xref: /dragonfly/sys/kern/kern_descrip.c (revision d600454b)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
72  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
73  * $DragonFly: src/sys/kern/kern_descrip.c,v 1.51 2005/12/01 18:30:08 dillon Exp $
74  */
75 
76 #include "opt_compat.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/conf.h>
82 #include <sys/filedesc.h>
83 #include <sys/kernel.h>
84 #include <sys/sysctl.h>
85 #include <sys/vnode.h>
86 #include <sys/proc.h>
87 #include <sys/nlookup.h>
88 #include <sys/file.h>
89 #include <sys/stat.h>
90 #include <sys/filio.h>
91 #include <sys/fcntl.h>
92 #include <sys/unistd.h>
93 #include <sys/resourcevar.h>
94 #include <sys/event.h>
95 #include <sys/kern_syscall.h>
96 #include <sys/kcore.h>
97 #include <sys/kinfo.h>
98 
99 #include <vm/vm.h>
100 #include <vm/vm_extern.h>
101 
102 #include <sys/thread2.h>
103 #include <sys/file2.h>
104 
105 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
106 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
107 		     "file desc to leader structures");
108 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
109 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
110 
111 static	 d_open_t  fdopen;
112 #define NUMFDESC 64
113 
114 #define CDEV_MAJOR 22
115 static struct cdevsw fildesc_cdevsw = {
116 	/* name */	"FD",
117 	/* maj */	CDEV_MAJOR,
118 	/* flags */	0,
119 	/* port */      NULL,
120 	/* clone */	NULL,
121 
122 	/* open */	fdopen,
123 	/* close */	noclose,
124 	/* read */	noread,
125 	/* write */	nowrite,
126 	/* ioctl */	noioctl,
127 	/* poll */	nopoll,
128 	/* mmap */	nommap,
129 	/* strategy */	nostrategy,
130 	/* dump */	nodump,
131 	/* psize */	nopsize
132 };
133 
134 static int badfo_readwrite (struct file *fp, struct uio *uio,
135     struct ucred *cred, int flags, struct thread *td);
136 static int badfo_ioctl (struct file *fp, u_long com, caddr_t data,
137     struct thread *td);
138 static int badfo_poll (struct file *fp, int events,
139     struct ucred *cred, struct thread *td);
140 static int badfo_kqfilter (struct file *fp, struct knote *kn);
141 static int badfo_stat (struct file *fp, struct stat *sb, struct thread *td);
142 static int badfo_close (struct file *fp, struct thread *td);
143 static int badfo_shutdown (struct file *fp, int how, struct thread *td);
144 
145 /*
146  * Descriptor management.
147  */
148 struct filelist filehead;	/* head of list of open files */
149 int nfiles;			/* actual number of open files */
150 extern int cmask;
151 
152 /*
153  * System calls on descriptors.
154  */
155 /* ARGSUSED */
156 int
157 getdtablesize(struct getdtablesize_args *uap)
158 {
159 	struct proc *p = curproc;
160 
161 	uap->sysmsg_result =
162 	    min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
163 	return (0);
164 }
165 
166 /*
167  * Duplicate a file descriptor to a particular value.
168  *
169  * note: keep in mind that a potential race condition exists when closing
170  * descriptors from a shared descriptor table (via rfork).
171  */
172 /* ARGSUSED */
173 int
174 dup2(struct dup2_args *uap)
175 {
176 	int error;
177 
178 	error = kern_dup(DUP_FIXED, uap->from, uap->to, uap->sysmsg_fds);
179 
180 	return (error);
181 }
182 
183 /*
184  * Duplicate a file descriptor.
185  */
186 /* ARGSUSED */
187 int
188 dup(struct dup_args *uap)
189 {
190 	int error;
191 
192 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, uap->sysmsg_fds);
193 
194 	return (error);
195 }
196 
197 int
198 kern_fcntl(int fd, int cmd, union fcntl_dat *dat)
199 {
200 	struct thread *td = curthread;
201 	struct proc *p = td->td_proc;
202 	struct filedesc *fdp = p->p_fd;
203 	struct file *fp;
204 	char *pop;
205 	struct vnode *vp;
206 	u_int newmin;
207 	int tmp, error, flg = F_POSIX;
208 
209 	KKASSERT(p);
210 
211 	if ((unsigned)fd >= fdp->fd_nfiles ||
212 	    (fp = fdp->fd_files[fd].fp) == NULL)
213 		return (EBADF);
214 	pop = &fdp->fd_files[fd].fileflags;
215 
216 	switch (cmd) {
217 	case F_DUPFD:
218 		newmin = dat->fc_fd;
219 		if (newmin >= p->p_rlimit[RLIMIT_NOFILE].rlim_cur ||
220 		    newmin > maxfilesperproc)
221 			return (EINVAL);
222 		error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
223 		return (error);
224 
225 	case F_GETFD:
226 		dat->fc_cloexec = (*pop & UF_EXCLOSE) ? FD_CLOEXEC : 0;
227 		return (0);
228 
229 	case F_SETFD:
230 		*pop = (*pop &~ UF_EXCLOSE) |
231 		    (dat->fc_cloexec & FD_CLOEXEC ? UF_EXCLOSE : 0);
232 		return (0);
233 
234 	case F_GETFL:
235 		dat->fc_flags = OFLAGS(fp->f_flag);
236 		return (0);
237 
238 	case F_SETFL:
239 		fhold(fp);
240 		fp->f_flag &= ~FCNTLFLAGS;
241 		fp->f_flag |= FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
242 		tmp = fp->f_flag & FNONBLOCK;
243 		error = fo_ioctl(fp, FIONBIO, (caddr_t)&tmp, td);
244 		if (error) {
245 			fdrop(fp, td);
246 			return (error);
247 		}
248 		tmp = fp->f_flag & FASYNC;
249 		error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, td);
250 		if (!error) {
251 			fdrop(fp, td);
252 			return (0);
253 		}
254 		fp->f_flag &= ~FNONBLOCK;
255 		tmp = 0;
256 		fo_ioctl(fp, FIONBIO, (caddr_t)&tmp, td);
257 		fdrop(fp, td);
258 		return (error);
259 
260 	case F_GETOWN:
261 		fhold(fp);
262 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner, td);
263 		fdrop(fp, td);
264 		return(error);
265 
266 	case F_SETOWN:
267 		fhold(fp);
268 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner, td);
269 		fdrop(fp, td);
270 		return(error);
271 
272 	case F_SETLKW:
273 		flg |= F_WAIT;
274 		/* Fall into F_SETLK */
275 
276 	case F_SETLK:
277 		if (fp->f_type != DTYPE_VNODE)
278 			return (EBADF);
279 		vp = (struct vnode *)fp->f_data;
280 
281 		/*
282 		 * copyin/lockop may block
283 		 */
284 		fhold(fp);
285 		if (dat->fc_flock.l_whence == SEEK_CUR)
286 			dat->fc_flock.l_start += fp->f_offset;
287 
288 		switch (dat->fc_flock.l_type) {
289 		case F_RDLCK:
290 			if ((fp->f_flag & FREAD) == 0) {
291 				error = EBADF;
292 				break;
293 			}
294 			p->p_leader->p_flag |= P_ADVLOCK;
295 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
296 			    &dat->fc_flock, flg);
297 			break;
298 		case F_WRLCK:
299 			if ((fp->f_flag & FWRITE) == 0) {
300 				error = EBADF;
301 				break;
302 			}
303 			p->p_leader->p_flag |= P_ADVLOCK;
304 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
305 			    &dat->fc_flock, flg);
306 			break;
307 		case F_UNLCK:
308 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
309 				&dat->fc_flock, F_POSIX);
310 			break;
311 		default:
312 			error = EINVAL;
313 			break;
314 		}
315 		/* Check for race with close */
316 		if ((unsigned) fd >= fdp->fd_nfiles ||
317 		    fp != fdp->fd_files[fd].fp) {
318 			dat->fc_flock.l_whence = SEEK_SET;
319 			dat->fc_flock.l_start = 0;
320 			dat->fc_flock.l_len = 0;
321 			dat->fc_flock.l_type = F_UNLCK;
322 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
323 					   F_UNLCK, &dat->fc_flock, F_POSIX);
324 		}
325 		fdrop(fp, td);
326 		return(error);
327 
328 	case F_GETLK:
329 		if (fp->f_type != DTYPE_VNODE)
330 			return (EBADF);
331 		vp = (struct vnode *)fp->f_data;
332 		/*
333 		 * copyin/lockop may block
334 		 */
335 		fhold(fp);
336 		if (dat->fc_flock.l_type != F_RDLCK &&
337 		    dat->fc_flock.l_type != F_WRLCK &&
338 		    dat->fc_flock.l_type != F_UNLCK) {
339 			fdrop(fp, td);
340 			return (EINVAL);
341 		}
342 		if (dat->fc_flock.l_whence == SEEK_CUR)
343 			dat->fc_flock.l_start += fp->f_offset;
344 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
345 			    &dat->fc_flock, F_POSIX);
346 		fdrop(fp, td);
347 		return(error);
348 	default:
349 		return (EINVAL);
350 	}
351 	/* NOTREACHED */
352 }
353 
354 /*
355  * The file control system call.
