xref: /dragonfly/sys/kern/kern_descrip.c (revision dcd37f7d)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
72  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
73  * $DragonFly: src/sys/kern/kern_descrip.c,v 1.79 2008/08/31 13:18:28 aggelos Exp $
74  */
75 
76 #include "opt_compat.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/conf.h>
82 #include <sys/device.h>
83 #include <sys/file.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/sysctl.h>
87 #include <sys/vnode.h>
88 #include <sys/proc.h>
89 #include <sys/nlookup.h>
90 #include <sys/file.h>
91 #include <sys/stat.h>
92 #include <sys/filio.h>
93 #include <sys/fcntl.h>
94 #include <sys/unistd.h>
95 #include <sys/resourcevar.h>
96 #include <sys/event.h>
97 #include <sys/kern_syscall.h>
98 #include <sys/kcore.h>
99 #include <sys/kinfo.h>
100 #include <sys/un.h>
101 
102 #include <vm/vm.h>
103 #include <vm/vm_extern.h>
104 
105 #include <sys/thread2.h>
106 #include <sys/file2.h>
107 #include <sys/spinlock2.h>
108 #include <sys/mplock2.h>
109 
110 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
111 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
112 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
113 static int checkfpclosed(struct filedesc *fdp, int fd, struct file *fp);
114 static void ffree(struct file *fp);
115 
116 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
117 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
118 		     "file desc to leader structures");
119 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
120 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
121 
122 static	 d_open_t  fdopen;
123 #define NUMFDESC 64
124 
125 #define CDEV_MAJOR 22
126 static struct dev_ops fildesc_ops = {
127 	{ "FD", CDEV_MAJOR, 0 },
128 	.d_open =	fdopen,
129 };
130 
131 /*
132  * Descriptor management.
133  */
134 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
135 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin);
136 static int nfiles;		/* actual number of open files */
137 extern int cmask;
138 
139 /*
140  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
141  *
142  * MPSAFE - must be called with fdp->fd_spin exclusively held
143  */
144 static __inline
145 void
146 fdfixup_locked(struct filedesc *fdp, int fd)
147 {
148 	if (fd < fdp->fd_freefile) {
149 	       fdp->fd_freefile = fd;
150 	}
151 	while (fdp->fd_lastfile >= 0 &&
152 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
153 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
154 	) {
155 		--fdp->fd_lastfile;
156 	}
157 }
158 
159 /*
160  * System calls on descriptors.
161  *
162  * MPSAFE
163  */
164 int
165 sys_getdtablesize(struct getdtablesize_args *uap)
166 {
167 	struct proc *p = curproc;
168 	struct plimit *limit = p->p_limit;
169 
170 	spin_lock_rd(&limit->p_spin);
171 	uap->sysmsg_result =
172 	    min((int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
173 	spin_unlock_rd(&limit->p_spin);
174 	return (0);
175 }
176 
177 /*
178  * Duplicate a file descriptor to a particular value.
179  *
180  * note: keep in mind that a potential race condition exists when closing
181  * descriptors from a shared descriptor table (via rfork).
182  *
183  * MPSAFE
184  */
185 int
186 sys_dup2(struct dup2_args *uap)
187 {
188 	int error;
189 	int fd = 0;
190 
191 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
192 	uap->sysmsg_fds[0] = fd;
193 
194 	return (error);
195 }
196 
197 /*
198  * Duplicate a file descriptor.
199  *
200  * MPSAFE
201  */
202 int
203 sys_dup(struct dup_args *uap)
204 {
205 	int error;
206 	int fd = 0;
207 
208 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
209 	uap->sysmsg_fds[0] = fd;
210 
211 	return (error);
212 }
213 
214 /*
215  * MPALMOSTSAFE - acquires mplock for fp operations
216  */
217 int
218 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
219 {
220 	struct thread *td = curthread;
221 	struct proc *p = td->td_proc;
222 	struct file *fp;
223 	struct vnode *vp;
224 	u_int newmin;
225 	u_int oflags;
226 	u_int nflags;
227 	int tmp, error, flg = F_POSIX;
228 
229 	KKASSERT(p);
230 
231 	/*
232 	 * Operations on file descriptors that do not require a file pointer.
