xref: /dragonfly/sys/kern/kern_descrip.c (revision cecb9aae)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
72  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
73  */
74 
75 #include "opt_compat.h"
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/malloc.h>
79 #include <sys/sysproto.h>
80 #include <sys/conf.h>
81 #include <sys/device.h>
82 #include <sys/file.h>
83 #include <sys/filedesc.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/vnode.h>
87 #include <sys/proc.h>
88 #include <sys/nlookup.h>
89 #include <sys/stat.h>
90 #include <sys/filio.h>
91 #include <sys/fcntl.h>
92 #include <sys/unistd.h>
93 #include <sys/resourcevar.h>
94 #include <sys/event.h>
95 #include <sys/kern_syscall.h>
96 #include <sys/kcore.h>
97 #include <sys/kinfo.h>
98 #include <sys/un.h>
99 
100 #include <vm/vm.h>
101 #include <vm/vm_extern.h>
102 
103 #include <sys/thread2.h>
104 #include <sys/file2.h>
105 #include <sys/spinlock2.h>
106 
107 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
108 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
109 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
110 static void ffree(struct file *fp);
111 
112 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
113 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
114 		     "file desc to leader structures");
115 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
116 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
117 
118 static struct krate krate_uidinfo = { .freq = 1 };
119 
120 static	 d_open_t  fdopen;
121 #define NUMFDESC 64
122 
123 #define CDEV_MAJOR 22
124 static struct dev_ops fildesc_ops = {
125 	{ "FD", 0, 0 },
126 	.d_open =	fdopen,
127 };
128 
129 /*
130  * Descriptor management.
131  */
132 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
133 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin);
134 static int nfiles;		/* actual number of open files */
135 extern int cmask;
136 
137 /*
138  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
139  *
140  * MPSAFE - must be called with fdp->fd_spin exclusively held
141  */
142 static __inline
143 void
144 fdfixup_locked(struct filedesc *fdp, int fd)
145 {
146 	if (fd < fdp->fd_freefile) {
147 	       fdp->fd_freefile = fd;
148 	}
149 	while (fdp->fd_lastfile >= 0 &&
150 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
151 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
152 	) {
153 		--fdp->fd_lastfile;
154 	}
155 }
156 
157 /*
158  * System calls on descriptors.
159  *
160  * MPSAFE
161  */
162 int
163 sys_getdtablesize(struct getdtablesize_args *uap)
164 {
165 	struct proc *p = curproc;
166 	struct plimit *limit = p->p_limit;
167 	int dtsize;
168 
169 	spin_lock(&limit->p_spin);
170 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
171 		dtsize = INT_MAX;
172 	else
173 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
174 	spin_unlock(&limit->p_spin);
175 
176 	if (dtsize > maxfilesperproc)
177 		dtsize = maxfilesperproc;
178 	if (dtsize < minfilesperproc)
179 		dtsize = minfilesperproc;
180 	if (p->p_ucred->cr_uid && dtsize > maxfilesperuser)
181 		dtsize = maxfilesperuser;
182 	uap->sysmsg_result = dtsize;
183 	return (0);
184 }
185 
186 /*
187  * Duplicate a file descriptor to a particular value.
188  *
189  * note: keep in mind that a potential race condition exists when closing
190  * descriptors from a shared descriptor table (via rfork).
191  *
192  * MPSAFE
193  */
194 int
195 sys_dup2(struct dup2_args *uap)
196 {
197 	int error;
198 	int fd = 0;
199 
200 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
201 	uap->sysmsg_fds[0] = fd;
202 
203 	return (error);
204 }
205 
206 /*
207  * Duplicate a file descriptor.
208  *
209  * MPSAFE
210  */
211 int
212 sys_dup(struct dup_args *uap)
213 {
214 	int error;
215 	int fd = 0;
216 
217 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
218 	uap->sysmsg_fds[0] = fd;
219 
220 	return (error);
221 }
222 
223 /*
224  * MPALMOSTSAFE - acquires mplock for fp operations
225  */
226 int
227 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
228 {
229 	struct thread *td = curthread;
230 	struct proc *p = td->td_proc;
231 	struct file *fp;
232 	struct vnode *vp;
233 	u_int newmin;
234 	u_int oflags;
235 	u_int nflags;
236 	int tmp, error, flg = F_POSIX;
237 
238 	KKASSERT(p);
239 
240 	/*
241 	 * Operations on file descriptors that do not require a file pointer.
242 	 */
243 	switch (cmd) {
244 	case F_GETFD:
245 		error = fgetfdflags(p->p_fd, fd, &tmp);
246 		if (error == 0)
247 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
248 		return (error);
249 
250 	case F_SETFD:
251 		if (dat->fc_cloexec & FD_CLOEXEC)
252 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
253 		else
254 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
255 		return (error);
256 	case F_DUPFD:
257 		newmin = dat->fc_fd;
258 		error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
259 		return (error);
260 	default:
261 		break;
262 	}
263 
264 	/*
265 	 * Operations on file pointers
266 	 */
267 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
268 		return (EBADF);
269 
270 	switch (cmd) {
271 	case F_GETFL:
272 		dat->fc_flags = OFLAGS(fp->f_flag);
273 		error = 0;
274 		break;
275 
276 	case F_SETFL:
277 		oflags = fp->f_flag;
278 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
279 		nflags |= oflags & ~FCNTLFLAGS;
280 
281 		error = 0;
282 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
283 			error = EINVAL;
284 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
285 			tmp = nflags & FASYNC;
286 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
287 					 cred, NULL);
288 		}
289 		if (error == 0)
290 			fp->f_flag = nflags;
291 		break;
292 
293 	case F_GETOWN:
294 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
295 				 cred, NULL);
296 		break;
297 
298 	case F_SETOWN:
299 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
300 				 cred, NULL);
301 		break;
302 
303 	case F_SETLKW:
304 		flg |= F_WAIT;
305 		/* Fall into F_SETLK */
306 
307 	case F_SETLK:
308 		if (fp->f_type != DTYPE_VNODE) {
309 			error = EBADF;
310 			break;
311 		}
312 		vp = (struct vnode *)fp->f_data;
313 
314 		/*
315 		 * copyin/lockop may block
316 		 */
317 		if (dat->fc_flock.l_whence == SEEK_CUR)
318 			dat->fc_flock.l_start += fp->f_offset;
319 
320 		switch (dat->fc_flock.l_type) {
321 		case F_RDLCK:
322 			if ((fp->f_flag & FREAD) == 0) {
323 				error = EBADF;
324 				break;
325 			}
326 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
327 				lwkt_gettoken(&p->p_leader->p_token);
328 				p->p_leader->p_flags |= P_ADVLOCK;
329 				lwkt_reltoken(&p->p_leader->p_token);
330 			}
331 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
332 			    &dat->fc_flock, flg);
333 			break;
334 		case F_WRLCK:
335 			if ((fp->f_flag & FWRITE) == 0) {
336 				error = EBADF;
337 				break;
338 			}
339 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
340 				lwkt_gettoken(&p->p_leader->p_token);
341 				p->p_leader->p_flags |= P_ADVLOCK;
342 				lwkt_reltoken(&p->p_leader->p_token);
343 			}
344 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
345 			    &dat->fc_flock, flg);
346 			break;
347 		case F_UNLCK:
348 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
349 				&dat->fc_flock, F_POSIX);
350 			break;
351 		default:
352 			error = EINVAL;
353 			break;
354 		}
355 
356 		/*
357 		 * It is possible to race a close() on the descriptor while
358 		 * we were blocked getting the lock.  If this occurs the
359 		 * close might not have caught the lock.
360 		 */
361 		if (checkfdclosed(p->p_fd, fd, fp)) {
362 			dat->fc_flock.l_whence = SEEK_SET;
363 			dat->fc_flock.l_start = 0;
364 			dat->fc_flock.l_len = 0;
365 			dat->fc_flock.l_type = F_UNLCK;
366 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
367 					   F_UNLCK, &dat->fc_flock, F_POSIX);
368 		}
369 		break;
370 
371 	case F_GETLK:
372 		if (fp->f_type != DTYPE_VNODE) {
373 			error = EBADF;
374 			break;
375 		}
376 		vp = (struct vnode *)fp->f_data;
377 		/*
378 		 * copyin/lockop may block
379 		 */
380 		if (dat->fc_flock.l_type != F_RDLCK &&
381 		    dat->fc_flock.l_type != F_WRLCK &&
382 		    dat->fc_flock.l_type != F_UNLCK) {
383 			error = EINVAL;
384 			break;
385 		}
386 		if (dat->fc_flock.l_whence == SEEK_CUR)
387 			dat->fc_flock.l_start += fp->f_offset;
388 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
389 			    &dat->fc_flock, F_POSIX);
390 		break;
391 	default:
392 		error = EINVAL;
393 		break;
394 	}
395 
396 	fdrop(fp);
397 	return (error);
398 }
399 
400 /*
401  * The file control system call.
402  *
403  * MPSAFE
404  */
405 int
406 sys_fcntl(struct fcntl_args *uap)
407 {
408 	union fcntl_dat dat;
409 	int error;
410 
411 	switch (uap->cmd) {
412 	case F_DUPFD:
413 		dat.fc_fd = uap->arg;
414 		break;
415 	case F_SETFD:
416 		dat.fc_cloexec = uap->arg;
417 		break;
418 	case F_SETFL:
419 		dat.fc_flags = uap->arg;
420 		break;
421 	case F_SETOWN:
422 		dat.fc_owner = uap->arg;
423 		break;
424 	case F_SETLKW:
425 	case F_SETLK:
426 	case F_GETLK:
427 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
428 			       sizeof(struct flock));
429 		if (error)
430 			return (error);
431 		break;
432 	}
433 
434 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
435 
436 	if (error == 0) {
437 		switch (uap->cmd) {
438 		case F_DUPFD:
439 			uap->sysmsg_result = dat.fc_fd;
440 			break;
441 		case F_GETFD:
442 			uap->sysmsg_result = dat.fc_cloexec;
443 			break;
444 		case F_GETFL:
445 			uap->sysmsg_result = dat.fc_flags;
446 			break;
447 		case F_GETOWN:
448 			uap->sysmsg_result = dat.fc_owner;
449 		case F_GETLK:
450 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
451 			    sizeof(struct flock));
452 			break;
453 		}
454 	}
455 
456 	return (error);
457 }
458 
459 /*
460  * Common code for dup, dup2, and fcntl(F_DUPFD).
461  *
462  * The type flag can be either DUP_FIXED or DUP_VARIABLE.  DUP_FIXED tells
463  * kern_dup() to destructively dup over an existing file descriptor if new
464  * is already open.  DUP_VARIABLE tells kern_dup() to find the lowest
465  * unused file descriptor that is greater than or equal to new.
466  *
467  * MPSAFE
468  */
469 int
470 kern_dup(enum dup_type type, int old, int new, int *res)
471 {
472 	struct thread *td = curthread;
473 	struct proc *p = td->td_proc;
474 	struct filedesc *fdp = p->p_fd;
475 	struct file *fp;
476 	struct file *delfp;
477 	int oldflags;
478 	int holdleaders;
479 	int dtsize;
480 	int error, newfd;
481 
482 	/*
483 	 * Verify that we have a valid descriptor to dup from and
484 	 * possibly to dup to.