356  */
357 int
358 fcntl(struct fcntl_args *uap)
359 {
360 	union fcntl_dat dat;
361 	int error;
362 
363 	switch (uap->cmd) {
364 	case F_DUPFD:
365 		dat.fc_fd = uap->arg;
366 		break;
367 	case F_SETFD:
368 		dat.fc_cloexec = uap->arg;
369 		break;
370 	case F_SETFL:
371 		dat.fc_flags = uap->arg;
372 		break;
373 	case F_SETOWN:
374 		dat.fc_owner = uap->arg;
375 		break;
376 	case F_SETLKW:
377 	case F_SETLK:
378 	case F_GETLK:
379 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
380 		    sizeof(struct flock));
381 		if (error)
382 			return (error);
383 		break;
384 	}
385 
386 	error = kern_fcntl(uap->fd, uap->cmd, &dat);
387 
388 	if (error == 0) {
389 		switch (uap->cmd) {
390 		case F_DUPFD:
391 			uap->sysmsg_result = dat.fc_fd;
392 			break;
393 		case F_GETFD:
394 			uap->sysmsg_result = dat.fc_cloexec;
395 			break;
396 		case F_GETFL:
397 			uap->sysmsg_result = dat.fc_flags;
398 			break;
399 		case F_GETOWN:
400 			uap->sysmsg_result = dat.fc_owner;
401 		case F_GETLK:
402 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
403 			    sizeof(struct flock));
404 			break;
405 		}
406 	}
407 
408 	return (error);
409 }
410 
411 /*
412  * Common code for dup, dup2, and fcntl(F_DUPFD).
413  *
414  * The type flag can be either DUP_FIXED or DUP_VARIABLE.  DUP_FIXED tells
415  * kern_dup() to destructively dup over an existing file descriptor if new
416  * is already open.  DUP_VARIABLE tells kern_dup() to find the lowest
417  * unused file descriptor that is greater than or equal to new.
418  */
419 int
420 kern_dup(enum dup_type type, int old, int new, int *res)
421 {
422 	struct thread *td = curthread;
423 	struct proc *p = td->td_proc;
424 	struct filedesc *fdp = p->p_fd;
425 	struct file *fp;
426 	struct file *delfp;
427 	int holdleaders;
428 	boolean_t fdalloced = FALSE;
429 	int error, newfd;
430 
431 	/*
432 	 * Verify that we have a valid descriptor to dup from and
433 	 * possibly to dup to.
434 	 */
435 	if (old < 0 || new < 0 || new > p->p_rlimit[RLIMIT_NOFILE].rlim_cur ||
436 	    new >= maxfilesperproc)
437 		return (EBADF);
438 	if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL)
439 		return (EBADF);
440 	if (type == DUP_FIXED && old == new) {
441 		*res = new;
442 		return (0);
443 	}
444 	fp = fdp->fd_files[old].fp;
445 	fhold(fp);
446 
447 	/*
448 	 * Expand the table for the new descriptor if needed.  This may
449 	 * block and drop and reacquire the fidedesc lock.
450 	 */
451 	if (type == DUP_VARIABLE || new >= fdp->fd_nfiles) {
452 		error = fdalloc(p, new, &newfd);
453 		if (error) {
454 			fdrop(fp, td);
455 			return (error);
456 		}
457 		fdalloced = TRUE;
458 	}
459 	if (type == DUP_VARIABLE)
460 		new = newfd;
461 
462 	/*
463 	 * If the old file changed out from under us then treat it as a
464 	 * bad file descriptor.  Userland should do its own locking to
465 	 * avoid this case.
466 	 */
467 	if (fdp->fd_files[old].fp != fp) {
468 		if (fdp->fd_files[new].fp == NULL) {
469 			if (fdalloced)
470 				fdreserve(fdp, newfd, -1);
471 			if (new < fdp->fd_freefile)
472 				fdp->fd_freefile = new;
473 			while (fdp->fd_lastfile > 0 &&
474 			    fdp->fd_files[fdp->fd_lastfile].fp == NULL)
475 				fdp->fd_lastfile--;
476 		}
477 		fdrop(fp, td);
478 		return (EBADF);
479 	}
480 	KASSERT(old != new, ("new fd is same as old"));
481 
482 	/*
483 	 * Save info on the descriptor being overwritten.  We have
484 	 * to do the unmap now, but we cannot close it without
485 	 * introducing an ownership race for the slot.
486 	 */
487 	delfp = fdp->fd_files[new].fp;
488 	if (delfp != NULL && p->p_fdtol != NULL) {
489 		/*
490 		 * Ask fdfree() to sleep to ensure that all relevant
491 		 * process leaders can be traversed in closef().
492 		 */
493 		fdp->fd_holdleaderscount++;
494 		holdleaders = 1;
495 	} else
496 		holdleaders = 0;
497 	KASSERT(delfp == NULL || type == DUP_FIXED,
498 	    ("dup() picked an open file"));
499 #if 0
500 	if (delfp && (fdp->fd_files[new].fileflags & UF_MAPPED))
501 		(void) munmapfd(p, new);
502 #endif
503 
504 	/*
505 	 * Duplicate the source descriptor, update lastfile
506 	 */
507 	if (new > fdp->fd_lastfile)
508 		fdp->fd_lastfile = new;
509 	if (!fdalloced && fdp->fd_files[new].fp == NULL)
510 		fdreserve(fdp, new, 1);
511 	fdp->fd_files[new].fp = fp;
512 	fdp->fd_files[new].fileflags =
513 			fdp->fd_files[old].fileflags & ~UF_EXCLOSE;
514 	*res = new;
515 
516 	/*
517 	 * If we dup'd over a valid file, we now own the reference to it
518 	 * and must dispose of it using closef() semantics (as if a
519 	 * close() were performed on it).
520 	 */
521 	if (delfp) {
522 		(void) closef(delfp, td);
523 		if (holdleaders) {
524 			fdp->fd_holdleaderscount--;
525 			if (fdp->fd_holdleaderscount == 0 &&
526 			    fdp->fd_holdleaderswakeup != 0) {
527 				fdp->fd_holdleaderswakeup = 0;
528 				wakeup(&fdp->fd_holdleaderscount);
529 			}
530 		}
531 	}
532 	return (0);
533 }
534 
535 /*
536  * If sigio is on the list associated with a process or process group,
537  * disable signalling from the device, remove sigio from the list and
538  * free sigio.
539  */
540 void
541 funsetown(struct sigio *sigio)
542 {
543 	if (sigio == NULL)
544 		return;
545 	crit_enter();
546 	*(sigio->sio_myref) = NULL;
547 	crit_exit();
548 	if (sigio->sio_pgid < 0) {
549 		SLIST_REMOVE(&sigio->sio_pgrp->pg_sigiolst, sigio,
550 			     sigio, sio_pgsigio);
551 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
552 		SLIST_REMOVE(&sigio->sio_proc->p_sigiolst, sigio,
553 			     sigio, sio_pgsigio);
554 	}
555 	crfree(sigio->sio_ucred);
556 	free(sigio, M_SIGIO);
557 }
558 
559 /* Free a list of sigio structures. */
560 void
561 funsetownlst(struct sigiolst *sigiolst)
562 {
563 	struct sigio *sigio;
564 
565 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
566 		funsetown(sigio);
567 }
568 
569 /*
570  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
571  *
572  * After permission checking, add a sigio structure to the sigio list for
573  * the process or process group.
