
2593 	allproc_scan(sysctl_kern_file_callback, &info);
2594 
2595 	/*
2596 	 * When just calculating the size, overestimate a bit to try to
2597 	 * prevent system activity from causing the buffer-fill call
2598 	 * to fail later on.
2599 	 */
2600 	if (req->oldptr == NULL) {
2601 		info.count = (info.count + 16) + (info.count / 10);
2602 		info.error = SYSCTL_OUT(req, NULL,
2603 					info.count * sizeof(struct kinfo_file));
2604 	}
2605 	return (info.error);
2606 }
2607 
2608 static int
2609 sysctl_kern_file_callback(struct proc *p, void *data)
2610 {
2611 	struct sysctl_kern_file_info *info = data;
2612 	struct kinfo_file kf;
2613 	struct filedesc *fdp;
2614 	struct file *fp;
2615 	uid_t uid;
2616 	int n;
2617 
2618 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2619 		return(0);
2620 	if (!PRISON_CHECK(info->req->td->td_proc->p_ucred, p->p_ucred) != 0)
2621 		return(0);
2622 
2623 	/*
2624 	 * Softref the fdp to prevent it from being destroyed
2625 	 */
2626 	spin_lock_wr(&p->p_spin);
2627 	if ((fdp = p->p_fd) == NULL) {
2628 		spin_unlock_wr(&p->p_spin);
2629 		return(0);
2630 	}
2631 	atomic_add_int(&fdp->fd_softrefs, 1);
2632 	spin_unlock_wr(&p->p_spin);
2633 
2634 	/*
2635 	 * The fdp's own spinlock prevents the contents from being
2636 	 * modified.
2637 	 */
2638 	spin_lock_rd(&fdp->fd_spin);
2639 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2640 		if ((fp = fdp->fd_files[n].fp) == NULL)
2641 			continue;
2642 		if (info->req->oldptr == NULL) {
2643 			++info->count;
2644 		} else {
2645 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2646 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2647 			spin_unlock_rd(&fdp->fd_spin);
2648 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2649 			spin_lock_rd(&fdp->fd_spin);
2650 			if (info->error)
2651 				break;
2652 		}
2653 	}
2654 	spin_unlock_rd(&fdp->fd_spin);
2655 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2656 	if (info->error)
2657 		return(-1);
2658 	return(0);
2659 }
2660 
2661 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2662     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2663 
2664 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2665     &maxfilesperproc, 0, "Maximum files allowed open per process");
2666 
2667 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2668     &maxfiles, 0, "Maximum number of files");
2669 
2670 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2671     &maxfilesrootres, 0, "Descriptors reserved for root use");
2672 
2673 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2674 	&nfiles, 0, "System-wide number of open files");
2675 
2676 static void
2677 fildesc_drvinit(void *unused)
2678 {
2679 	int fd;
2680 
2681 	for (fd = 0; fd < NUMFDESC; fd++) {
2682 		make_dev(&fildesc_ops, fd,
2683 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2684 	}
2685 
2686 	kprintf("fildesc_drvinit() building stdin, stdout, stderr: \n");
2687 
2688 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2689 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2690 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2691 }
2692 
2693 /*
2694  * MPSAFE
2695  */
2696 struct fileops badfileops = {
2697 	.fo_read = badfo_readwrite,
2698 	.fo_write = badfo_readwrite,
2699 	.fo_ioctl = badfo_ioctl,
2700 	.fo_poll = badfo_poll,
2701 	.fo_kqfilter = badfo_kqfilter,
2702 	.fo_stat = badfo_stat,
2703 	.fo_close = badfo_close,
2704 	.fo_shutdown = badfo_shutdown
2705 };
2706 
2707 /*
2708  * MPSAFE
2709  */
2710 static int
2711 badfo_readwrite(
2712 	struct file *fp,
2713 	struct uio *uio,
2714 	struct ucred *cred,
2715 	int flags
2716 ) {
2717 	return (EBADF);
2718 }
2719 
2720 /*
2721  * MPSAFE
2722  */
2723 static int
2724 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2725 	    struct ucred *cred, struct sysmsg *msgv)
2726 {
2727 	return (EBADF);
2728 }
2729 
2730 /*
2731  * MPSAFE
2732  */
2733 static int
2734 badfo_poll(struct file *fp, int events, struct ucred *cred)
2735 {
2736 	return (0);
2737 }
2738 
2739 /*
2740  * MPSAFE
2741  */
2742 static int
2743 badfo_kqfilter(struct file *fp, struct knote *kn)
2744 {
2745 	return (0);
2746 }
2747 
2748 static int
2749 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2750 {
2751 	return (EBADF);
2752 }
2753 
2754 /*
2755  * MPSAFE
2756  */
2757 static int
2758 badfo_close(struct file *fp)
2759 {
2760 	return (EBADF);
2761 }
2762 
2763 /*
2764  * MPSAFE
2765  */
2766 static int
2767 badfo_shutdown(struct file *fp, int how)
2768 {
2769 	return (EBADF);
2770 }
2771 
2772 /*
2773  * MPSAFE
2774  */
2775 int
2776 nofo_shutdown(struct file *fp, int how)
2777 {
2778 	return (EOPNOTSUPP);
2779 }
2780 
2781 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2782 					fildesc_drvinit,NULL)
2783