485 	 *
486 	 * NOTE: maxfilesperuser is not applicable to dup()
487 	 */
488 retry:
489 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
490 		dtsize = INT_MAX;
491 	else
492 		dtsize = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
493 	if (dtsize > maxfilesperproc)
494 		dtsize = maxfilesperproc;
495 	if (dtsize < minfilesperproc)
496 		dtsize = minfilesperproc;
497 
498 	if (new < 0 || new > dtsize)
499 		return (EINVAL);
500 
501 	spin_lock(&fdp->fd_spin);
502 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
503 		spin_unlock(&fdp->fd_spin);
504 		return (EBADF);
505 	}
506 	if (type == DUP_FIXED && old == new) {
507 		*res = new;
508 		spin_unlock(&fdp->fd_spin);
509 		return (0);
510 	}
511 	fp = fdp->fd_files[old].fp;
512 	oldflags = fdp->fd_files[old].fileflags;
513 	fhold(fp);	/* MPSAFE - can be called with a spinlock held */
514 
515 	/*
516 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
517 	 * if the requested descriptor is beyond the current table size.
518 	 *
519 	 * This can block.  Retry if the source descriptor no longer matches
520 	 * or if our expectation in the expansion case races.
521 	 *
522 	 * If we are not expanding or allocating a new decriptor, then reset
523 	 * the target descriptor to a reserved state so we have a uniform
524 	 * setup for the next code block.
525 	 */
526 	if (type == DUP_VARIABLE || new >= fdp->fd_nfiles) {
527 		spin_unlock(&fdp->fd_spin);
528 		error = fdalloc(p, new, &newfd);
529 		spin_lock(&fdp->fd_spin);
530 		if (error) {
531 			spin_unlock(&fdp->fd_spin);
532 			fdrop(fp);
533 			return (error);
534 		}
535 		/*
536 		 * Check for ripout
537 		 */
538 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
539 			fsetfd_locked(fdp, NULL, newfd);
540 			spin_unlock(&fdp->fd_spin);
541 			fdrop(fp);
542 			goto retry;
543 		}
544 		/*
545 		 * Check for expansion race
546 		 */
547 		if (type != DUP_VARIABLE && new != newfd) {
548 			fsetfd_locked(fdp, NULL, newfd);
549 			spin_unlock(&fdp->fd_spin);
550 			fdrop(fp);
551 			goto retry;
552 		}
553 		/*
554 		 * Check for ripout, newfd reused old (this case probably
555 		 * can't occur).
556 		 */
557 		if (old == newfd) {
558 			fsetfd_locked(fdp, NULL, newfd);
559 			spin_unlock(&fdp->fd_spin);
560 			fdrop(fp);
561 			goto retry;
562 		}
563 		new = newfd;
564 		delfp = NULL;
565 	} else {
566 		if (fdp->fd_files[new].reserved) {
567 			spin_unlock(&fdp->fd_spin);
568 			fdrop(fp);
569 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
570 			tsleep(fdp, 0, "fdres", hz);
571 			goto retry;
572 		}
573 
574 		/*
575 		 * If the target descriptor was never allocated we have
576 		 * to allocate it.  If it was we have to clean out the
577 		 * old descriptor.  delfp inherits the ref from the
578 		 * descriptor table.
579 		 */
580 		delfp = fdp->fd_files[new].fp;
581 		fdp->fd_files[new].fp = NULL;
582 		fdp->fd_files[new].reserved = 1;
583 		if (delfp == NULL) {
584 			fdreserve_locked(fdp, new, 1);
585 			if (new > fdp->fd_lastfile)
586 				fdp->fd_lastfile = new;
587 		}
588 
589 	}
590 
591 	/*
592 	 * NOTE: still holding an exclusive spinlock
593 	 */
594 
595 	/*
596 	 * If a descriptor is being overwritten we may hve to tell
597 	 * fdfree() to sleep to ensure that all relevant process
598 	 * leaders can be traversed in closef().
599 	 */
600 	if (delfp != NULL && p->p_fdtol != NULL) {
601 		fdp->fd_holdleaderscount++;
602 		holdleaders = 1;
603 	} else {
604 		holdleaders = 0;
605 	}
606 	KASSERT(delfp == NULL || type == DUP_FIXED,
607 		("dup() picked an open file"));
608 
609 	/*
610 	 * Duplicate the source descriptor, update lastfile.  If the new
611 	 * descriptor was not allocated and we aren't replacing an existing
612 	 * descriptor we have to mark the descriptor as being in use.
613 	 *
614 	 * The fd_files[] array inherits fp's hold reference.
615 	 */
616 	fsetfd_locked(fdp, fp, new);
617 	fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
618 	spin_unlock(&fdp->fd_spin);
619 	fdrop(fp);
620 	*res = new;
621 
622 	/*
623 	 * If we dup'd over a valid file, we now own the reference to it
624 	 * and must dispose of it using closef() semantics (as if a
625 	 * close() were performed on it).
626 	 */
627 	if (delfp) {
628 		if (SLIST_FIRST(&delfp->f_klist))
629 			knote_fdclose(delfp, fdp, new);
630 		closef(delfp, p);
631 		if (holdleaders) {
632 			spin_lock(&fdp->fd_spin);
633 			fdp->fd_holdleaderscount--;
634 			if (fdp->fd_holdleaderscount == 0 &&
635 			    fdp->fd_holdleaderswakeup != 0) {
636 				fdp->fd_holdleaderswakeup = 0;
637 				spin_unlock(&fdp->fd_spin);
638 				wakeup(&fdp->fd_holdleaderscount);
639 			} else {
640 				spin_unlock(&fdp->fd_spin);
641 			}
642 		}
643 	}
644 	return (0);
645 }
646 
647 /*
648  * If sigio is on the list associated with a process or process group,
649  * disable signalling from the device, remove sigio from the list and
650  * free sigio.
651  *
652  * MPSAFE
653  */
654 void
655 funsetown(struct sigio **sigiop)
656 {
657 	struct pgrp *pgrp;
658 	struct proc *p;
659 	struct sigio *sigio;
660 
661 	if ((sigio = *sigiop) != NULL) {
662 		lwkt_gettoken(&proc_token);	/* protect sigio */
663 		KKASSERT(sigiop == sigio->sio_myref);
664 		sigio = *sigiop;
665 		*sigiop = NULL;
666 		lwkt_reltoken(&proc_token);
667 	}
668 	if (sigio == NULL)
669 		return;
670 
671 	if (sigio->sio_pgid < 0) {
672 		pgrp = sigio->sio_pgrp;
673 		sigio->sio_pgrp = NULL;
674 		lwkt_gettoken(&pgrp->pg_token);
675 		SLIST_REMOVE(&pgrp->pg_sigiolst, sigio, sigio, sio_pgsigio);
676 		lwkt_reltoken(&pgrp->pg_token);
677 		pgrel(pgrp);
678 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
679 		p = sigio->sio_proc;
680 		sigio->sio_proc = NULL;
681 		PHOLD(p);
682 		lwkt_gettoken(&p->p_token);
683 		SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
684 		lwkt_reltoken(&p->p_token);
685 		PRELE(p);
686 	}
687 	crfree(sigio->sio_ucred);
688 	sigio->sio_ucred = NULL;
689 	kfree(sigio, M_SIGIO);
690 }
691 
692 /*
693  * Free a list of sigio structures.  Caller is responsible for ensuring
694  * that the list is MPSAFE.
695  *
696  * MPSAFE
697  */
698 void
699 funsetownlst(struct sigiolst *sigiolst)
700 {
701 	struct sigio *sigio;
702 
703 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
704 		funsetown(sigio->sio_myref);
705 }
706 
707 /*
708  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
709  *
710  * After permission checking, add a sigio structure to the sigio list for
711  * the process or process group.
712  *
713  * MPSAFE
714  */
715 int
716 fsetown(pid_t pgid, struct sigio **sigiop)
717 {
718 	struct proc *proc = NULL;
719 	struct pgrp *pgrp = NULL;
720 	struct sigio *sigio;
721 	int error;
722 
723 	if (pgid == 0) {
724 		funsetown(sigiop);
725 		return (0);
726 	}
727 
728 	if (pgid > 0) {
729 		proc = pfind(pgid);
730 		if (proc == NULL) {
731 			error = ESRCH;
732 			goto done;
733 		}
734 
735 		/*
736 		 * Policy - Don't allow a process to FSETOWN a process
737 		 * in another session.
738 		 *
739 		 * Remove this test to allow maximum flexibility or
740 		 * restrict FSETOWN to the current process or process
741 		 * group for maximum safety.
742 		 */
743 		if (proc->p_session != curproc->p_session) {
744 			error = EPERM;
745 			goto done;
746 		}
747 	} else /* if (pgid < 0) */ {
748 		pgrp = pgfind(-pgid);
749 		if (pgrp == NULL) {
750 			error = ESRCH;
751 			goto done;
752 		}
753 
754 		/*
755 		 * Policy - Don't allow a process to FSETOWN a process
756 		 * in another session.
757 		 *
758 		 * Remove this test to allow maximum flexibility or
759 		 * restrict FSETOWN to the current process or process
760 		 * group for maximum safety.
761 		 */
762 		if (pgrp->pg_session != curproc->p_session) {
763 			error = EPERM;
764 			goto done;
765 		}
766 	}
767 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK | M_ZERO);
768 	if (pgid > 0) {
769 		KKASSERT(pgrp == NULL);
770 		lwkt_gettoken(&proc->p_token);
771 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
772 		sigio->sio_proc = proc;
773 		lwkt_reltoken(&proc->p_token);
774 	} else {
775 		KKASSERT(proc == NULL);
776 		lwkt_gettoken(&pgrp->pg_token);
777 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
778 		sigio->sio_pgrp = pgrp;
779 		lwkt_reltoken(&pgrp->pg_token);
780 		pgrp = NULL;
781 	}
782 	sigio->sio_pgid = pgid;
783 	sigio->sio_ucred = crhold(curthread->td_ucred);
784 	/* It would be convenient if p_ruid was in ucred. */
785 	sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
786 	sigio->sio_myref = sigiop;
787 
788 	lwkt_gettoken(&proc_token);
789 	while (*sigiop)
790 		funsetown(sigiop);
791 	*sigiop = sigio;
792 	lwkt_reltoken(&proc_token);
793 	error = 0;
794 done:
795 	if (pgrp)
796 		pgrel(pgrp);
797 	if (proc)
798 		PRELE(proc);
799 	return (error);
800 }
801 
802 /*
803  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
804  *
805  * MPSAFE
806  */
807 pid_t
808 fgetown(struct sigio **sigiop)
809 {
810 	struct sigio *sigio;
811 	pid_t own;
812 
813 	lwkt_gettoken(&proc_token);
814 	sigio = *sigiop;
815 	own = (sigio != NULL ? sigio->sio_pgid : 0);
816 	lwkt_reltoken(&proc_token);
817 
818 	return (own);
819 }
820 
821 /*
822  * Close many file descriptors.