574  */
575 int
576 fsetown(pid_t pgid, struct sigio **sigiop)
577 {
578 	struct proc *proc;
579 	struct pgrp *pgrp;
580 	struct sigio *sigio;
581 
582 	if (pgid == 0) {
583 		funsetown(*sigiop);
584 		return (0);
585 	}
586 	if (pgid > 0) {
587 		proc = pfind(pgid);
588 		if (proc == NULL)
589 			return (ESRCH);
590 
591 		/*
592 		 * Policy - Don't allow a process to FSETOWN a process
593 		 * in another session.
594 		 *
595 		 * Remove this test to allow maximum flexibility or
596 		 * restrict FSETOWN to the current process or process
597 		 * group for maximum safety.
598 		 */
599 		if (proc->p_session != curproc->p_session)
600 			return (EPERM);
601 
602 		pgrp = NULL;
603 	} else /* if (pgid < 0) */ {
604 		pgrp = pgfind(-pgid);
605 		if (pgrp == NULL)
606 			return (ESRCH);
607 
608 		/*
609 		 * Policy - Don't allow a process to FSETOWN a process
610 		 * in another session.
611 		 *
612 		 * Remove this test to allow maximum flexibility or
613 		 * restrict FSETOWN to the current process or process
614 		 * group for maximum safety.
615 		 */
616 		if (pgrp->pg_session != curproc->p_session)
617 			return (EPERM);
618 
619 		proc = NULL;
620 	}
621 	funsetown(*sigiop);
622 	sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
623 	if (pgid > 0) {
624 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
625 		sigio->sio_proc = proc;
626 	} else {
627 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
628 		sigio->sio_pgrp = pgrp;
629 	}
630 	sigio->sio_pgid = pgid;
631 	sigio->sio_ucred = crhold(curproc->p_ucred);
632 	/* It would be convenient if p_ruid was in ucred. */
633 	sigio->sio_ruid = curproc->p_ucred->cr_ruid;
634 	sigio->sio_myref = sigiop;
635 	crit_enter();
636 	*sigiop = sigio;
637 	crit_exit();
638 	return (0);
639 }
640 
641 /*
642  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
643  */
644 pid_t
645 fgetown(struct sigio *sigio)
646 {
647 	return (sigio != NULL ? sigio->sio_pgid : 0);
648 }
649 
650 /*
651  * Close many file descriptors.
652  */
653 /* ARGSUSED */
654 
655 int
656 closefrom(struct closefrom_args *uap)
657 {
658 	return(kern_closefrom(uap->fd));
659 }
660 
661 int
662 kern_closefrom(int fd)
663 {
664 	struct thread *td = curthread;
665 	struct proc *p = td->td_proc;
666 	struct filedesc *fdp;
667 
668 	KKASSERT(p);
669 	fdp = p->p_fd;
670 
671 	if (fd < 0 || fd > fdp->fd_lastfile)
672 		return (0);
673 
674 	do {
675 		if (kern_close(fdp->fd_lastfile) == EINTR)
676 			return (EINTR);
677 	} while (fdp->fd_lastfile > fd);
678 
679 	return (0);
680 }
681 
682 /*
683  * Close a file descriptor.
684  */
685 /* ARGSUSED */
686 
687 int
688 close(struct close_args *uap)
689 {
690 	return(kern_close(uap->fd));
691 }
692 
693 int
694 kern_close(int fd)
695 {
696 	struct thread *td = curthread;
697 	struct proc *p = td->td_proc;
698 	struct filedesc *fdp;
699 	struct file *fp;
700 	int error;
701 	int holdleaders;
702 
703 	KKASSERT(p);
704 	fdp = p->p_fd;
705 
706 	if ((unsigned)fd >= fdp->fd_nfiles ||
707 	    (fp = fdp->fd_files[fd].fp) == NULL)
708 		return (EBADF);
709 #if 0
710 	if (fdp->fd_files[fd].fileflags & UF_MAPPED)
711 		(void) munmapfd(p, fd);
712 #endif
713 	funsetfd(fdp, fd);
714 	holdleaders = 0;
715 	if (p->p_fdtol != NULL) {
716 		/*
717 		 * Ask fdfree() to sleep to ensure that all relevant
718 		 * process leaders can be traversed in closef().
719 		 */
720 		fdp->fd_holdleaderscount++;
721 		holdleaders = 1;
722 	}
723 
724 	/*
725 	 * we now hold the fp reference that used to be owned by the descriptor
726 	 * array.
727 	 */
728 	while (fdp->fd_lastfile > 0 && fdp->fd_files[fdp->fd_lastfile].fp == NULL)
729 		fdp->fd_lastfile--;
730 	if (fd < fdp->fd_knlistsize)
731 		knote_fdclose(p, fd);
732 	error = closef(fp, td);
733 	if (holdleaders) {
734 		fdp->fd_holdleaderscount--;
735 		if (fdp->fd_holdleaderscount == 0 &&
736 		    fdp->fd_holdleaderswakeup != 0) {
737 			fdp->fd_holdleaderswakeup = 0;
738 			wakeup(&fdp->fd_holdleaderscount);
739 		}
740 	}
741 	return (error);
742 }
743 
744 /*
745  * shutdown_args(int fd, int how)
746  */
747 int
748 kern_shutdown(int fd, int how)
749 {
750 	struct thread *td = curthread;
751 	struct proc *p = td->td_proc;
752 	struct filedesc *fdp;
753 	struct file *fp;
754 	int error;
755 
756 	KKASSERT(p);
757 
758 	fdp = p->p_fd;
759 	if ((unsigned)fd >= fdp->fd_nfiles ||
760 	    (fp = fdp->fd_files[fd].fp) == NULL)
761 		return (EBADF);
762 	fhold(fp);
763 	error = fo_shutdown(fp, how, td);
764 	fdrop(fp, td);
765 
766 	return (error);
767 }
768 
769 int
770 shutdown(struct shutdown_args *uap)
771 {
772 	int error;
773 
774 	error = kern_shutdown(uap->s, uap->how);
775 
776 	return (error);
777 }
778 
779 int
780 kern_fstat(int fd, struct stat *ub)
781 {
782 	struct thread *td = curthread;
783 	struct proc *p = td->td_proc;
784 	struct filedesc *fdp;
785 	struct file *fp;
786 	int error;
787 
788 	KKASSERT(p);
789 
790 	fdp = p->p_fd;
791 	if ((unsigned)fd >= fdp->fd_nfiles ||
792 	    (fp = fdp->fd_files[fd].fp) == NULL)
793 		return (EBADF);
794 	fhold(fp);
795 	error = fo_stat(fp, ub, td);
796 	fdrop(fp, td);
797 
798 	return (error);
799 }
800 
801 /*
802  * Return status information about a file descriptor.
803  */
804 int
805 fstat(struct fstat_args *uap)
806 {
807 	struct stat st;
808 	int error;
809 
810 	error = kern_fstat(uap->fd, &st);
811 
812 	if (error == 0)
813 		error = copyout(&st, uap->sb, sizeof(st));
814 	return (error);
815 }
816 
817 /*
818  * Return pathconf information about a file descriptor.
819  */
820 /* ARGSUSED */
821 int
822 fpathconf(struct fpathconf_args *uap)
823 {
824 	struct thread *td = curthread;
825 	struct proc *p = td->td_proc;
826 	struct filedesc *fdp;
827 	struct file *fp;
828 	struct vnode *vp;
829 	int error = 0;
830 
831 	KKASSERT(p);
832 	fdp = p->p_fd;
833 	if ((unsigned)uap->fd >= fdp->fd_nfiles ||
834 	    (fp = fdp->fd_files[uap->fd].fp) == NULL)
835 		return (EBADF);
836 
837 	fhold(fp);
838 
839 	switch (fp->f_type) {
840 	case DTYPE_PIPE:
841 	case DTYPE_SOCKET:
842 		if (uap->name != _PC_PIPE_BUF) {
843 			error = EINVAL;
844 		} else {
845 			uap->sysmsg_result = PIPE_BUF;
846 			error = 0;
847 		}
848 		break;
849 	case DTYPE_FIFO:
850 	case DTYPE_VNODE:
851 		vp = (struct vnode *)fp->f_data;
852 		error = VOP_PATHCONF(vp, uap->name, uap->sysmsg_fds);
853 		break;
854 	default:
855 		error = EOPNOTSUPP;
856 		break;
857 	}
858 	fdrop(fp, td);
859 	return(error);
860 }
861 
862 static int fdexpand;
863 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0, "");
864 
865 static void
866 fdgrow(struct filedesc *fdp, int want)
867 {
868 	struct fdnode *newfiles;
869 	struct fdnode *oldfiles;
870 	int nf, extra;
871 
872 	nf = fdp->fd_nfiles;
873 	do {
874 		/* nf has to be of the form 2^n - 1 */
875 		nf = 2 * nf + 1;
876 	} while (nf <= want);
877 
878 	newfiles = malloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
879 
880 	/*
881 	 * deal with file-table extend race that might have occured
882 	 * when malloc was blocked.