233 	 */
234 	switch (cmd) {
235 	case F_GETFD:
236 		error = fgetfdflags(p->p_fd, fd, &tmp);
237 		if (error == 0)
238 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
239 		return (error);
240 
241 	case F_SETFD:
242 		if (dat->fc_cloexec & FD_CLOEXEC)
243 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
244 		else
245 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
246 		return (error);
247 	case F_DUPFD:
248 		newmin = dat->fc_fd;
249 		error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
250 		return (error);
251 	default:
252 		break;
253 	}
254 
255 	/*
256 	 * Operations on file pointers
257 	 */
258 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
259 		return (EBADF);
260 
261 	get_mplock();
262 	switch (cmd) {
263 	case F_GETFL:
264 		dat->fc_flags = OFLAGS(fp->f_flag);
265 		error = 0;
266 		break;
267 
268 	case F_SETFL:
269 		oflags = fp->f_flag;
270 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
271 		nflags |= oflags & ~FCNTLFLAGS;
272 
273 		error = 0;
274 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
275 			error = EINVAL;
276 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
277 			tmp = nflags & FASYNC;
278 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
279 					 cred, NULL);
280 		}
281 		if (error == 0)
282 			fp->f_flag = nflags;
283 		break;
284 
285 	case F_GETOWN:
286 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
287 				 cred, NULL);
288 		break;
289 
290 	case F_SETOWN:
291 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
292 				 cred, NULL);
293 		break;
294 
295 	case F_SETLKW:
296 		flg |= F_WAIT;
297 		/* Fall into F_SETLK */
298 
299 	case F_SETLK:
300 		if (fp->f_type != DTYPE_VNODE) {
301 			error = EBADF;
302 			break;
303 		}
304 		vp = (struct vnode *)fp->f_data;
305 
306 		/*
307 		 * copyin/lockop may block
308 		 */
309 		if (dat->fc_flock.l_whence == SEEK_CUR)
310 			dat->fc_flock.l_start += fp->f_offset;
311 
312 		switch (dat->fc_flock.l_type) {
313 		case F_RDLCK:
314 			if ((fp->f_flag & FREAD) == 0) {
315 				error = EBADF;
316 				break;
317 			}
318 			p->p_leader->p_flag |= P_ADVLOCK;
319 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
320 			    &dat->fc_flock, flg);
321 			break;
322 		case F_WRLCK:
323 			if ((fp->f_flag & FWRITE) == 0) {
324 				error = EBADF;
325 				break;
326 			}
327 			p->p_leader->p_flag |= P_ADVLOCK;
328 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
329 			    &dat->fc_flock, flg);
330 			break;
331 		case F_UNLCK:
332 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
333 				&dat->fc_flock, F_POSIX);
334 			break;
335 		default:
336 			error = EINVAL;
337 			break;
338 		}
339 
340 		/*
341 		 * It is possible to race a close() on the descriptor while
342 		 * we were blocked getting the lock.  If this occurs the
343 		 * close might not have caught the lock.
344 		 */
345 		if (checkfpclosed(p->p_fd, fd, fp)) {
346 			dat->fc_flock.l_whence = SEEK_SET;
347 			dat->fc_flock.l_start = 0;
348 			dat->fc_flock.l_len = 0;
349 			dat->fc_flock.l_type = F_UNLCK;
350 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
351 					   F_UNLCK, &dat->fc_flock, F_POSIX);
352 		}
353 		break;
354 
355 	case F_GETLK:
356 		if (fp->f_type != DTYPE_VNODE) {
357 			error = EBADF;
358 			break;
359 		}
360 		vp = (struct vnode *)fp->f_data;
361 		/*
362 		 * copyin/lockop may block
363 		 */
364 		if (dat->fc_flock.l_type != F_RDLCK &&
365 		    dat->fc_flock.l_type != F_WRLCK &&
366 		    dat->fc_flock.l_type != F_UNLCK) {
367 			error = EINVAL;
368 			break;
369 		}
370 		if (dat->fc_flock.l_whence == SEEK_CUR)
371 			dat->fc_flock.l_start += fp->f_offset;
372 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
373 			    &dat->fc_flock, F_POSIX);
374 		break;
375 	default:
376 		error = EINVAL;
377 		break;
378 	}
379 	rel_mplock();
380 
381 	fdrop(fp);
382 	return (error);
383 }
384 
385 /*
386  * The file control system call.