823  *
824  * MPSAFE
825  */
826 int
827 sys_closefrom(struct closefrom_args *uap)
828 {
829 	return(kern_closefrom(uap->fd));
830 }
831 
832 /*
833  * Close all file descriptors greater then or equal to fd
834  *
835  * MPSAFE
836  */
837 int
838 kern_closefrom(int fd)
839 {
840 	struct thread *td = curthread;
841 	struct proc *p = td->td_proc;
842 	struct filedesc *fdp;
843 
844 	KKASSERT(p);
845 	fdp = p->p_fd;
846 
847 	if (fd < 0)
848 		return (EINVAL);
849 
850 	/*
851 	 * NOTE: This function will skip unassociated descriptors and
852 	 * reserved descriptors that have not yet been assigned.
853 	 * fd_lastfile can change as a side effect of kern_close().
854 	 */
855 	spin_lock(&fdp->fd_spin);
856 	while (fd <= fdp->fd_lastfile) {
857 		if (fdp->fd_files[fd].fp != NULL) {
858 			spin_unlock(&fdp->fd_spin);
859 			/* ok if this races another close */
860 			if (kern_close(fd) == EINTR)
861 				return (EINTR);
862 			spin_lock(&fdp->fd_spin);
863 		}
864 		++fd;
865 	}
866 	spin_unlock(&fdp->fd_spin);
867 	return (0);
868 }
869 
870 /*
871  * Close a file descriptor.
872  *
873  * MPSAFE
874  */
875 int
876 sys_close(struct close_args *uap)
877 {
878 	return(kern_close(uap->fd));
879 }
880 
881 /*
882  * MPSAFE
883  */
884 int
885 kern_close(int fd)
886 {
887 	struct thread *td = curthread;
888 	struct proc *p = td->td_proc;
889 	struct filedesc *fdp;
890 	struct file *fp;
891 	int error;
892 	int holdleaders;
893 
894 	KKASSERT(p);
895 	fdp = p->p_fd;
896 
897 	spin_lock(&fdp->fd_spin);
898 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
899 		spin_unlock(&fdp->fd_spin);
900 		return (EBADF);
901 	}
902 	holdleaders = 0;
903 	if (p->p_fdtol != NULL) {
904 		/*
905 		 * Ask fdfree() to sleep to ensure that all relevant
906 		 * process leaders can be traversed in closef().
907 		 */
908 		fdp->fd_holdleaderscount++;
909 		holdleaders = 1;
910 	}
911 
912 	/*
913 	 * we now hold the fp reference that used to be owned by the descriptor
914 	 * array.
915 	 */
916 	spin_unlock(&fdp->fd_spin);
917 	if (SLIST_FIRST(&fp->f_klist))
918 		knote_fdclose(fp, fdp, fd);
919 	error = closef(fp, p);
920 	if (holdleaders) {
921 		spin_lock(&fdp->fd_spin);
922 		fdp->fd_holdleaderscount--;
923 		if (fdp->fd_holdleaderscount == 0 &&
924 		    fdp->fd_holdleaderswakeup != 0) {
925 			fdp->fd_holdleaderswakeup = 0;
926 			spin_unlock(&fdp->fd_spin);
927 			wakeup(&fdp->fd_holdleaderscount);
928 		} else {
929 			spin_unlock(&fdp->fd_spin);
930 		}
931 	}
932 	return (error);
933 }
934 
935 /*
936  * shutdown_args(int fd, int how)
937  */
938 int
939 kern_shutdown(int fd, int how)
940 {
941 	struct thread *td = curthread;
942 	struct proc *p = td->td_proc;
943 	struct file *fp;
944 	int error;
945 
946 	KKASSERT(p);
947 
948 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
949 		return (EBADF);
950 	error = fo_shutdown(fp, how);
951 	fdrop(fp);
952 
953 	return (error);
954 }
955 
956 /*
957  * MPALMOSTSAFE
958  */
959 int
960 sys_shutdown(struct shutdown_args *uap)
961 {
962 	int error;
963 
964 	error = kern_shutdown(uap->s, uap->how);
965 
966 	return (error);
967 }
968 
969 /*
970  * MPSAFE
971  */
972 int
973 kern_fstat(int fd, struct stat *ub)
974 {
975 	struct thread *td = curthread;
976 	struct proc *p = td->td_proc;
977 	struct file *fp;
978 	int error;
979 
980 	KKASSERT(p);
981 
982 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
983 		return (EBADF);
984 	error = fo_stat(fp, ub, td->td_ucred);
985 	fdrop(fp);
986 
987 	return (error);
988 }
989 
990 /*
991  * Return status information about a file descriptor.
992  *
993  * MPSAFE
994  */
995 int
996 sys_fstat(struct fstat_args *uap)
997 {
998 	struct stat st;
999 	int error;
1000 
1001 	error = kern_fstat(uap->fd, &st);
1002 
1003 	if (error == 0)
1004 		error = copyout(&st, uap->sb, sizeof(st));
1005 	return (error);
1006 }
1007 
1008 /*
1009  * Return pathconf information about a file descriptor.
1010  *
1011  * MPALMOSTSAFE
1012  */
1013 int
1014 sys_fpathconf(struct fpathconf_args *uap)
1015 {
1016 	struct thread *td = curthread;
1017 	struct proc *p = td->td_proc;
1018 	struct file *fp;
1019 	struct vnode *vp;
1020 	int error = 0;
1021 
1022 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
1023 		return (EBADF);
1024 
1025 	switch (fp->f_type) {
1026 	case DTYPE_PIPE:
1027 	case DTYPE_SOCKET:
1028 		if (uap->name != _PC_PIPE_BUF) {
1029 			error = EINVAL;
1030 		} else {
1031 			uap->sysmsg_result = PIPE_BUF;
1032 			error = 0;
1033 		}
1034 		break;
1035 	case DTYPE_FIFO:
1036 	case DTYPE_VNODE:
1037 		vp = (struct vnode *)fp->f_data;
1038 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
1039 		break;
1040 	default:
1041 		error = EOPNOTSUPP;
1042 		break;
1043 	}
1044 	fdrop(fp);
1045 	return(error);
1046 }
1047 
1048 static int fdexpand;
1049 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0,
1050     "Number of times a file table has been expanded");
1051 
1052 /*
1053  * Grow the file table so it can hold through descriptor (want).
1054  *
1055  * The fdp's spinlock must be held exclusively on entry and may be held
1056  * exclusively on return.  The spinlock may be cycled by the routine.
1057  *
1058  * MPSAFE
1059  */
1060 static void
1061 fdgrow_locked(struct filedesc *fdp, int want)
1062 {
1063 	struct fdnode *newfiles;
1064 	struct fdnode *oldfiles;
1065 	int nf, extra;
1066 
1067 	nf = fdp->fd_nfiles;
1068 	do {
1069 		/* nf has to be of the form 2^n - 1 */
1070 		nf = 2 * nf + 1;
1071 	} while (nf <= want);
1072 
1073 	spin_unlock(&fdp->fd_spin);
1074 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
1075 	spin_lock(&fdp->fd_spin);
1076 
1077 	/*
1078 	 * We could have raced another extend while we were not holding
1079 	 * the spinlock.
1080 	 */
1081 	if (fdp->fd_nfiles >= nf) {
1082 		spin_unlock(&fdp->fd_spin);
1083 		kfree(newfiles, M_FILEDESC);
1084 		spin_lock(&fdp->fd_spin);
1085 		return;
1086 	}
1087 	/*
1088 	 * Copy the existing ofile and ofileflags arrays
1089 	 * and zero the new portion of each array.
1090 	 */
1091 	extra = nf - fdp->fd_nfiles;
1092 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1093 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1094 
1095 	oldfiles = fdp->fd_files;
1096 	fdp->fd_files = newfiles;
1097 	fdp->fd_nfiles = nf;
1098 
1099 	if (oldfiles != fdp->fd_builtin_files) {
1100 		spin_unlock(&fdp->fd_spin);
1101 		kfree(oldfiles, M_FILEDESC);
1102 		spin_lock(&fdp->fd_spin);
1103 	}
1104 	fdexpand++;
1105 }
1106 
1107 /*
1108  * Number of nodes in right subtree, including the root.
1109  */
1110 static __inline int
1111 right_subtree_size(int n)
1112 {
1113 	return (n ^ (n | (n + 1)));
1114 }
1115 
1116 /*
1117  * Bigger ancestor.
1118  */
1119 static __inline int
1120 right_ancestor(int n)
1121 {
1122 	return (n | (n + 1));
1123 }
1124 
1125 /*
1126  * Smaller ancestor.
1127  */
1128 static __inline int
1129 left_ancestor(int n)
1130 {
1131 	return ((n & (n + 1)) - 1);
1132 }
1133 
1134 /*
1135  * Traverse the in-place binary tree buttom-up adjusting the allocation
1136  * count so scans can determine where free descriptors are located.
1137  *
1138  * MPSAFE - caller must be holding an exclusive spinlock on fdp
1139  */
1140 static
1141 void
1142 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1143 {
1144 	while (fd >= 0) {
1145 		fdp->fd_files[fd].allocated += incr;
1146 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1147 		fd = left_ancestor(fd);
1148 	}
1149 }
1150 
1151 /*
1152  * Reserve a file descriptor for the process.  If no error occurs, the
1153  * caller MUST at some point call fsetfd() or assign a file pointer
1154  * or dispose of the reservation.
1155  *
1156  * MPSAFE
1157  */
1158 int
1159 fdalloc(struct proc *p, int want, int *result)
1160 {
1161 	struct filedesc *fdp = p->p_fd;
1162 	struct uidinfo *uip;
1163 	int fd, rsize, rsum, node, lim;
1164 
1165 	/*
1166 	 * Check dtable size limit
1167 	 */
1168 	spin_lock(&p->p_limit->p_spin);
1169 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1170 		lim = INT_MAX;
1171 	else
1172 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1173 	spin_unlock(&p->p_limit->p_spin);
1174 
1175 	if (lim > maxfilesperproc)
1176 		lim = maxfilesperproc;
1177 	if (lim < minfilesperproc)
1178 		lim = minfilesperproc;
1179 	if (want >= lim)
1180 		return (EMFILE);
1181 
1182 	/*
1183 	 * Check that the user has not run out of descriptors (non-root only).
1184 	 * As a safety measure the dtable is allowed to have at least
1185 	 * minfilesperproc open fds regardless of the maxfilesperuser limit.