883 	 */
884 	if (fdp->fd_nfiles >= nf) {
885 		free(newfiles, M_FILEDESC);
886 		return;
887 	}
888 	/*
889 	 * Copy the existing ofile and ofileflags arrays
890 	 * and zero the new portion of each array.
891 	 */
892 	extra = nf - fdp->fd_nfiles;
893 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
894 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
895 
896 	oldfiles = fdp->fd_files;
897 	fdp->fd_files = newfiles;
898 	fdp->fd_nfiles = nf;
899 
900 	if (oldfiles != fdp->fd_builtin_files)
901 		free(oldfiles, M_FILEDESC);
902 	fdexpand++;
903 }
904 
905 /*
906  * Number of nodes in right subtree, including the root.
907  */
908 static __inline int
909 right_subtree_size(int n)
910 {
911 	return (n ^ (n | (n + 1)));
912 }
913 
914 /*
915  * Bigger ancestor.
916  */
917 static __inline int
918 right_ancestor(int n)
919 {
920 	return (n | (n + 1));
921 }
922 
923 /*
924  * Smaller ancestor.
925  */
926 static __inline int
927 left_ancestor(int n)
928 {
929 	return ((n & (n + 1)) - 1);
930 }
931 
932 void
933 fdreserve(struct filedesc *fdp, int fd, int incr)
934 {
935 	while (fd >= 0) {
936 		fdp->fd_files[fd].allocated += incr;
937 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
938 		fd = left_ancestor(fd);
939 	}
940 }
941 
942 /*
943  * Allocate a file descriptor for the process.
944  */
945 int
946 fdalloc(struct proc *p, int want, int *result)
947 {
948 	struct filedesc *fdp = p->p_fd;
949 	int fd, rsize, rsum, node, lim;
950 
951 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
952 	if (want >= lim)
953 		return (EMFILE);
954 	if (want >= fdp->fd_nfiles)
955 		fdgrow(fdp, want);
956 
957 	/*
958 	 * Search for a free descriptor starting at the higher
959 	 * of want or fd_freefile.  If that fails, consider
960 	 * expanding the ofile array.
961 	 */
962 retry:
963 	/* move up the tree looking for a subtree with a free node */
964 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
965 	     fd = right_ancestor(fd)) {
966 		if (fdp->fd_files[fd].allocated == 0)
967 			goto found;
968 
969 		rsize = right_subtree_size(fd);
970 		if (fdp->fd_files[fd].allocated == rsize)
971 			continue;	/* right subtree full */
972 
973 		/*
974 		 * Free fd is in the right subtree of the tree rooted at fd.
975 		 * Call that subtree R.  Look for the smallest (leftmost)
976 		 * subtree of R with an unallocated fd: continue moving
977 		 * down the left branch until encountering a full left
978 		 * subtree, then move to the right.
979 		 */
980 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
981 			node = fd + rsize;
982 			rsum += fdp->fd_files[node].allocated;
983 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
984 				fd = node;	/* move to the right */
985 				if (fdp->fd_files[node].allocated == 0)
986 					goto found;
987 				rsum = 0;
988 			}
989 		}
990 		goto found;
991 	}
992 
993 	/*
994 	 * No space in current array.  Expand?
995 	 */
996 	if (fdp->fd_nfiles >= lim)
997 		return (EMFILE);
998 	fdgrow(fdp, want);
999 	goto retry;
1000 
1001 found:
1002 	KKASSERT(fd < fdp->fd_nfiles);
1003 	fdp->fd_files[fd].fileflags = 0;
1004 	if (fd > fdp->fd_lastfile)
1005 		fdp->fd_lastfile = fd;
1006 	if (want <= fdp->fd_freefile)
1007 		fdp->fd_freefile = fd;
1008 	*result = fd;
1009 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1010 	fdreserve(fdp, fd, 1);
1011 	return (0);
1012 }
1013 
1014 /*
1015  * Check to see whether n user file descriptors
1016  * are available to the process p.
1017  */
1018 int
1019 fdavail(struct proc *p, int n)
1020 {
1021 	struct filedesc *fdp = p->p_fd;
1022 	struct fdnode *fdnode;
1023 	int i, lim, last;
1024 
1025 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1026 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0)
1027 		return (1);
1028 
1029 	last = min(fdp->fd_nfiles, lim);
1030 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1031 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1032 		if (fdnode->fp == NULL && --n <= 0)
1033 			return (1);
1034 	}
1035 	return (0);
1036 }
1037 
1038 /*
1039  * falloc:
1040  *	Create a new open file structure and allocate a file decriptor
1041  *	for the process that refers to it.  If p is NULL, no descriptor
1042  *	is allocated and the file pointer is returned unassociated with
1043  *	any process.  resultfd is only used if p is not NULL and may
1044  *	separately be NULL indicating that you don't need the returned fd.
1045  *
1046  *	A held file pointer is returned.  If a descriptor has been allocated
1047  *	an additional hold on the fp will be made due to the fd_files[]
1048  *	reference.
1049  */
1050 int
1051 falloc(struct proc *p, struct file **resultfp, int *resultfd)
1052 {
1053 	static struct timeval lastfail;
1054 	static int curfail;
1055 	struct file *fp;
1056 	int error;
1057 
1058 	fp = NULL;
1059 
1060 	/*
1061 	 * Handle filetable full issues and root overfill.
1062 	 */
1063 	if (nfiles >= maxfiles - maxfilesrootres &&
1064 	    ((p && p->p_ucred->cr_ruid != 0) || nfiles >= maxfiles)) {
1065 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1066 			printf("kern.maxfiles limit exceeded by uid %d, please see tuning(7).\n",
1067 				(p ? p->p_ucred->cr_ruid : -1));
1068 		}
1069 		error = ENFILE;
1070 		goto done;
1071 	}
1072 
1073 	/*
1074 	 * Allocate a new file descriptor.
1075 	 */
1076 	nfiles++;
1077 	fp = malloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1078 	fp->f_count = 1;
1079 	fp->f_ops = &badfileops;
1080 	fp->f_seqcount = 1;
1081 	if (p)
1082 		fp->f_cred = crhold(p->p_ucred);
1083 	else
1084 		fp->f_cred = crhold(proc0.p_ucred);
1085 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1086 	if (resultfd) {
1087 		if ((error = fsetfd(p, fp, resultfd)) != 0) {
1088 			fdrop(fp, p->p_thread);
1089 			fp = NULL;
1090 		}
1091 	} else {
1092 		error = 0;
1093 	}
1094 done:
1095 	*resultfp = fp;
1096 	return (error);
1097 }
1098 
1099 /*
1100  * Associate a file pointer with a file descriptor.  On success the fp
1101  * will have an additional ref representing the fd_files[] association.
1102  */
1103 int
1104 fsetfd(struct proc *p, struct file *fp, int *resultfd)
1105 {
1106 	int fd, error;
1107 
1108 	fd = -1;
1109 	if ((error = fdalloc(p, 0, &fd)) == 0) {
1110 		fhold(fp);
1111 		p->p_fd->fd_files[fd].fp = fp;
1112 	}
1113 	*resultfd = fd;
1114 	return (error);
1115 }
1116 
1117 void
1118 funsetfd(struct filedesc *fdp, int fd)
1119 {
1120 	fdp->fd_files[fd].fp = NULL;
1121 	fdp->fd_files[fd].fileflags = 0;
1122 	fdreserve(fdp, fd, -1);
1123 	if (fd < fdp->fd_freefile)
1124 		fdp->fd_freefile = fd;
1125 }
1126 
1127 void
1128 fsetcred(struct file *fp, struct ucred *cr)
1129 {
1130 	crhold(cr);
1131 	crfree(fp->f_cred);
1132 	fp->f_cred = cr;
1133 }
1134 
1135 /*
1136  * Free a file descriptor.