387  *
388  * MPSAFE
389  */
390 int
391 sys_fcntl(struct fcntl_args *uap)
392 {
393 	union fcntl_dat dat;
394 	int error;
395 
396 	switch (uap->cmd) {
397 	case F_DUPFD:
398 		dat.fc_fd = uap->arg;
399 		break;
400 	case F_SETFD:
401 		dat.fc_cloexec = uap->arg;
402 		break;
403 	case F_SETFL:
404 		dat.fc_flags = uap->arg;
405 		break;
406 	case F_SETOWN:
407 		dat.fc_owner = uap->arg;
408 		break;
409 	case F_SETLKW:
410 	case F_SETLK:
411 	case F_GETLK:
412 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
413 			       sizeof(struct flock));
414 		if (error)
415 			return (error);
416 		break;
417 	}
418 
419 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
420 
421 	if (error == 0) {
422 		switch (uap->cmd) {
423 		case F_DUPFD:
424 			uap->sysmsg_result = dat.fc_fd;
425 			break;
426 		case F_GETFD:
427 			uap->sysmsg_result = dat.fc_cloexec;
428 			break;
429 		case F_GETFL:
430 			uap->sysmsg_result = dat.fc_flags;
431 			break;
432 		case F_GETOWN:
433 			uap->sysmsg_result = dat.fc_owner;
434 		case F_GETLK:
435 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
436 			    sizeof(struct flock));
437 			break;
438 		}
439 	}
440 
441 	return (error);
442 }
443 
444 /*
445  * Common code for dup, dup2, and fcntl(F_DUPFD).
446  *
447  * The type flag can be either DUP_FIXED or DUP_VARIABLE.  DUP_FIXED tells
448  * kern_dup() to destructively dup over an existing file descriptor if new
449  * is already open.  DUP_VARIABLE tells kern_dup() to find the lowest
450  * unused file descriptor that is greater than or equal to new.
451  *
452  * MPSAFE
453  */
454 int
455 kern_dup(enum dup_type type, int old, int new, int *res)
456 {
457 	struct thread *td = curthread;
458 	struct proc *p = td->td_proc;
459 	struct filedesc *fdp = p->p_fd;
460 	struct file *fp;
461 	struct file *delfp;
462 	int oldflags;
463 	int holdleaders;
464 	int error, newfd;
465 
466 	/*
467 	 * Verify that we have a valid descriptor to dup from and
468 	 * possibly to dup to.
469 	 */
470 retry:
471 	spin_lock_wr(&fdp->fd_spin);
472 	if (new < 0 || new > p->p_rlimit[RLIMIT_NOFILE].rlim_cur ||
473 	    new >= maxfilesperproc) {
474 		spin_unlock_wr(&fdp->fd_spin);
475 		return (EINVAL);
476 	}
477 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
478 		spin_unlock_wr(&fdp->fd_spin);
479 		return (EBADF);
480 	}
481 	if (type == DUP_FIXED && old == new) {
482 		*res = new;
483 		spin_unlock_wr(&fdp->fd_spin);
484 		return (0);
485 	}
486 	fp = fdp->fd_files[old].fp;
487 	oldflags = fdp->fd_files[old].fileflags;
488 	fhold(fp);	/* MPSAFE - can be called with a spinlock held */
489 
490 	/*
491 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
492 	 * if the requested descriptor is beyond the current table size.
493 	 *
494 	 * This can block.  Retry if the source descriptor no longer matches
495 	 * or if our expectation in the expansion case races.