1186 	 */
1187 	if (p->p_ucred->cr_uid && fdp->fd_nfiles >= minfilesperproc) {
1188 		uip = p->p_ucred->cr_uidinfo;
1189 		if (uip->ui_openfiles > maxfilesperuser) {
1190 			krateprintf(&krate_uidinfo,
1191 				    "Warning: user %d pid %d (%s) ran out of "
1192 				    "file descriptors (%d/%d)\n",
1193 				    p->p_ucred->cr_uid, (int)p->p_pid,
1194 				    p->p_comm,
1195 				    uip->ui_openfiles, maxfilesperuser);
1196 			return(ENFILE);
1197 		}
1198 	}
1199 
1200 	/*
1201 	 * Grow the dtable if necessary
1202 	 */
1203 	spin_lock(&fdp->fd_spin);
1204 	if (want >= fdp->fd_nfiles)
1205 		fdgrow_locked(fdp, want);
1206 
1207 	/*
1208 	 * Search for a free descriptor starting at the higher
1209 	 * of want or fd_freefile.  If that fails, consider
1210 	 * expanding the ofile array.
1211 	 *
1212 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1213 	 * count.  If we happen to see a value of 0 then we can shortcut
1214 	 * our search.  Otherwise we run through through the tree going
1215 	 * down branches we know have free descriptor(s) until we hit a
1216 	 * leaf node.  The leaf node will be free but will not necessarily
1217 	 * have an allocated field of 0.
1218 	 */
1219 retry:
1220 	/* move up the tree looking for a subtree with a free node */
1221 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1222 	     fd = right_ancestor(fd)) {
1223 		if (fdp->fd_files[fd].allocated == 0)
1224 			goto found;
1225 
1226 		rsize = right_subtree_size(fd);
1227 		if (fdp->fd_files[fd].allocated == rsize)
1228 			continue;	/* right subtree full */
1229 
1230 		/*
1231 		 * Free fd is in the right subtree of the tree rooted at fd.
1232 		 * Call that subtree R.  Look for the smallest (leftmost)
1233 		 * subtree of R with an unallocated fd: continue moving
1234 		 * down the left branch until encountering a full left
1235 		 * subtree, then move to the right.
1236 		 */
1237 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1238 			node = fd + rsize;
1239 			rsum += fdp->fd_files[node].allocated;
1240 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1241 				fd = node;	/* move to the right */
1242 				if (fdp->fd_files[node].allocated == 0)
1243 					goto found;
1244 				rsum = 0;
1245 			}
1246 		}
1247 		goto found;
1248 	}
1249 
1250 	/*
1251 	 * No space in current array.  Expand?
1252 	 */
1253 	if (fdp->fd_nfiles >= lim) {
1254 		spin_unlock(&fdp->fd_spin);
1255 		return (EMFILE);
1256 	}
1257 	fdgrow_locked(fdp, want);
1258 	goto retry;
1259 
1260 found:
1261 	KKASSERT(fd < fdp->fd_nfiles);
1262 	if (fd > fdp->fd_lastfile)
1263 		fdp->fd_lastfile = fd;
1264 	if (want <= fdp->fd_freefile)
1265 		fdp->fd_freefile = fd;
1266 	*result = fd;
1267 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1268 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1269 	fdp->fd_files[fd].fileflags = 0;
1270 	fdp->fd_files[fd].reserved = 1;
1271 	fdreserve_locked(fdp, fd, 1);
1272 	spin_unlock(&fdp->fd_spin);
1273 	return (0);
1274 }
1275 
1276 /*
1277  * Check to see whether n user file descriptors
1278  * are available to the process p.
1279  *
1280  * MPSAFE
1281  */
1282 int
1283 fdavail(struct proc *p, int n)
1284 {
1285 	struct filedesc *fdp = p->p_fd;
1286 	struct fdnode *fdnode;
1287 	int i, lim, last;
1288 
1289 	spin_lock(&p->p_limit->p_spin);
1290 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1291 		lim = INT_MAX;
1292 	else
1293 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1294 	spin_unlock(&p->p_limit->p_spin);
1295 
1296 	if (lim > maxfilesperproc)
1297 		lim = maxfilesperproc;
1298 	if (lim < minfilesperproc)
1299 		lim = minfilesperproc;
1300 
1301 	spin_lock(&fdp->fd_spin);
1302 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1303 		spin_unlock(&fdp->fd_spin);
1304 		return (1);
1305 	}
1306 	last = min(fdp->fd_nfiles, lim);
1307 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1308 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1309 		if (fdnode->fp == NULL && --n <= 0) {
1310 			spin_unlock(&fdp->fd_spin);
1311 			return (1);
1312 		}
1313 	}
1314 	spin_unlock(&fdp->fd_spin);
1315 	return (0);
1316 }
1317 
1318 /*
1319  * Revoke open descriptors referencing (f_data, f_type)
1320  *
1321  * Any revoke executed within a prison is only able to
1322  * revoke descriptors for processes within that prison.
1323  *
1324  * Returns 0 on success or an error code.
1325  */
1326 struct fdrevoke_info {
1327 	void *data;
1328 	short type;
1329 	short unused;
1330 	int count;
1331 	int intransit;
1332 	struct ucred *cred;
1333 	struct file *nfp;
1334 };
1335 
1336 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1337 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1338 
1339 int
1340 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1341 {
1342 	struct fdrevoke_info info;
1343 	int error;
1344 
1345 	bzero(&info, sizeof(info));
1346 	info.data = f_data;
1347 	info.type = f_type;
1348 	info.cred = cred;
1349 	error = falloc(NULL, &info.nfp, NULL);
1350 	if (error)
1351 		return (error);
1352 
1353 	/*
1354 	 * Scan the file pointer table once.  dups do not dup file pointers,
1355 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1356 	 * being revoked.
1357 	 */
1358 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1359 
1360 	/*
1361 	 * If any fps were marked track down the related descriptors
1362 	 * and close them.  Any dup()s at this point will notice
1363 	 * the FREVOKED already set in the fp and do the right thing.
1364 	 *
1365 	 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1366 	 * socket) bumped the intransit counter and will require a
1367 	 * scan.  Races against fps leaving the socket are closed by
1368 	 * the socket code checking for FREVOKED.
1369 	 */
1370 	if (info.count)
1371 		allproc_scan(fdrevoke_proc_callback, &info);
1372 	if (info.intransit)
1373 		unp_revoke_gc(info.nfp);
1374 	fdrop(info.nfp);
1375 	return(0);
1376 }
1377 
1378 /*
1379  * Locate matching file pointers directly.
1380  *
1381  * WARNING: allfiles_scan_exclusive() holds a spinlock through these calls!
1382  */
1383 static int
1384 fdrevoke_check_callback(struct file *fp, void *vinfo)
1385 {
1386 	struct fdrevoke_info *info = vinfo;
1387 
1388 	/*
1389 	 * File pointers already flagged for revokation are skipped.
1390 	 */
1391 	if (fp->f_flag & FREVOKED)
1392 		return(0);
1393 
1394 	/*
1395 	 * If revoking from a prison file pointers created outside of
1396 	 * that prison, or file pointers without creds, cannot be revoked.
1397 	 */
1398 	if (info->cred->cr_prison &&
1399 	    (fp->f_cred == NULL ||
1400 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1401 		return(0);
1402 	}
1403 
1404 	/*
1405 	 * If the file pointer matches then mark it for revocation.  The
1406 	 * flag is currently only used by unp_revoke_gc().
1407 	 *
1408 	 * info->count is a heuristic and can race in a SMP environment.
1409 	 */
1410 	if (info->data == fp->f_data && info->type == fp->f_type) {
1411 		atomic_set_int(&fp->f_flag, FREVOKED);
1412 		info->count += fp->f_count;
1413 		if (fp->f_msgcount)
1414 			++info->intransit;
1415 	}
1416 	return(0);
1417 }
1418 
1419 /*
1420  * Locate matching file pointers via process descriptor tables.
1421  */
1422 static int
1423 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1424 {
1425 	struct fdrevoke_info *info = vinfo;
1426 	struct filedesc *fdp;
1427 	struct file *fp;
1428 	int n;
1429 
1430 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1431 		return(0);
1432 	if (info->cred->cr_prison &&
1433 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1434 		return(0);
1435 	}
1436 
1437 	/*
1438 	 * If the controlling terminal of the process matches the
1439 	 * vnode being revoked we clear the controlling terminal.
1440 	 *
1441 	 * The normal spec_close() may not catch this because it
1442 	 * uses curproc instead of p.
1443 	 */
1444 	if (p->p_session && info->type == DTYPE_VNODE &&
1445 	    info->data == p->p_session->s_ttyvp) {
1446 		p->p_session->s_ttyvp = NULL;
1447 		vrele(info->data);
1448 	}
1449 
1450 	/*
1451 	 * Softref the fdp to prevent it from being destroyed
1452 	 */
1453 	spin_lock(&p->p_spin);
1454 	if ((fdp = p->p_fd) == NULL) {
1455 		spin_unlock(&p->p_spin);
1456 		return(0);
1457 	}
1458 	atomic_add_int(&fdp->fd_softrefs, 1);
1459 	spin_unlock(&p->p_spin);
1460 
1461 	/*
1462 	 * Locate and close any matching file descriptors.
1463 	 */
1464 	spin_lock(&fdp->fd_spin);
1465 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1466 		if ((fp = fdp->fd_files[n].fp) == NULL)
1467 			continue;
1468 		if (fp->f_flag & FREVOKED) {
1469 			fhold(info->nfp);
1470 			fdp->fd_files[n].fp = info->nfp;
1471 			spin_unlock(&fdp->fd_spin);
1472 			knote_fdclose(fp, fdp, n);	/* XXX */
1473 			closef(fp, p);
1474 			spin_lock(&fdp->fd_spin);
1475 			--info->count;
1476 		}
1477 	}
1478 	spin_unlock(&fdp->fd_spin);
1479 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1480 	return(0);
1481 }
1482 
1483 /*
1484  * falloc:
1485  *	Create a new open file structure and reserve a file decriptor
1486  *	for the process that refers to it.
1487  *
1488  *	Root creds are checked using lp, or assumed if lp is NULL.  If
1489  *	resultfd is non-NULL then lp must also be non-NULL.  No file
1490  *	descriptor is reserved (and no process context is needed) if
1491  *	resultfd is NULL.
1492  *
1493  *	A file pointer with a refcount of 1 is returned.  Note that the
1494  *	file pointer is NOT associated with the descriptor.  If falloc
1495  *	returns success, fsetfd() MUST be called to either associate the
1496  *	file pointer or clear the reservation.
1497  *
1498  * MPSAFE
1499  */
1500 int
1501 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
1502 {
1503 	static struct timeval lastfail;
1504 	static int curfail;
1505 	struct file *fp;
1506 	struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
1507 	int error;
1508 
1509 	fp = NULL;
1510 
1511 	/*
1512 	 * Handle filetable full issues and root overfill.
1513 	 */
1514 	if (nfiles >= maxfiles - maxfilesrootres &&
1515 	    (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
1516 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1517 			kprintf("kern.maxfiles limit exceeded by uid %d, "
1518 				"please see tuning(7).\n",
1519 				cred->cr_ruid);
1520 		}
1521 		error = ENFILE;
1522 		goto done;
1523 	}
1524 
1525 	/*
1526 	 * Allocate a new file descriptor.