1137  */
1138 void
1139 ffree(struct file *fp)
1140 {
1141 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1142 	LIST_REMOVE(fp, f_list);
1143 	crfree(fp->f_cred);
1144 	if (fp->f_ncp) {
1145 	    cache_drop(fp->f_ncp);
1146 	    fp->f_ncp = NULL;
1147 	}
1148 	nfiles--;
1149 	free(fp, M_FILE);
1150 }
1151 
1152 /*
1153  * Build a new filedesc structure.
1154  */
1155 struct filedesc *
1156 fdinit(struct proc *p)
1157 {
1158 	struct filedesc *newfdp;
1159 	struct filedesc *fdp = p->p_fd;
1160 
1161 	newfdp = malloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1162 	if (fdp->fd_cdir) {
1163 		newfdp->fd_cdir = fdp->fd_cdir;
1164 		vref(newfdp->fd_cdir);
1165 		newfdp->fd_ncdir = cache_hold(fdp->fd_ncdir);
1166 	}
1167 
1168 	/*
1169 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1170 	 * proc0, but should unconditionally exist in other processes.
1171 	 */
1172 	if (fdp->fd_rdir) {
1173 		newfdp->fd_rdir = fdp->fd_rdir;
1174 		vref(newfdp->fd_rdir);
1175 		newfdp->fd_nrdir = cache_hold(fdp->fd_nrdir);
1176 	}
1177 	if (fdp->fd_jdir) {
1178 		newfdp->fd_jdir = fdp->fd_jdir;
1179 		vref(newfdp->fd_jdir);
1180 		newfdp->fd_njdir = cache_hold(fdp->fd_njdir);
1181 	}
1182 
1183 	/* Create the file descriptor table. */
1184 	newfdp->fd_refcnt = 1;
1185 	newfdp->fd_cmask = cmask;
1186 	newfdp->fd_files = newfdp->fd_builtin_files;
1187 	newfdp->fd_nfiles = NDFILE;
1188 	newfdp->fd_knlistsize = -1;
1189 
1190 	return (newfdp);
1191 }
1192 
1193 /*
1194  * Share a filedesc structure.
1195  */
1196 struct filedesc *
1197 fdshare(struct proc *p)
1198 {
1199 	p->p_fd->fd_refcnt++;
1200 	return (p->p_fd);
1201 }
1202 
1203 /*
1204  * Copy a filedesc structure.
1205  */
1206 struct filedesc *
1207 fdcopy(struct proc *p)
1208 {
1209 	struct filedesc *newfdp, *fdp = p->p_fd;
1210 	struct fdnode *fdnode;
1211 	int i;
1212 
1213 	/* Certain daemons might not have file descriptors. */
1214 	if (fdp == NULL)
1215 		return (NULL);
1216 
1217 	newfdp = malloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK);
1218 	*newfdp = *fdp;
1219 	if (newfdp->fd_cdir) {
1220 		vref(newfdp->fd_cdir);
1221 		newfdp->fd_ncdir = cache_hold(newfdp->fd_ncdir);
1222 	}
1223 	/*
1224 	 * We must check for fd_rdir here, at least for now because
1225 	 * the init process is created before we have access to the
1226 	 * rootvode to take a reference to it.
1227 	 */
1228 	if (newfdp->fd_rdir) {
1229 		vref(newfdp->fd_rdir);
1230 		newfdp->fd_nrdir = cache_hold(newfdp->fd_nrdir);
1231 	}
1232 	if (newfdp->fd_jdir) {
1233 		vref(newfdp->fd_jdir);
1234 		newfdp->fd_njdir = cache_hold(newfdp->fd_njdir);
1235 	}
1236 	newfdp->fd_refcnt = 1;
1237 
1238 	/*
1239 	 * If the number of open files fits in the internal arrays
1240 	 * of the open file structure, use them, otherwise allocate
1241 	 * additional memory for the number of descriptors currently
1242 	 * in use.
1243 	 */
1244 	if (newfdp->fd_lastfile < NDFILE) {
1245 		newfdp->fd_files = newfdp->fd_builtin_files;
1246 		i = NDFILE;
1247 	} else {
1248 		/*
1249 		 * Compute the smallest file table size
1250 		 * for the file descriptors currently in use,
1251 		 * allowing the table to shrink.
1252 		 */
1253 		i = newfdp->fd_nfiles;
1254 		while ((i-1)/2 > newfdp->fd_lastfile && (i-1)/2 > NDFILE)
1255 			i = (i-1)/2;
1256 		newfdp->fd_files = malloc(i * sizeof(struct fdnode),
1257 					  M_FILEDESC, M_WAITOK);
1258 	}
1259 	newfdp->fd_nfiles = i;
1260 
1261 	if (fdp->fd_files != fdp->fd_builtin_files ||
1262 	    newfdp->fd_files != newfdp->fd_builtin_files
1263 	) {
1264 		bcopy(fdp->fd_files, newfdp->fd_files,
1265 		      i * sizeof(struct fdnode));
1266 	}
1267 
1268 	/*
1269 	 * kq descriptors cannot be copied.
1270 	 */
1271 	if (newfdp->fd_knlistsize != -1) {
1272 		fdnode = &newfdp->fd_files[newfdp->fd_lastfile];
1273 		for (i = newfdp->fd_lastfile; i >= 0; i--, fdnode--) {
1274 			if (fdnode->fp != NULL && fdnode->fp->f_type == DTYPE_KQUEUE)
1275 				funsetfd(newfdp, i);	/* nulls out *fpp */
1276 			if (fdnode->fp == NULL && i == newfdp->fd_lastfile && i > 0)
1277 				newfdp->fd_lastfile--;
1278 		}
1279 		newfdp->fd_knlist = NULL;
1280 		newfdp->fd_knlistsize = -1;
1281 		newfdp->fd_knhash = NULL;
1282 		newfdp->fd_knhashmask = 0;
1283 	}
1284 
1285 	fdnode = newfdp->fd_files;
1286 	for (i = newfdp->fd_lastfile; i-- >= 0; fdnode++) {
1287 		if (fdnode->fp != NULL)
1288 			fhold(fdnode->fp);
1289 	}
1290 	return (newfdp);
1291 }
1292 
1293 /*
1294  * Release a filedesc structure.
1295  */
1296 void
1297 fdfree(struct proc *p)
1298 {
1299 	struct thread *td = p->p_thread;
1300 	struct filedesc *fdp = p->p_fd;
1301 	struct fdnode *fdnode;
1302 	int i;
1303 	struct filedesc_to_leader *fdtol;
1304 	struct file *fp;
1305 	struct vnode *vp;
1306 	struct flock lf;
1307 
1308 	/* Certain daemons might not have file descriptors. */
1309 	if (fdp == NULL)
1310 		return;
1311 
1312 	/* Check for special need to clear POSIX style locks */
1313 	fdtol = p->p_fdtol;
1314 	if (fdtol != NULL) {
1315 		KASSERT(fdtol->fdl_refcount > 0,
1316 			("filedesc_to_refcount botch: fdl_refcount=%d",
1317 			 fdtol->fdl_refcount));
1318 		if (fdtol->fdl_refcount == 1 &&
1319 		    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1320 			i = 0;
1321 			fdnode = fdp->fd_files;
1322 			for (i = 0; i <= fdp->fd_lastfile; i++, fdnode++) {
1323 				if (fdnode->fp == NULL ||
1324 				    fdnode->fp->f_type != DTYPE_VNODE)
1325 					continue;
1326 				fp = fdnode->fp;
1327 				fhold(fp);
1328 				lf.l_whence = SEEK_SET;
1329 				lf.l_start = 0;
1330 				lf.l_len = 0;
1331 				lf.l_type = F_UNLCK;
1332 				vp = (struct vnode *)fp->f_data;
1333 				(void) VOP_ADVLOCK(vp,
1334 						   (caddr_t)p->p_leader,
1335 						   F_UNLCK,
1336 						   &lf,
1337 						   F_POSIX);
1338 				fdrop(fp, p->p_thread);
1339 				/* reload due to possible reallocation */
1340 				fdnode = &fdp->fd_files[i];
1341 			}
1342 		}
1343 	retry:
1344 		if (fdtol->fdl_refcount == 1) {
1345 			if (fdp->fd_holdleaderscount > 0 &&
1346 			    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1347 				/*
1348 				 * close() or do_dup() has cleared a reference
1349 				 * in a shared file descriptor table.