496 	 *
497 	 * If we are not expanding or allocating a new decriptor, then reset
498 	 * the target descriptor to a reserved state so we have a uniform
499 	 * setup for the next code block.
500 	 */
501 	if (type == DUP_VARIABLE || new >= fdp->fd_nfiles) {
502 		spin_unlock_wr(&fdp->fd_spin);
503 		error = fdalloc(p, new, &newfd);
504 		spin_lock_wr(&fdp->fd_spin);
505 		if (error) {
506 			spin_unlock_wr(&fdp->fd_spin);
507 			fdrop(fp);
508 			return (error);
509 		}
510 		/*
511 		 * Check for ripout
512 		 */
513 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
514 			fsetfd_locked(fdp, NULL, newfd);
515 			spin_unlock_wr(&fdp->fd_spin);
516 			fdrop(fp);
517 			goto retry;
518 		}
519 		/*
520 		 * Check for expansion race
521 		 */
522 		if (type != DUP_VARIABLE && new != newfd) {
523 			fsetfd_locked(fdp, NULL, newfd);
524 			spin_unlock_wr(&fdp->fd_spin);
525 			fdrop(fp);
526 			goto retry;
527 		}
528 		/*
529 		 * Check for ripout, newfd reused old (this case probably
530 		 * can't occur).
531 		 */
532 		if (old == newfd) {
533 			fsetfd_locked(fdp, NULL, newfd);
534 			spin_unlock_wr(&fdp->fd_spin);
535 			fdrop(fp);
536 			goto retry;
537 		}
538 		new = newfd;
539 		delfp = NULL;
540 	} else {
541 		if (fdp->fd_files[new].reserved) {
542 			spin_unlock_wr(&fdp->fd_spin);
543 			fdrop(fp);
544 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
545 			tsleep(fdp, 0, "fdres", hz);
546 			goto retry;
547 		}
548 
549 		/*
550 		 * If the target descriptor was never allocated we have
551 		 * to allocate it.  If it was we have to clean out the
552 		 * old descriptor.  delfp inherits the ref from the
553 		 * descriptor table.
554 		 */
555 		delfp = fdp->fd_files[new].fp;
556 		fdp->fd_files[new].fp = NULL;
557 		fdp->fd_files[new].reserved = 1;
558 		if (delfp == NULL) {
559 			fdreserve_locked(fdp, new, 1);
560 			if (new > fdp->fd_lastfile)
561 				fdp->fd_lastfile = new;
562 		}
563 
564 	}
565 
566 	/*
567 	 * NOTE: still holding an exclusive spinlock
568 	 */
569 
570 	/*
571 	 * If a descriptor is being overwritten we may hve to tell
572 	 * fdfree() to sleep to ensure that all relevant process
573 	 * leaders can be traversed in closef().
574 	 */
575 	if (delfp != NULL && p->p_fdtol != NULL) {
576 		fdp->fd_holdleaderscount++;
577 		holdleaders = 1;
578 	} else {
579 		holdleaders = 0;
580 	}
581 	KASSERT(delfp == NULL || type == DUP_FIXED,
582 		("dup() picked an open file"));
583 
584 	/*
585 	 * Duplicate the source descriptor, update lastfile.  If the new
586 	 * descriptor was not allocated and we aren't replacing an existing
587 	 * descriptor we have to mark the descriptor as being in use.
588 	 *
589 	 * The fd_files[] array inherits fp's hold reference.
590 	 */
591 	fsetfd_locked(fdp, fp, new);
592 	fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
593 	spin_unlock_wr(&fdp->fd_spin);
594 	fdrop(fp);
595 	*res = new;
596 
597 	/*
598 	 * If we dup'd over a valid file, we now own the reference to it
599 	 * and must dispose of it using closef() semantics (as if a
600 	 * close() were performed on it).