1527 	 */
1528 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1529 	spin_init(&fp->f_spin);
1530 	SLIST_INIT(&fp->f_klist);
1531 	fp->f_count = 1;
1532 	fp->f_ops = &badfileops;
1533 	fp->f_seqcount = 1;
1534 	fsetcred(fp, cred);
1535 	spin_lock(&filehead_spin);
1536 	nfiles++;
1537 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1538 	spin_unlock(&filehead_spin);
1539 	if (resultfd) {
1540 		if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
1541 			fdrop(fp);
1542 			fp = NULL;
1543 		}
1544 	} else {
1545 		error = 0;
1546 	}
1547 done:
1548 	*resultfp = fp;
1549 	return (error);
1550 }
1551 
1552 /*
1553  * Check for races against a file descriptor by determining that the
1554  * file pointer is still associated with the specified file descriptor,
1555  * and a close is not currently in progress.
1556  *
1557  * MPSAFE
1558  */
1559 int
1560 checkfdclosed(struct filedesc *fdp, int fd, struct file *fp)
1561 {
1562 	int error;
1563 
1564 	spin_lock_shared(&fdp->fd_spin);
1565 	if ((unsigned)fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1566 		error = EBADF;
1567 	else
1568 		error = 0;
1569 	spin_unlock_shared(&fdp->fd_spin);
1570 	return (error);
1571 }
1572 
1573 /*
1574  * Associate a file pointer with a previously reserved file descriptor.
1575  * This function always succeeds.
1576  *
1577  * If fp is NULL, the file descriptor is returned to the pool.
1578  */
1579 
1580 /*
1581  * MPSAFE (exclusive spinlock must be held on call)
1582  */
1583 static void
1584 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1585 {
1586 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1587 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1588 	if (fp) {
1589 		fhold(fp);
1590 		fdp->fd_files[fd].fp = fp;
1591 		fdp->fd_files[fd].reserved = 0;
1592 	} else {
1593 		fdp->fd_files[fd].reserved = 0;
1594 		fdreserve_locked(fdp, fd, -1);
1595 		fdfixup_locked(fdp, fd);
1596 	}
1597 }
1598 
1599 /*
1600  * MPSAFE
1601  */
1602 void
1603 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
1604 {
1605 	spin_lock(&fdp->fd_spin);
1606 	fsetfd_locked(fdp, fp, fd);
1607 	spin_unlock(&fdp->fd_spin);
1608 }
1609 
1610 /*
1611  * MPSAFE (exclusive spinlock must be held on call)
1612  */
1613 static
1614 struct file *
1615 funsetfd_locked(struct filedesc *fdp, int fd)
1616 {
1617 	struct file *fp;
1618 
1619 	if ((unsigned)fd >= fdp->fd_nfiles)
1620 		return (NULL);
1621 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1622 		return (NULL);
1623 	fdp->fd_files[fd].fp = NULL;
1624 	fdp->fd_files[fd].fileflags = 0;
1625 
1626 	fdreserve_locked(fdp, fd, -1);
1627 	fdfixup_locked(fdp, fd);
1628 	return(fp);
1629 }
1630 
1631 /*
1632  * MPSAFE
1633  */
1634 int
1635 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1636 {
1637 	int error;
1638 
1639 	spin_lock(&fdp->fd_spin);
1640 	if (((u_int)fd) >= fdp->fd_nfiles) {
1641 		error = EBADF;
1642 	} else if (fdp->fd_files[fd].fp == NULL) {
1643 		error = EBADF;
1644 	} else {
1645 		*flagsp = fdp->fd_files[fd].fileflags;
1646 		error = 0;
1647 	}
1648 	spin_unlock(&fdp->fd_spin);
1649 	return (error);
1650 }
1651 
1652 /*
1653  * MPSAFE
1654  */
1655 int
1656 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1657 {
1658 	int error;
1659 
1660 	spin_lock(&fdp->fd_spin);
1661 	if (((u_int)fd) >= fdp->fd_nfiles) {
1662 		error = EBADF;
1663 	} else if (fdp->fd_files[fd].fp == NULL) {
1664 		error = EBADF;
1665 	} else {
1666 		fdp->fd_files[fd].fileflags |= add_flags;
1667 		error = 0;
1668 	}
1669 	spin_unlock(&fdp->fd_spin);
1670 	return (error);
1671 }
1672 
1673 /*
1674  * MPSAFE
1675  */
1676 int
1677 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1678 {
1679 	int error;
1680 
1681 	spin_lock(&fdp->fd_spin);
1682 	if (((u_int)fd) >= fdp->fd_nfiles) {
1683 		error = EBADF;
1684 	} else if (fdp->fd_files[fd].fp == NULL) {
1685 		error = EBADF;
1686 	} else {
1687 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1688 		error = 0;
1689 	}
1690 	spin_unlock(&fdp->fd_spin);
1691 	return (error);
1692 }
1693 
1694 /*
1695  * Set/Change/Clear the creds for a fp and synchronize the uidinfo.
1696  */
1697 void
1698 fsetcred(struct file *fp, struct ucred *ncr)
1699 {
1700 	struct ucred *ocr;
1701 	struct uidinfo *uip;
1702 
1703 	ocr = fp->f_cred;
1704 	if (ocr == NULL || ncr == NULL || ocr->cr_uidinfo != ncr->cr_uidinfo) {
1705 		if (ocr) {
1706 			uip = ocr->cr_uidinfo;
1707 			atomic_add_int(&uip->ui_openfiles, -1);
1708 		}
1709 		if (ncr) {
1710 			uip = ncr->cr_uidinfo;
1711 			atomic_add_int(&uip->ui_openfiles, 1);
1712 		}
1713 	}
1714 	if (ncr)
1715 		crhold(ncr);
1716 	fp->f_cred = ncr;
1717 	if (ocr)
1718 		crfree(ocr);
1719 }
1720 
1721 /*
1722  * Free a file descriptor.
1723  */
1724 static
1725 void
1726 ffree(struct file *fp)
1727 {
1728 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1729 	spin_lock(&filehead_spin);
1730 	LIST_REMOVE(fp, f_list);
1731 	nfiles--;
1732 	spin_unlock(&filehead_spin);
1733 	fsetcred(fp, NULL);
1734 	if (fp->f_nchandle.ncp)
1735 	    cache_drop(&fp->f_nchandle);
1736 	kfree(fp, M_FILE);
1737 }
1738 
1739 /*
1740  * called from init_main, initialize filedesc0 for proc0.
1741  */
1742 void
1743 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1744 {
1745 	p0->p_fd = fdp0;
1746 	p0->p_fdtol = NULL;
1747 	fdp0->fd_refcnt = 1;
1748 	fdp0->fd_cmask = cmask;
1749 	fdp0->fd_files = fdp0->fd_builtin_files;
1750 	fdp0->fd_nfiles = NDFILE;
1751 	fdp0->fd_lastfile = -1;
1752 	spin_init(&fdp0->fd_spin);
1753 }
1754 
1755 /*
1756  * Build a new filedesc structure.
1757  *
1758  * NOT MPSAFE (vref)
1759  */
1760 struct filedesc *
1761 fdinit(struct proc *p)
1762 {
1763 	struct filedesc *newfdp;
1764 	struct filedesc *fdp = p->p_fd;
1765 
1766 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1767 	spin_lock(&fdp->fd_spin);
1768 	if (fdp->fd_cdir) {
1769 		newfdp->fd_cdir = fdp->fd_cdir;
1770 		vref(newfdp->fd_cdir);
1771 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1772 	}
1773 
1774 	/*
1775 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1776 	 * proc0, but should unconditionally exist in other processes.
1777 	 */
1778 	if (fdp->fd_rdir) {
1779 		newfdp->fd_rdir = fdp->fd_rdir;
1780 		vref(newfdp->fd_rdir);
1781 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1782 	}
1783 	if (fdp->fd_jdir) {
1784 		newfdp->fd_jdir = fdp->fd_jdir;
1785 		vref(newfdp->fd_jdir);
1786 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1787 	}
1788 	spin_unlock(&fdp->fd_spin);
1789 
1790 	/* Create the file descriptor table. */
1791 	newfdp->fd_refcnt = 1;
1792 	newfdp->fd_cmask = cmask;
1793 	newfdp->fd_files = newfdp->fd_builtin_files;
1794 	newfdp->fd_nfiles = NDFILE;
1795 	newfdp->fd_lastfile = -1;
1796 	spin_init(&newfdp->fd_spin);
1797 
1798 	return (newfdp);
1799 }
1800 
1801 /*
1802  * Share a filedesc structure.
1803  *
1804  * MPSAFE
1805  */
1806 struct filedesc *
1807 fdshare(struct proc *p)
1808 {
1809 	struct filedesc *fdp;
1810 
1811 	fdp = p->p_fd;
1812 	spin_lock(&fdp->fd_spin);
1813 	fdp->fd_refcnt++;
1814 	spin_unlock(&fdp->fd_spin);
1815 	return (fdp);
1816 }
1817 
1818 /*
1819  * Copy a filedesc structure.
1820  *
1821  * MPSAFE
1822  */
1823 int
1824 fdcopy(struct proc *p, struct filedesc **fpp)
1825 {
1826 	struct filedesc *fdp = p->p_fd;
1827 	struct filedesc *newfdp;
1828 	struct fdnode *fdnode;
1829 	int i;
1830 	int ni;
1831 
1832 	/*
1833 	 * Certain daemons might not have file descriptors.
1834 	 */
1835 	if (fdp == NULL)
1836 		return (0);
1837 
1838 	/*
1839 	 * Allocate the new filedesc and fd_files[] array.  This can race
1840 	 * with operations by other threads on the fdp so we have to be
1841 	 * careful.
1842 	 */
1843 	newfdp = kmalloc(sizeof(struct filedesc),
1844 			 M_FILEDESC, M_WAITOK | M_ZERO | M_NULLOK);
1845 	if (newfdp == NULL) {
1846 		*fpp = NULL;
1847 		return (-1);
1848 	}
1849 again:
1850 	spin_lock(&fdp->fd_spin);
1851 	if (fdp->fd_lastfile < NDFILE) {
1852 		newfdp->fd_files = newfdp->fd_builtin_files;
1853 		i = NDFILE;
1854 	} else {
1855 		/*
1856 		 * We have to allocate (N^2-1) entries for our in-place
1857 		 * binary tree.  Allow the table to shrink.
1858 		 */
1859 		i = fdp->fd_nfiles;
1860 		ni = (i - 1) / 2;
1861 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1862 			i = ni;
1863 			ni = (i - 1) / 2;
1864 		}
1865 		spin_unlock(&fdp->fd_spin);
1866 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1867 					  M_FILEDESC, M_WAITOK | M_ZERO);
1868 
1869 		/*
1870 		 * Check for race, retry
1871 		 */
1872 		spin_lock(&fdp->fd_spin);
1873 		if (i <= fdp->fd_lastfile) {
1874 			spin_unlock(&fdp->fd_spin);
1875 			kfree(newfdp->fd_files, M_FILEDESC);
1876 			goto again;
1877 		}
1878 	}
1879 
1880 	/*
1881 	 * Dup the remaining fields. vref() and cache_hold() can be
1882 	 * safely called while holding the read spinlock on fdp.