1350 				 */
1351 				fdp->fd_holdleaderswakeup = 1;
1352 				tsleep(&fdp->fd_holdleaderscount,
1353 				       0, "fdlhold", 0);
1354 				goto retry;
1355 			}
1356 			if (fdtol->fdl_holdcount > 0) {
1357 				/*
1358 				 * Ensure that fdtol->fdl_leader
1359 				 * remains valid in closef().
1360 				 */
1361 				fdtol->fdl_wakeup = 1;
1362 				tsleep(fdtol, 0, "fdlhold", 0);
1363 				goto retry;
1364 			}
1365 		}
1366 		fdtol->fdl_refcount--;
1367 		if (fdtol->fdl_refcount == 0 &&
1368 		    fdtol->fdl_holdcount == 0) {
1369 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
1370 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
1371 		} else
1372 			fdtol = NULL;
1373 		p->p_fdtol = NULL;
1374 		if (fdtol != NULL)
1375 			free(fdtol, M_FILEDESC_TO_LEADER);
1376 	}
1377 	if (--fdp->fd_refcnt > 0)
1378 		return;
1379 	/*
1380 	 * we are the last reference to the structure, we can
1381 	 * safely assume it will not change out from under us.
1382 	 */
1383 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
1384 		if (fdp->fd_files[i].fp)
1385 			closef(fdp->fd_files[i].fp, td);
1386 	}
1387 	if (fdp->fd_files != fdp->fd_builtin_files)
1388 		free(fdp->fd_files, M_FILEDESC);
1389 	if (fdp->fd_cdir) {
1390 		cache_drop(fdp->fd_ncdir);
1391 		vrele(fdp->fd_cdir);
1392 	}
1393 	if (fdp->fd_rdir) {
1394 		cache_drop(fdp->fd_nrdir);
1395 		vrele(fdp->fd_rdir);
1396 	}
1397 	if (fdp->fd_jdir) {
1398 		cache_drop(fdp->fd_njdir);
1399 		vrele(fdp->fd_jdir);
1400 	}
1401 	if (fdp->fd_knlist)
1402 		free(fdp->fd_knlist, M_KQUEUE);
1403 	if (fdp->fd_knhash)
1404 		free(fdp->fd_knhash, M_KQUEUE);
1405 	free(fdp, M_FILEDESC);
1406 }
1407 
1408 /*
1409  * For setugid programs, we don't want to people to use that setugidness
1410  * to generate error messages which write to a file which otherwise would
1411  * otherwise be off-limits to the process.
1412  *
1413  * This is a gross hack to plug the hole.  A better solution would involve
1414  * a special vop or other form of generalized access control mechanism.  We
1415  * go ahead and just reject all procfs file systems accesses as dangerous.
1416  *
1417  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
1418  * sufficient.  We also don't for check setugidness since we know we are.
1419  */
1420 static int
1421 is_unsafe(struct file *fp)
1422 {
1423 	if (fp->f_type == DTYPE_VNODE &&
1424 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
1425 		return (1);
1426 	return (0);
1427 }
1428 
1429 /*
1430  * Make this setguid thing safe, if at all possible.
1431  */
1432 void
1433 setugidsafety(struct proc *p)
1434 {
1435 	struct thread *td = p->p_thread;
1436 	struct filedesc *fdp = p->p_fd;
1437 	int i;
1438 
1439 	/* Certain daemons might not have file descriptors. */
1440 	if (fdp == NULL)
1441 		return;
1442 
1443 	/*
1444 	 * note: fdp->fd_files may be reallocated out from under us while
1445 	 * we are blocked in a close.  Be careful!
1446 	 */
1447 	for (i = 0; i <= fdp->fd_lastfile; i++) {
1448 		if (i > 2)
1449 			break;
1450 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
1451 			struct file *fp;
1452 
1453 #if 0
1454 			if ((fdp->fd_files[i].fileflags & UF_MAPPED) != 0)
1455 				(void) munmapfd(p, i);
1456 #endif
1457 			if (i < fdp->fd_knlistsize)
1458 				knote_fdclose(p, i);
1459 			/*
1460 			 * NULL-out descriptor prior to close to avoid
1461 			 * a race while close blocks.
1462 			 */
1463 			fp = fdp->fd_files[i].fp;
1464 			funsetfd(fdp, i);
1465 			closef(fp, td);
1466 		}
1467 	}
1468 	while (fdp->fd_lastfile > 0 && fdp->fd_files[fdp->fd_lastfile].fp == NULL)
1469 		fdp->fd_lastfile--;
1470 }
1471 
1472 /*
1473  * Close any files on exec?
1474  */
1475 void
1476 fdcloseexec(struct proc *p)
1477 {
1478 	struct thread *td = p->p_thread;
1479 	struct filedesc *fdp = p->p_fd;
1480 	int i;
1481 
1482 	/* Certain daemons might not have file descriptors. */
1483 	if (fdp == NULL)
1484 		return;
1485 
1486 	/*
1487 	 * We cannot cache fd_files since operations may block and rip
1488 	 * them out from under us.
1489 	 */
1490 	for (i = 0; i <= fdp->fd_lastfile; i++) {
1491 		if (fdp->fd_files[i].fp != NULL &&
1492 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
1493 			struct file *fp;
1494 
1495 #if 0
1496 			if (fdp->fd_files[i].fileflags & UF_MAPPED)
1497 				(void) munmapfd(p, i);
1498 #endif
1499 			if (i < fdp->fd_knlistsize)
1500 				knote_fdclose(p, i);
1501 			/*
1502 			 * NULL-out descriptor prior to close to avoid
1503 			 * a race while close blocks.
1504 			 */
1505 			fp = fdp->fd_files[i].fp;
1506 			funsetfd(fdp, i);
1507 			closef(fp, td);
1508 		}
1509 	}
1510 	while (fdp->fd_lastfile > 0 && fdp->fd_files[fdp->fd_lastfile].fp == NULL)
1511 		fdp->fd_lastfile--;
1512 }
1513 
1514 /*
1515  * It is unsafe for set[ug]id processes to be started with file
1516  * descriptors 0..2 closed, as these descriptors are given implicit
1517  * significance in the Standard C library.  fdcheckstd() will create a
1518  * descriptor referencing /dev/null for each of stdin, stdout, and
1519  * stderr that is not already open.
1520  */
1521 int
1522 fdcheckstd(struct proc *p)
1523 {
1524 	struct thread *td = p->p_thread;
1525 	struct nlookupdata nd;
1526 	struct filedesc *fdp;
1527 	struct file *fp;
1528 	register_t retval;
1529 	int fd, i, error, flags, devnull;
1530 
1531        fdp = p->p_fd;
1532        if (fdp == NULL)
1533                return (0);
1534        devnull = -1;
1535        error = 0;
1536        for (i = 0; i < 3; i++) {
1537 		if (fdp->fd_files[i].fp != NULL)
1538 			continue;
1539 		if (devnull < 0) {
1540 			if ((error = falloc(p, &fp, NULL)) != 0)
1541 				break;
1542 
1543 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
1544 						NLC_FOLLOW|NLC_LOCKVP);
1545 			flags = FREAD | FWRITE;
1546 			if (error == 0)
1547 				error = vn_open(&nd, fp, flags, 0);
1548 			if (error == 0)
1549 				error = fsetfd(p, fp, &fd);
1550 			fdrop(fp, td);
1551 			nlookup_done(&nd);
1552 			if (error)
1553 				break;
1554 			KKASSERT(i == fd);
1555 			devnull = fd;
1556 		} else {
1557 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
1558 			if (error != 0)
1559 				break;
1560 		}
1561        }
1562        return (error);
1563 }
1564 
1565 /*
1566  * Internal form of close.