1883 	 *
1884 	 * The read spinlock on fdp is still being held.
1885 	 *
1886 	 * NOTE: vref and cache_hold calls for the case where the vnode
1887 	 * or cache entry already has at least one ref may be called
1888 	 * while holding spin locks.
1889 	 */
1890 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1891 		vref(newfdp->fd_cdir);
1892 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1893 	}
1894 	/*
1895 	 * We must check for fd_rdir here, at least for now because
1896 	 * the init process is created before we have access to the
1897 	 * rootvode to take a reference to it.
1898 	 */
1899 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1900 		vref(newfdp->fd_rdir);
1901 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1902 	}
1903 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1904 		vref(newfdp->fd_jdir);
1905 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1906 	}
1907 	newfdp->fd_refcnt = 1;
1908 	newfdp->fd_nfiles = i;
1909 	newfdp->fd_lastfile = fdp->fd_lastfile;
1910 	newfdp->fd_freefile = fdp->fd_freefile;
1911 	newfdp->fd_cmask = fdp->fd_cmask;
1912 	spin_init(&newfdp->fd_spin);
1913 
1914 	/*
1915 	 * Copy the descriptor table through (i).  This also copies the
1916 	 * allocation state.   Then go through and ref the file pointers
1917 	 * and clean up any KQ descriptors.
1918 	 *
1919 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1920 	 * copied files yet we can ignore the return value from funsetfd().
1921 	 *
1922 	 * The read spinlock on fdp is still being held.
1923 	 */
1924 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1925 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1926 		fdnode = &newfdp->fd_files[i];
1927 		if (fdnode->reserved) {
1928 			fdreserve_locked(newfdp, i, -1);
1929 			fdnode->reserved = 0;
1930 			fdfixup_locked(newfdp, i);
1931 		} else if (fdnode->fp) {
1932 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1933 				(void)funsetfd_locked(newfdp, i);
1934 			} else {
1935 				fhold(fdnode->fp);
1936 			}
1937 		}
1938 	}
1939 	spin_unlock(&fdp->fd_spin);
1940 	*fpp = newfdp;
1941 	return (0);
1942 }
1943 
1944 /*
1945  * Release a filedesc structure.
1946  *
1947  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1948  */
1949 void
1950 fdfree(struct proc *p, struct filedesc *repl)
1951 {
1952 	struct filedesc *fdp;
1953 	struct fdnode *fdnode;
1954 	int i;
1955 	struct filedesc_to_leader *fdtol;
1956 	struct file *fp;
1957 	struct vnode *vp;
1958 	struct flock lf;
1959 
1960 	/*
1961 	 * Certain daemons might not have file descriptors.
1962 	 */
1963 	fdp = p->p_fd;
1964 	if (fdp == NULL) {
1965 		p->p_fd = repl;
1966 		return;
1967 	}
1968 
1969 	/*
1970 	 * Severe messing around to follow.
1971 	 */
1972 	spin_lock(&fdp->fd_spin);
1973 
1974 	/* Check for special need to clear POSIX style locks */
1975 	fdtol = p->p_fdtol;
1976 	if (fdtol != NULL) {
1977 		KASSERT(fdtol->fdl_refcount > 0,
1978 			("filedesc_to_refcount botch: fdl_refcount=%d",
1979 			 fdtol->fdl_refcount));
1980 		if (fdtol->fdl_refcount == 1 &&
1981 		    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
1982 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
1983 				fdnode = &fdp->fd_files[i];
1984 				if (fdnode->fp == NULL ||
1985 				    fdnode->fp->f_type != DTYPE_VNODE) {
1986 					continue;
1987 				}
1988 				fp = fdnode->fp;
1989 				fhold(fp);
1990 				spin_unlock(&fdp->fd_spin);
1991 
1992 				lf.l_whence = SEEK_SET;
1993 				lf.l_start = 0;
1994 				lf.l_len = 0;
1995 				lf.l_type = F_UNLCK;
1996 				vp = (struct vnode *)fp->f_data;
1997 				(void) VOP_ADVLOCK(vp,
1998 						   (caddr_t)p->p_leader,
1999 						   F_UNLCK,
2000 						   &lf,
2001 						   F_POSIX);
2002 				fdrop(fp);
2003 				spin_lock(&fdp->fd_spin);
2004 			}
2005 		}
2006 	retry:
2007 		if (fdtol->fdl_refcount == 1) {
2008 			if (fdp->fd_holdleaderscount > 0 &&
2009 			    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
2010 				/*
2011 				 * close() or do_dup() has cleared a reference
2012 				 * in a shared file descriptor table.
2013 				 */
2014 				fdp->fd_holdleaderswakeup = 1;
2015 				ssleep(&fdp->fd_holdleaderscount,
2016 				       &fdp->fd_spin, 0, "fdlhold", 0);
2017 				goto retry;
2018 			}
2019 			if (fdtol->fdl_holdcount > 0) {
2020 				/*
2021 				 * Ensure that fdtol->fdl_leader
2022 				 * remains valid in closef().
2023 				 */
2024 				fdtol->fdl_wakeup = 1;
2025 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
2026 				goto retry;
2027 			}
2028 		}
2029 		fdtol->fdl_refcount--;
2030 		if (fdtol->fdl_refcount == 0 &&
2031 		    fdtol->fdl_holdcount == 0) {
2032 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2033 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2034 		} else {
2035 			fdtol = NULL;
2036 		}
2037 		p->p_fdtol = NULL;
2038 		if (fdtol != NULL) {
2039 			spin_unlock(&fdp->fd_spin);
2040 			kfree(fdtol, M_FILEDESC_TO_LEADER);
2041 			spin_lock(&fdp->fd_spin);
2042 		}
2043 	}
2044 	if (--fdp->fd_refcnt > 0) {
2045 		spin_unlock(&fdp->fd_spin);
2046 		spin_lock(&p->p_spin);
2047 		p->p_fd = repl;
2048 		spin_unlock(&p->p_spin);
2049 		return;
2050 	}
2051 
2052 	/*
2053 	 * Even though we are the last reference to the structure allproc
2054 	 * scans may still reference the structure.  Maintain proper
2055 	 * locks until we can replace p->p_fd.
2056 	 *
2057 	 * Also note that kqueue's closef still needs to reference the
2058 	 * fdp via p->p_fd, so we have to close the descriptors before
2059 	 * we replace p->p_fd.
2060 	 */
2061 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
2062 		if (fdp->fd_files[i].fp) {
2063 			fp = funsetfd_locked(fdp, i);
2064 			if (fp) {
2065 				spin_unlock(&fdp->fd_spin);
2066 				if (SLIST_FIRST(&fp->f_klist))
2067 					knote_fdclose(fp, fdp, i);
2068 				closef(fp, p);
2069 				spin_lock(&fdp->fd_spin);
2070 			}
2071 		}
2072 	}
2073 	spin_unlock(&fdp->fd_spin);
2074 
2075 	/*
2076 	 * Interlock against an allproc scan operations (typically frevoke).
2077 	 */
2078 	spin_lock(&p->p_spin);
2079 	p->p_fd = repl;
2080 	spin_unlock(&p->p_spin);
2081 
2082 	/*
2083 	 * Wait for any softrefs to go away.  This race rarely occurs so
2084 	 * we can use a non-critical-path style poll/sleep loop.  The
2085 	 * race only occurs against allproc scans.
2086 	 *
2087 	 * No new softrefs can occur with the fdp disconnected from the
2088 	 * process.
2089 	 */
2090 	if (fdp->fd_softrefs) {
2091 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
2092 		while (fdp->fd_softrefs)
2093 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
2094 	}
2095 
2096 	if (fdp->fd_files != fdp->fd_builtin_files)
2097 		kfree(fdp->fd_files, M_FILEDESC);
2098 	if (fdp->fd_cdir) {
2099 		cache_drop(&fdp->fd_ncdir);
2100 		vrele(fdp->fd_cdir);
2101 	}
2102 	if (fdp->fd_rdir) {
2103 		cache_drop(&fdp->fd_nrdir);
2104 		vrele(fdp->fd_rdir);
2105 	}
2106 	if (fdp->fd_jdir) {
2107 		cache_drop(&fdp->fd_njdir);
2108 		vrele(fdp->fd_jdir);
2109 	}
2110 	kfree(fdp, M_FILEDESC);
2111 }
2112 
2113 /*
2114  * Retrieve and reference the file pointer associated with a descriptor.
2115  *
2116  * MPSAFE
2117  */
2118 struct file *
2119 holdfp(struct filedesc *fdp, int fd, int flag)
2120 {
2121 	struct file* fp;
2122 
2123 	spin_lock_shared(&fdp->fd_spin);
2124 	if (((u_int)fd) >= fdp->fd_nfiles) {
2125 		fp = NULL;
2126 		goto done;
2127 	}
2128 	if ((fp = fdp->fd_files[fd].fp) == NULL)
2129 		goto done;
2130 	if ((fp->f_flag & flag) == 0 && flag != -1) {
2131 		fp = NULL;
2132 		goto done;
2133 	}
2134 	fhold(fp);
2135 done:
2136 	spin_unlock_shared(&fdp->fd_spin);
2137 	return (fp);
2138 }
2139 
2140 /*
2141  * holdsock() - load the struct file pointer associated
2142  * with a socket into *fpp.  If an error occurs, non-zero
2143  * will be returned and *fpp will be set to NULL.
2144  *
2145  * MPSAFE
2146  */
2147 int
2148 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2149 {
2150 	struct file *fp;
2151 	int error;
2152 
2153 	spin_lock_shared(&fdp->fd_spin);
2154 	if ((unsigned)fd >= fdp->fd_nfiles) {
2155 		error = EBADF;
2156 		fp = NULL;
2157 		goto done;
2158 	}
2159 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2160 		error = EBADF;
2161 		goto done;
2162 	}
2163 	if (fp->f_type != DTYPE_SOCKET) {
2164 		error = ENOTSOCK;
2165 		goto done;
2166 	}
2167 	fhold(fp);
2168 	error = 0;
2169 done:
2170 	spin_unlock_shared(&fdp->fd_spin);
2171 	*fpp = fp;
2172 	return (error);
2173 }
2174 
2175 /*
2176  * Convert a user file descriptor to a held file pointer.
2177  *
2178  * MPSAFE
2179  */
2180 int
2181 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2182 {
2183 	struct file *fp;
2184 	int error;
2185 
2186 	spin_lock_shared(&fdp->fd_spin);
2187 	if ((unsigned)fd >= fdp->fd_nfiles) {
2188 		error = EBADF;
2189 		fp = NULL;
2190 		goto done;
2191 	}
2192 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2193 		error = EBADF;
2194 		goto done;
2195 	}
2196 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2197 		fp = NULL;
2198 		error = EINVAL;
2199 		goto done;
2200 	}
2201 	fhold(fp);
2202 	error = 0;
2203 done:
2204 	spin_unlock_shared(&fdp->fd_spin);
2205 	*fpp = fp;
2206 	return (error);
2207 }
2208 
2209 /*
2210  * For setugid programs, we don't want to people to use that setugidness
2211  * to generate error messages which write to a file which otherwise would
2212  * otherwise be off-limits to the process.
2213  *
2214  * This is a gross hack to plug the hole.  A better solution would involve
2215  * a special vop or other form of generalized access control mechanism.  We
2216  * go ahead and just reject all procfs file systems accesses as dangerous.
2217  *
2218  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2219  * sufficient.  We also don't for check setugidness since we know we are.
2220  */
2221 static int
2222 is_unsafe(struct file *fp)
2223 {
2224 	if (fp->f_type == DTYPE_VNODE &&
2225 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2226 		return (1);
2227 	return (0);
2228 }
2229 
2230 /*
2231  * Make this setguid thing safe, if at all possible.
2232  *
2233  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2234  */
2235 void
2236 setugidsafety(struct proc *p)
2237 {
2238 	struct filedesc *fdp = p->p_fd;
2239 	int i;
2240 
2241 	/* Certain daemons might not have file descriptors. */
2242 	if (fdp == NULL)
2243 		return;
2244 
2245 	/*
2246 	 * note: fdp->fd_files may be reallocated out from under us while
2247 	 * we are blocked in a close.  Be careful!
2248 	 */
2249 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2250 		if (i > 2)
2251 			break;
2252 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2253 			struct file *fp;
2254 
2255 			/*
2256 			 * NULL-out descriptor prior to close to avoid
2257 			 * a race while close blocks.
2258 			 */
2259 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2260 				knote_fdclose(fp, fdp, i);
2261 				closef(fp, p);
2262 			}
2263 		}
2264 	}
2265 }
2266 
2267 /*
2268  * Close any files on exec?
2269  *
2270  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2271  */
2272 void
2273 fdcloseexec(struct proc *p)
2274 {
2275 	struct filedesc *fdp = p->p_fd;
2276 	int i;
2277 
2278 	/* Certain daemons might not have file descriptors. */
2279 	if (fdp == NULL)
2280 		return;
2281 
2282 	/*
2283 	 * We cannot cache fd_files since operations may block and rip
2284 	 * them out from under us.
2285 	 */
2286 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2287 		if (fdp->fd_files[i].fp != NULL &&
2288 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2289 			struct file *fp;
2290 
2291 			/*
2292 			 * NULL-out descriptor prior to close to avoid
2293 			 * a race while close blocks.
2294 			 */
2295 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2296 				knote_fdclose(fp, fdp, i);
2297 				closef(fp, p);
2298 			}
2299 		}
2300 	}
2301 }
2302 
2303 /*
2304  * It is unsafe for set[ug]id processes to be started with file
2305  * descriptors 0..2 closed, as these descriptors are given implicit
2306  * significance in the Standard C library.  fdcheckstd() will create a
2307  * descriptor referencing /dev/null for each of stdin, stdout, and
2308  * stderr that is not already open.
2309  *
2310  * NOT MPSAFE - calls falloc, vn_open, etc
2311  */
2312 int
2313 fdcheckstd(struct lwp *lp)
2314 {
2315 	struct nlookupdata nd;
2316 	struct filedesc *fdp;
2317 	struct file *fp;
2318 	int retval;
2319 	int i, error, flags, devnull;
2320 
2321 	fdp = lp->lwp_proc->p_fd;
2322 	if (fdp == NULL)
2323 		return (0);
2324 	devnull = -1;
2325 	error = 0;
2326 	for (i = 0; i < 3; i++) {
2327 		if (fdp->fd_files[i].fp != NULL)
2328 			continue;
2329 		if (devnull < 0) {
2330 			if ((error = falloc(lp, &fp, &devnull)) != 0)
2331 				break;
2332 
2333 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2334 						NLC_FOLLOW|NLC_LOCKVP);
2335 			flags = FREAD | FWRITE;
2336 			if (error == 0)
2337 				error = vn_open(&nd, fp, flags, 0);
2338 			if (error == 0)
2339 				fsetfd(fdp, fp, devnull);
2340 			else
2341 				fsetfd(fdp, NULL, devnull);
2342 			fdrop(fp);
2343 			nlookup_done(&nd);
2344 			if (error)
2345 				break;
2346 			KKASSERT(i == devnull);
2347 		} else {
2348 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2349 			if (error != 0)
2350 				break;
2351 		}
2352 	}
2353 	return (error);
2354 }
2355 
2356 /*
2357  * Internal form of close.
2358  * Decrement reference count on file structure.
2359  * Note: td and/or p may be NULL when closing a file
2360  * that was being passed in a message.
2361  *
2362  * MPALMOSTSAFE - acquires mplock for VOP operations
2363  */
2364 int
2365 closef(struct file *fp, struct proc *p)
2366 {
2367 	struct vnode *vp;
2368 	struct flock lf;
2369 	struct filedesc_to_leader *fdtol;
2370 
2371 	if (fp == NULL)
2372 		return (0);
2373 
2374 	/*
2375 	 * POSIX record locking dictates that any close releases ALL
2376 	 * locks owned by this process.  This is handled by setting
2377 	 * a flag in the unlock to free ONLY locks obeying POSIX
2378 	 * semantics, and not to free BSD-style file locks.
2379 	 * If the descriptor was in a message, POSIX-style locks
2380 	 * aren't passed with the descriptor.
2381 	 */
2382 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2383 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2384 	) {
2385 		if ((p->p_leader->p_flags & P_ADVLOCK) != 0) {
2386 			lf.l_whence = SEEK_SET;
2387 			lf.l_start = 0;
2388 			lf.l_len = 0;
2389 			lf.l_type = F_UNLCK;
2390 			vp = (struct vnode *)fp->f_data;
2391 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2392 					   &lf, F_POSIX);
2393 		}
2394 		fdtol = p->p_fdtol;
2395 		if (fdtol != NULL) {
2396 			lwkt_gettoken(&p->p_token);
2397 			/*
2398 			 * Handle special case where file descriptor table
2399 			 * is shared between multiple process leaders.
2400 			 */
2401 			for (fdtol = fdtol->fdl_next;
2402 			     fdtol != p->p_fdtol;
2403 			     fdtol = fdtol->fdl_next) {
2404 				if ((fdtol->fdl_leader->p_flags &
2405 				     P_ADVLOCK) == 0)
2406 					continue;
2407 				fdtol->fdl_holdcount++;
2408 				lf.l_whence = SEEK_SET;
2409 				lf.l_start = 0;
2410 				lf.l_len = 0;
2411 				lf.l_type = F_UNLCK;
2412 				vp = (struct vnode *)fp->f_data;
2413 				(void) VOP_ADVLOCK(vp,
2414 						   (caddr_t)fdtol->fdl_leader,
2415 						   F_UNLCK, &lf, F_POSIX);
2416 				fdtol->fdl_holdcount--;
2417 				if (fdtol->fdl_holdcount == 0 &&
2418 				    fdtol->fdl_wakeup != 0) {
2419 					fdtol->fdl_wakeup = 0;
2420 					wakeup(fdtol);
2421 				}
2422 			}
2423 			lwkt_reltoken(&p->p_token);
2424 		}
2425 	}
2426 	return (fdrop(fp));
2427 }
2428 
2429 /*
2430  * MPSAFE
2431  *
2432  * fhold() can only be called if f_count is already at least 1 (i.e. the
2433  * caller of fhold() already has a reference to the file pointer in some
2434  * manner or other).
2435  *
2436  * f_count is not spin-locked.  Instead, atomic ops are used for
2437  * incrementing, decrementing, and handling the 1->0 transition.
2438  */
2439 void
2440 fhold(struct file *fp)
2441 {
2442 	atomic_add_int(&fp->f_count, 1);
2443 }
2444 
2445 /*
2446  * fdrop() - drop a reference to a descriptor
2447  *
2448  * MPALMOSTSAFE - acquires mplock for final close sequence
2449  */
2450 int
2451 fdrop(struct file *fp)
2452 {
2453 	struct flock lf;
2454 	struct vnode *vp;
2455 	int error;
2456 
2457 	/*
2458 	 * A combined fetch and subtract is needed to properly detect
2459 	 * 1->0 transitions, otherwise two cpus dropping from a ref
2460 	 * count of 2 might both try to run the 1->0 code.
2461 	 */
2462 	if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2463 		return (0);
2464 
2465 	KKASSERT(SLIST_FIRST(&fp->f_klist) == NULL);
2466 
2467 	/*
2468 	 * The last reference has gone away, we own the fp structure free
2469 	 * and clear.
2470 	 */
2471 	if (fp->f_count < 0)
2472 		panic("fdrop: count < 0");
2473 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2474 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2475 	) {
2476 		lf.l_whence = SEEK_SET;
2477 		lf.l_start = 0;
2478 		lf.l_len = 0;
2479 		lf.l_type = F_UNLCK;
2480 		vp = (struct vnode *)fp->f_data;
2481 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2482 	}
2483 	if (fp->f_ops != &badfileops)
2484 		error = fo_close(fp);
2485 	else
2486 		error = 0;
2487 	ffree(fp);
2488 	return (error);
2489 }
2490 
2491 /*
2492  * Apply an advisory lock on a file descriptor.
2493  *
2494  * Just attempt to get a record lock of the requested type on
2495  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2496  *
2497  * MPALMOSTSAFE
2498  */
2499 int
2500 sys_flock(struct flock_args *uap)
2501 {
2502 	struct proc *p = curproc;
2503 	struct file *fp;
2504 	struct vnode *vp;
2505 	struct flock lf;
2506 	int error;
2507 
2508 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2509 		return (EBADF);
2510 	if (fp->f_type != DTYPE_VNODE) {
2511 		error = EOPNOTSUPP;
2512 		goto done;
2513 	}
2514 	vp = (struct vnode *)fp->f_data;
2515 	lf.l_whence = SEEK_SET;
2516 	lf.l_start = 0;
2517 	lf.l_len = 0;
2518 	if (uap->how & LOCK_UN) {
2519 		lf.l_type = F_UNLCK;
2520 		fp->f_flag &= ~FHASLOCK;
2521 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2522 		goto done;
2523 	}
2524 	if (uap->how & LOCK_EX)
2525 		lf.l_type = F_WRLCK;
2526 	else if (uap->how & LOCK_SH)
2527 		lf.l_type = F_RDLCK;
2528 	else {
2529 		error = EBADF;
2530 		goto done;
2531 	}
2532 	fp->f_flag |= FHASLOCK;
2533 	if (uap->how & LOCK_NB)
2534 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2535 	else
2536 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2537 done:
2538 	fdrop(fp);
2539 	return (error);
2540 }
2541 
2542 /*
2543  * File Descriptor pseudo-device driver (/dev/fd/).
2544  *
2545  * Opening minor device N dup()s the file (if any) connected to file
2546  * descriptor N belonging to the calling process.  Note that this driver
2547  * consists of only the ``open()'' routine, because all subsequent
2548  * references to this file will be direct to the other driver.