1567  * Decrement reference count on file structure.
1568  * Note: td and/or p may be NULL when closing a file
1569  * that was being passed in a message.
1570  */
1571 int
1572 closef(struct file *fp, struct thread *td)
1573 {
1574 	struct vnode *vp;
1575 	struct flock lf;
1576 	struct filedesc_to_leader *fdtol;
1577 	struct proc *p;
1578 
1579 	if (fp == NULL)
1580 		return (0);
1581 	if (td == NULL) {
1582 		td = curthread;
1583 		p = NULL;		/* allow no proc association */
1584 	} else {
1585 		p = td->td_proc;	/* can also be NULL */
1586 	}
1587 	/*
1588 	 * POSIX record locking dictates that any close releases ALL
1589 	 * locks owned by this process.  This is handled by setting
1590 	 * a flag in the unlock to free ONLY locks obeying POSIX
1591 	 * semantics, and not to free BSD-style file locks.
1592 	 * If the descriptor was in a message, POSIX-style locks
1593 	 * aren't passed with the descriptor.
1594 	 */
1595 	if (p != NULL &&
1596 	    fp->f_type == DTYPE_VNODE) {
1597 		if ((p->p_leader->p_flag & P_ADVLOCK) != 0) {
1598 			lf.l_whence = SEEK_SET;
1599 			lf.l_start = 0;
1600 			lf.l_len = 0;
1601 			lf.l_type = F_UNLCK;
1602 			vp = (struct vnode *)fp->f_data;
1603 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
1604 					   &lf, F_POSIX);
1605 		}
1606 		fdtol = p->p_fdtol;
1607 		if (fdtol != NULL) {
1608 			/*
1609 			 * Handle special case where file descriptor table
1610 			 * is shared between multiple process leaders.
1611 			 */
1612 			for (fdtol = fdtol->fdl_next;
1613 			     fdtol != p->p_fdtol;
1614 			     fdtol = fdtol->fdl_next) {
1615 				if ((fdtol->fdl_leader->p_flag &
1616 				     P_ADVLOCK) == 0)
1617 					continue;
1618 				fdtol->fdl_holdcount++;
1619 				lf.l_whence = SEEK_SET;
1620 				lf.l_start = 0;
1621 				lf.l_len = 0;
1622 				lf.l_type = F_UNLCK;
1623 				vp = (struct vnode *)fp->f_data;
1624 				(void) VOP_ADVLOCK(vp,
1625 						   (caddr_t)p->p_leader,
1626 						   F_UNLCK, &lf, F_POSIX);
1627 				fdtol->fdl_holdcount--;
1628 				if (fdtol->fdl_holdcount == 0 &&
1629 				    fdtol->fdl_wakeup != 0) {
1630 					fdtol->fdl_wakeup = 0;
1631 					wakeup(fdtol);
1632 				}
1633 			}
1634 		}
1635 	}
1636 	return (fdrop(fp, td));
1637 }
1638 
1639 int
1640 fdrop(struct file *fp, struct thread *td)
1641 {
1642 	struct flock lf;
1643 	struct vnode *vp;
1644 	int error;
1645 
1646 	if (--fp->f_count > 0)
1647 		return (0);
1648 	if (fp->f_count < 0)
1649 		panic("fdrop: count < 0");
1650 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE) {
1651 		lf.l_whence = SEEK_SET;
1652 		lf.l_start = 0;
1653 		lf.l_len = 0;
1654 		lf.l_type = F_UNLCK;
1655 		vp = (struct vnode *)fp->f_data;
1656 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK);
1657 	}
1658 	if (fp->f_ops != &badfileops)
1659 		error = fo_close(fp, td);
1660 	else
1661 		error = 0;
1662 	ffree(fp);
1663 	return (error);
1664 }
1665 
1666 /*
1667  * Apply an advisory lock on a file descriptor.
1668  *
1669  * Just attempt to get a record lock of the requested type on
1670  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
1671  */
1672 /* ARGSUSED */
1673 int
1674 flock(struct flock_args *uap)
1675 {
1676 	struct proc *p = curproc;
1677 	struct filedesc *fdp = p->p_fd;
1678 	struct file *fp;
1679 	struct vnode *vp;
1680 	struct flock lf;
1681 
1682 	if ((unsigned)uap->fd >= fdp->fd_nfiles ||
1683 	    (fp = fdp->fd_files[uap->fd].fp) == NULL)
1684 		return (EBADF);
1685 	if (fp->f_type != DTYPE_VNODE)
1686 		return (EOPNOTSUPP);
1687 	vp = (struct vnode *)fp->f_data;
1688 	lf.l_whence = SEEK_SET;
1689 	lf.l_start = 0;
1690 	lf.l_len = 0;
1691 	if (uap->how & LOCK_UN) {
1692 		lf.l_type = F_UNLCK;
1693 		fp->f_flag &= ~FHASLOCK;
1694 		return (VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK));
1695 	}
1696 	if (uap->how & LOCK_EX)
1697 		lf.l_type = F_WRLCK;
1698 	else if (uap->how & LOCK_SH)
1699 		lf.l_type = F_RDLCK;
1700 	else
1701 		return (EBADF);
1702 	fp->f_flag |= FHASLOCK;
1703 	if (uap->how & LOCK_NB)
1704 		return (VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_FLOCK));
1705 	return (VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_FLOCK|F_WAIT));
1706 }
1707 
1708 /*
1709  * File Descriptor pseudo-device driver (/dev/fd/).
1710  *
1711  * Opening minor device N dup()s the file (if any) connected to file
1712  * descriptor N belonging to the calling process.  Note that this driver
1713  * consists of only the ``open()'' routine, because all subsequent
1714  * references to this file will be direct to the other driver.
1715  */
1716 /* ARGSUSED */
1717 static int
1718 fdopen(dev_t dev, int mode, int type, struct thread *td)
1719 {
1720 	KKASSERT(td->td_lwp != NULL);
1721 
1722 	/*
1723 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
1724 	 * the file descriptor being sought for duplication. The error
1725 	 * return ensures that the vnode for this device will be released
1726 	 * by vn_open. Open will detect this special error and take the
1727 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
1728 	 * will simply report the error.
1729 	 */
1730 	td->td_lwp->lwp_dupfd = minor(dev);
1731 	return (ENODEV);
1732 }
1733 
1734 /*
1735  * Duplicate the specified descriptor to a free descriptor.
1736  */
1737 int
1738 dupfdopen(struct filedesc *fdp, int indx, int dfd, int mode, int error)
1739 {
1740 	struct file *wfp;
1741 	struct file *fp;
1742 
1743 	/*
1744 	 * If the to-be-dup'd fd number is greater than the allowed number
1745 	 * of file descriptors, or the fd to be dup'd has already been
1746 	 * closed, then reject.
1747 	 */
1748 	if ((u_int)dfd >= fdp->fd_nfiles ||
1749 	    (wfp = fdp->fd_files[dfd].fp) == NULL) {
1750 		return (EBADF);
1751 	}
1752 
1753 	/*
1754 	 * There are two cases of interest here.
1755 	 *
1756 	 * For ENODEV simply dup (dfd) to file descriptor
1757 	 * (indx) and return.
1758 	 *
1759 	 * For ENXIO steal away the file structure from (dfd) and
1760 	 * store it in (indx).  (dfd) is effectively closed by
1761 	 * this operation.
1762 	 *
1763 	 * Any other error code is just returned.
1764 	 */
1765 	switch (error) {
1766 	case ENODEV:
1767 		/*
1768 		 * Check that the mode the file is being opened for is a
1769 		 * subset of the mode of the existing descriptor.
1770 		 */
1771 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag)
1772 			return (EACCES);
1773 		fp = fdp->fd_files[indx].fp;
1774 #if 0
1775 		if (fp && fdp->fd_files[indx].fileflags & UF_MAPPED)
1776 			(void) munmapfd(p, indx);
1777 #endif
1778 		fdp->fd_files[indx].fp = wfp;
1779 		fdp->fd_files[indx].fileflags = fdp->fd_files[dfd].fileflags;
1780 		fhold(wfp);
1781 		if (indx > fdp->fd_lastfile)
1782 			fdp->fd_lastfile = indx;
1783 		/*
1784 		 * we now own the reference to fp that the ofiles[] array
1785 		 * used to own.  Release it.