2549  */
2550 static int
2551 fdopen(struct dev_open_args *ap)
2552 {
2553 	thread_t td = curthread;
2554 
2555 	KKASSERT(td->td_lwp != NULL);
2556 
2557 	/*
2558 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2559 	 * the file descriptor being sought for duplication. The error
2560 	 * return ensures that the vnode for this device will be released
2561 	 * by vn_open. Open will detect this special error and take the
2562 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2563 	 * will simply report the error.
2564 	 */
2565 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2566 	return (ENODEV);
2567 }
2568 
2569 /*
2570  * The caller has reserved the file descriptor dfd for us.  On success we
2571  * must fsetfd() it.  On failure the caller will clean it up.
2572  *
2573  * MPSAFE
2574  */
2575 int
2576 dupfdopen(struct filedesc *fdp, int dfd, int sfd, int mode, int error)
2577 {
2578 	struct file *wfp;
2579 	struct file *xfp;
2580 	int werror;
2581 
2582 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2583 		return (EBADF);
2584 
2585 	/*
2586 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2587 	 * will dup a dummy descriptor instead of the real one.
2588 	 */
2589 	if (wfp->f_flag & FREVOKED) {
2590 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2591 		fdrop(wfp);
2592 		wfp = NULL;
2593 		werror = falloc(NULL, &wfp, NULL);
2594 		if (werror)
2595 			return (werror);
2596 	}
2597 
2598 	/*
2599 	 * There are two cases of interest here.
2600 	 *
2601 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2602 	 *
2603 	 * For ENXIO steal away the file structure from sfd and store it
2604 	 * dfd.  sfd is effectively closed by this operation.
2605 	 *
2606 	 * Any other error code is just returned.
2607 	 */
2608 	switch (error) {
2609 	case ENODEV:
2610 		/*
2611 		 * Check that the mode the file is being opened for is a
2612 		 * subset of the mode of the existing descriptor.
2613 		 */
2614 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2615 			error = EACCES;
2616 			break;
2617 		}
2618 		spin_lock(&fdp->fd_spin);
2619 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2620 		fsetfd_locked(fdp, wfp, dfd);
2621 		spin_unlock(&fdp->fd_spin);
2622 		error = 0;
2623 		break;
2624 	case ENXIO:
2625 		/*
2626 		 * Steal away the file pointer from dfd, and stuff it into indx.
2627 		 */
2628 		spin_lock(&fdp->fd_spin);
2629 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2630 		fsetfd(fdp, wfp, dfd);
2631 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL) {
2632 			spin_unlock(&fdp->fd_spin);
2633 			fdrop(xfp);
2634 		} else {
2635 			spin_unlock(&fdp->fd_spin);
2636 		}
2637 		error = 0;
2638 		break;
2639 	default:
2640 		break;
2641 	}
2642 	fdrop(wfp);
2643 	return (error);
2644 }
2645 
2646 /*
2647  * NOT MPSAFE - I think these refer to a common file descriptor table
2648  * and we need to spinlock that to link fdtol in.
2649  */
2650 struct filedesc_to_leader *
2651 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2652 			 struct proc *leader)
2653 {
2654 	struct filedesc_to_leader *fdtol;
2655 
2656 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2657 			M_FILEDESC_TO_LEADER, M_WAITOK | M_ZERO);
2658 	fdtol->fdl_refcount = 1;
2659 	fdtol->fdl_holdcount = 0;
2660 	fdtol->fdl_wakeup = 0;
2661 	fdtol->fdl_leader = leader;
2662 	if (old != NULL) {
2663 		fdtol->fdl_next = old->fdl_next;
2664 		fdtol->fdl_prev = old;
2665 		old->fdl_next = fdtol;
2666 		fdtol->fdl_next->fdl_prev = fdtol;
2667 	} else {
2668 		fdtol->fdl_next = fdtol;
2669 		fdtol->fdl_prev = fdtol;
2670 	}
2671 	return fdtol;
2672 }
2673 
2674 /*
2675  * Scan all file pointers in the system.  The callback is made with
2676  * the master list spinlock held exclusively.
2677  *
2678  * MPSAFE
2679  */
2680 void
2681 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2682 {
2683 	struct file *fp;
2684 	int res;
2685 
2686 	spin_lock(&filehead_spin);
2687 	LIST_FOREACH(fp, &filehead, f_list) {
2688 		res = callback(fp, data);
2689 		if (res < 0)
2690 			break;
2691 	}
2692 	spin_unlock(&filehead_spin);
2693 }
2694 
2695 /*
2696  * Get file structures.
2697  *
2698  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2699  */
2700 
2701 struct sysctl_kern_file_info {
2702 	int count;
2703 	int error;
2704 	struct sysctl_req *req;
2705 };
2706 
2707 static int sysctl_kern_file_callback(struct proc *p, void *data);
2708 
2709 static int
2710 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2711 {
2712 	struct sysctl_kern_file_info info;
2713 
2714 	/*
2715 	 * Note: because the number of file descriptors is calculated
2716 	 * in different ways for sizing vs returning the data,
2717 	 * there is information leakage from the first loop.  However,
2718 	 * it is of a similar order of magnitude to the leakage from
2719 	 * global system statistics such as kern.openfiles.
2720 	 *
2721 	 * When just doing a count, note that we cannot just count
2722 	 * the elements and add f_count via the filehead list because
2723 	 * threaded processes share their descriptor table and f_count might
2724 	 * still be '1' in that case.
2725 	 *
2726 	 * Since the SYSCTL op can block, we must hold the process to
2727 	 * prevent it being ripped out from under us either in the
2728 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2729 	 * process may be in varying states of disrepair.  If the process
2730 	 * is in SZOMB we may have caught it just as it is being removed
2731 	 * from the allproc list, we must skip it in that case to maintain
2732 	 * an unbroken chain through the allproc list.
2733 	 */
2734 	info.count = 0;
2735 	info.error = 0;
2736 	info.req = req;
2737 	allproc_scan(sysctl_kern_file_callback, &info);
2738 
2739 	/*
2740 	 * When just calculating the size, overestimate a bit to try to
2741 	 * prevent system activity from causing the buffer-fill call
2742 	 * to fail later on.
2743 	 */
2744 	if (req->oldptr == NULL) {
2745 		info.count = (info.count + 16) + (info.count / 10);
2746 		info.error = SYSCTL_OUT(req, NULL,
2747 					info.count * sizeof(struct kinfo_file));
2748 	}
2749 	return (info.error);
2750 }
2751 
2752 static int
2753 sysctl_kern_file_callback(struct proc *p, void *data)
2754 {
2755 	struct sysctl_kern_file_info *info = data;
2756 	struct kinfo_file kf;
2757 	struct filedesc *fdp;
2758 	struct file *fp;
2759 	uid_t uid;
2760 	int n;
2761 
2762 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2763 		return(0);
2764 	if (!PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0)
2765 		return(0);
2766 
2767 	/*
2768 	 * Softref the fdp to prevent it from being destroyed
2769 	 */
2770 	spin_lock(&p->p_spin);
2771 	if ((fdp = p->p_fd) == NULL) {
2772 		spin_unlock(&p->p_spin);
2773 		return(0);
2774 	}
2775 	atomic_add_int(&fdp->fd_softrefs, 1);
2776 	spin_unlock(&p->p_spin);
2777 
2778 	/*
2779 	 * The fdp's own spinlock prevents the contents from being
2780 	 * modified.
2781 	 */
2782 	spin_lock_shared(&fdp->fd_spin);
2783 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2784 		if ((fp = fdp->fd_files[n].fp) == NULL)
2785 			continue;
2786 		if (info->req->oldptr == NULL) {
2787 			++info->count;
2788 		} else {
2789 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2790 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2791 			spin_unlock_shared(&fdp->fd_spin);
2792 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2793 			spin_lock_shared(&fdp->fd_spin);
2794 			if (info->error)
2795 				break;
2796 		}
2797 	}
2798 	spin_unlock_shared(&fdp->fd_spin);
2799 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2800 	if (info->error)
2801 		return(-1);
2802 	return(0);
2803 }
2804 
2805 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2806     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2807 
2808 SYSCTL_INT(_kern, OID_AUTO, minfilesperproc, CTLFLAG_RW,
2809     &minfilesperproc, 0, "Minimum files allowed open per process");
2810 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2811     &maxfilesperproc, 0, "Maximum files allowed open per process");
2812 SYSCTL_INT(_kern, OID_AUTO, maxfilesperuser, CTLFLAG_RW,
2813     &maxfilesperuser, 0, "Maximum files allowed open per user");
2814 
2815 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2816     &maxfiles, 0, "Maximum number of files");
2817 
2818 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2819     &maxfilesrootres, 0, "Descriptors reserved for root use");
2820 
2821 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2822 	&nfiles, 0, "System-wide number of open files");
2823 
2824 static void
2825 fildesc_drvinit(void *unused)
2826 {
2827 	int fd;
2828 
2829 	for (fd = 0; fd < NUMFDESC; fd++) {
2830 		make_dev(&fildesc_ops, fd,
2831 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2832 	}
2833 
2834 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2835 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2836 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2837 }
2838 
2839 /*
2840  * MPSAFE
2841  */
2842 struct fileops badfileops = {
2843 	.fo_read = badfo_readwrite,
2844 	.fo_write = badfo_readwrite,
2845 	.fo_ioctl = badfo_ioctl,
2846 	.fo_kqfilter = badfo_kqfilter,
2847 	.fo_stat = badfo_stat,
2848 	.fo_close = badfo_close,
2849 	.fo_shutdown = badfo_shutdown
2850 };
2851 
2852 int
2853 badfo_readwrite(
2854 	struct file *fp,
2855 	struct uio *uio,
2856 	struct ucred *cred,
2857 	int flags
2858 ) {
2859 	return (EBADF);
2860 }
2861 
2862 int
2863 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2864 	    struct ucred *cred, struct sysmsg *msgv)
2865 {
2866 	return (EBADF);
2867 }
2868 
2869 /*
2870  * Must return an error to prevent registration, typically
2871  * due to a revoked descriptor (file_filtops assigned).
2872  */
2873 int
2874 badfo_kqfilter(struct file *fp, struct knote *kn)
2875 {
2876 	return (EOPNOTSUPP);
2877 }
2878 
2879 /*
2880  * MPSAFE
2881  */
2882 int
2883 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2884 {
2885 	return (EBADF);
2886 }
2887 
2888 /*
2889  * MPSAFE
2890  */
2891 int
2892 badfo_close(struct file *fp)
2893 {
2894 	return (EBADF);
2895 }
2896 
2897 /*
2898  * MPSAFE
2899  */
2900 int
2901 badfo_shutdown(struct file *fp, int how)
2902 {
2903 	return (EBADF);
2904 }
2905 
2906 /*
2907  * MPSAFE
2908  */
2909 int
2910 nofo_shutdown(struct file *fp, int how)
2911 {
2912 	return (EOPNOTSUPP);
2913 }
2914 
2915 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2916 					fildesc_drvinit,NULL)
2917