1786 		 */
1787 		if (fp)
1788 			fdrop(fp, curthread);
1789 		return (0);
1790 
1791 	case ENXIO:
1792 		/*
1793 		 * Steal away the file pointer from dfd, and stuff it into indx.
1794 		 */
1795 		fp = fdp->fd_files[indx].fp;
1796 #if 0
1797 		if (fp && fdp->fd_files[indx].fileflags & UF_MAPPED)
1798 			(void) munmapfd(p, indx);
1799 #endif
1800 		fdp->fd_files[indx].fp = fdp->fd_files[dfd].fp;
1801 		fdp->fd_files[indx].fileflags = fdp->fd_files[dfd].fileflags;
1802 		funsetfd(fdp, dfd);
1803 
1804 		/*
1805 		 * we now own the reference to fp that the files[] array
1806 		 * used to own.  Release it.
1807 		 */
1808 		if (fp)
1809 			fdrop(fp, curthread);
1810 		/*
1811 		 * Complete the clean up of the filedesc structure by
1812 		 * recomputing the various hints.
1813 		 */
1814 		if (indx > fdp->fd_lastfile) {
1815 			fdp->fd_lastfile = indx;
1816 		} else {
1817 			while (fdp->fd_lastfile > 0 &&
1818 			   fdp->fd_files[fdp->fd_lastfile].fp == NULL) {
1819 				fdp->fd_lastfile--;
1820 			}
1821 		}
1822 		return (0);
1823 
1824 	default:
1825 		return (error);
1826 	}
1827 	/* NOTREACHED */
1828 }
1829 
1830 
1831 struct filedesc_to_leader *
1832 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
1833 			 struct proc *leader)
1834 {
1835 	struct filedesc_to_leader *fdtol;
1836 
1837 	fdtol = malloc(sizeof(struct filedesc_to_leader),
1838 			M_FILEDESC_TO_LEADER, M_WAITOK);
1839 	fdtol->fdl_refcount = 1;
1840 	fdtol->fdl_holdcount = 0;
1841 	fdtol->fdl_wakeup = 0;
1842 	fdtol->fdl_leader = leader;
1843 	if (old != NULL) {
1844 		fdtol->fdl_next = old->fdl_next;
1845 		fdtol->fdl_prev = old;
1846 		old->fdl_next = fdtol;
1847 		fdtol->fdl_next->fdl_prev = fdtol;
1848 	} else {
1849 		fdtol->fdl_next = fdtol;
1850 		fdtol->fdl_prev = fdtol;
1851 	}
1852 	return fdtol;
1853 }
1854 
1855 /*
1856  * Get file structures.
1857  */
1858 static int
1859 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
1860 {
1861 	struct kinfo_file kf;
1862 	struct filedesc *fdp;
1863 	struct file *fp;
1864 	struct proc *p;
1865 	uid_t uid;
1866 	int count;
1867 	int error;
1868 	int n;
1869 
1870 	/*
1871 	 * Note: because the number of file descriptors is calculated
1872 	 * in different ways for sizing vs returning the data,
1873 	 * there is information leakage from the first loop.  However,
1874 	 * it is of a similar order of magnitude to the leakage from
1875 	 * global system statistics such as kern.openfiles.
1876 	 *
1877 	 * When just doing a count, note that we cannot just count
1878 	 * the elements and add f_count via the filehead list because
1879 	 * threaded processes share their descriptor table and f_count might
1880 	 * still be '1' in that case.
1881 	 *
1882 	 * Since the SYSCTL op can block, we must hold the process to
1883 	 * prevent it being ripped out from under us either in the
1884 	 * file descriptor loop or in the greater LIST_FOREACH.  The
1885 	 * process may be in varying states of disrepair.  If the process
1886 	 * is in SZOMB we may have caught it just as it is being removed
1887 	 * from the allproc list, we must skip it in that case to maintain
1888 	 * an unbroken chain through the allproc list.
1889 	 */
1890 	count = 0;
1891 	error = 0;
1892 	LIST_FOREACH(p, &allproc, p_list) {
1893 		if (p->p_stat == SIDL || (p->p_flag & P_ZOMBIE))
1894 			continue;
1895 		if (!PRISON_CHECK(req->td->td_proc->p_ucred, p->p_ucred) != 0)
1896 			continue;
1897 		if ((fdp = p->p_fd) == NULL)
1898 			continue;
1899 		PHOLD(p);
1900 		for (n = 0; n < fdp->fd_nfiles; ++n) {
1901 			if ((fp = fdp->fd_files[n].fp) == NULL)
1902 				continue;
1903 			if (req->oldptr == NULL) {
1904 				++count;
1905 			} else {
1906 				uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
1907 				kcore_make_file(&kf, fp, p->p_pid, uid, n);
1908 				error = SYSCTL_OUT(req, &kf, sizeof(kf));
1909 				if (error)
1910 					break;
1911 			}
1912 		}
1913 		PRELE(p);
1914 		if (error)
1915 			break;
1916 	}
1917 
1918 	/*
1919 	 * When just calculating the size, overestimate a bit to try to
1920 	 * prevent system activity from causing the buffer-fill call
1921 	 * to fail later on.
1922 	 */
1923 	if (req->oldptr == NULL) {
1924 		count = (count + 16) + (count / 10);
1925 		error = SYSCTL_OUT(req, NULL, count * sizeof(kf));
1926 	}
1927 	return (error);
1928 }
1929 
1930 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
1931     0, 0, sysctl_kern_file, "S,file", "Entire file table");
1932 
1933 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
1934     &maxfilesperproc, 0, "Maximum files allowed open per process");
1935 
1936 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
1937     &maxfiles, 0, "Maximum number of files");
1938 
1939 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
1940     &maxfilesrootres, 0, "Descriptors reserved for root use");
1941 
1942 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
1943 	&nfiles, 0, "System-wide number of open files");
1944 
1945 static void
1946 fildesc_drvinit(void *unused)
1947 {
1948 	int fd;
1949 
1950 	cdevsw_add(&fildesc_cdevsw, 0, 0);
1951 	for (fd = 0; fd < NUMFDESC; fd++) {
1952 		make_dev(&fildesc_cdevsw, fd,
1953 		    UID_BIN, GID_BIN, 0666, "fd/%d", fd);
1954 	}
1955 	make_dev(&fildesc_cdevsw, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
1956 	make_dev(&fildesc_cdevsw, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
1957 	make_dev(&fildesc_cdevsw, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
1958 }
1959 
1960 struct fileops badfileops = {
1961 	NULL,	/* port */
1962 	NULL,	/* clone */
1963 	badfo_readwrite,
1964 	badfo_readwrite,
1965 	badfo_ioctl,
1966 	badfo_poll,
1967 	badfo_kqfilter,
1968 	badfo_stat,
1969 	badfo_close,
1970 	badfo_shutdown
1971 };
1972 
1973 static int
1974 badfo_readwrite(
1975 	struct file *fp,
1976 	struct uio *uio,
1977 	struct ucred *cred,
1978 	int flags,
1979 	struct thread *td
1980 ) {
1981 	return (EBADF);
1982 }
1983 
1984 static int
1985 badfo_ioctl(struct file *fp, u_long com, caddr_t data, struct thread *td)
1986 {
1987 	return (EBADF);
1988 }
1989 
1990 static int
1991 badfo_poll(struct file *fp, int events, struct ucred *cred, struct thread *td)
1992 {
1993 	return (0);
1994 }
1995 
1996 static int
1997 badfo_kqfilter(struct file *fp, struct knote *kn)
1998 {
1999 	return (0);
2000 }
2001 
2002 static int
2003 badfo_stat(struct file *fp, struct stat *sb, struct thread *td)
2004 {
2005 	return (EBADF);
2006 }
2007 
2008 static int
2009 badfo_close(struct file *fp, struct thread *td)
2010 {
2011 	return (EBADF);
2012 }
2013 
2014 static int
2015 badfo_shutdown(struct file *fp, int how, struct thread *td)
2016 {
2017 	return (EBADF);
2018 }
2019 
2020 int
2021 nofo_shutdown(struct file *fp, int how, struct thread *td)
2022 {
2023 	return (EOPNOTSUPP);
2024 }
2025 
2026 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2027 					fildesc_drvinit,NULL)
2028