601 	 */
602 	if (delfp) {
603 		closef(delfp, p);
604 		if (holdleaders) {
605 			spin_lock_wr(&fdp->fd_spin);
606 			fdp->fd_holdleaderscount--;
607 			if (fdp->fd_holdleaderscount == 0 &&
608 			    fdp->fd_holdleaderswakeup != 0) {
609 				fdp->fd_holdleaderswakeup = 0;
610 				spin_unlock_wr(&fdp->fd_spin);
611 				wakeup(&fdp->fd_holdleaderscount);
612 			} else {
613 				spin_unlock_wr(&fdp->fd_spin);
614 			}
615 		}
616 	}
617 	return (0);
618 }
619 
620 /*
621  * If sigio is on the list associated with a process or process group,
622  * disable signalling from the device, remove sigio from the list and
623  * free sigio.
624  */
625 void
626 funsetown(struct sigio *sigio)
627 {
628 	if (sigio == NULL)
629 		return;
630 	crit_enter();
631 	*(sigio->sio_myref) = NULL;
632 	crit_exit();
633 	if (sigio->sio_pgid < 0) {
634 		SLIST_REMOVE(&sigio->sio_pgrp->pg_sigiolst, sigio,
635 			     sigio, sio_pgsigio);
636 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
637 		SLIST_REMOVE(&sigio->sio_proc->p_sigiolst, sigio,
638 			     sigio, sio_pgsigio);
639 	}
640 	crfree(sigio->sio_ucred);
641 	kfree(sigio, M_SIGIO);
642 }
643 
644 /* Free a list of sigio structures. */
645 void
646 funsetownlst(struct sigiolst *sigiolst)
647 {
648 	struct sigio *sigio;
649 
650 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
651 		funsetown(sigio);
652 }
653 
654 /*
655  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
656  *
657  * After permission checking, add a sigio structure to the sigio list for
658  * the process or process group.
659  */
660 int
661 fsetown(pid_t pgid, struct sigio **sigiop)
662 {
663 	struct proc *proc;
664 	struct pgrp *pgrp;
665 	struct sigio *sigio;
666 
667 	if (pgid == 0) {
668 		funsetown(*sigiop);
669 		return (0);
670 	}
671 	if (pgid > 0) {
672 		proc = pfind(pgid);
673 		if (proc == NULL)
674 			return (ESRCH);
675 
676 		/*
677 		 * Policy - Don't allow a process to FSETOWN a process
678 		 * in another session.
679 		 *
680 		 * Remove this test to allow maximum flexibility or
681 		 * restrict FSETOWN to the current process or process
682 		 * group for maximum safety.
683 		 */
684 		if (proc->p_session != curproc->p_session)
685 			return (EPERM);
686 
687 		pgrp = NULL;
688 	} else /* if (pgid < 0) */ {
689 		pgrp = pgfind(-pgid);
690 		if (pgrp == NULL)
691 			return (ESRCH);
692 
693 		/*
694 		 * Policy - Don't allow a process to FSETOWN a process
695 		 * in another session.
696 		 *
697 		 * Remove this test to allow maximum flexibility or
698 		 * restrict FSETOWN to the current process or process
699 		 * group for maximum safety.
700 		 */
701 		if (pgrp->pg_session != curproc->p_session)
702 			return (EPERM);
703 
704 		proc = NULL;
705 	}
706 	funsetown(*sigiop);
707 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
708 	if (pgid > 0) {
709 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
710 		sigio->sio_proc = proc;
711 	} else {
712 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
713 		sigio->sio_pgrp = pgrp;
714 	}
715 	sigio->sio_pgid = pgid;
716 	sigio->sio_ucred = crhold(curthread->td_ucred);
717 	/* It would be convenient if p_ruid was in ucred. */
718 	sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
719 	sigio->sio_myref = sigiop;
720 	crit_enter();
721 	*sigiop = sigio;
722 	crit_exit();
723 	return (0);
724 }
725 
726 /*
727  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
728  */
729 pid_t
730 fgetown(struct sigio *sigio)
731 {
732 	return (sigio != NULL ? sigio->sio_pgid : 0);
733 }
734 
735 /*
736  * Close many file descriptors.
737  *
738  * MPSAFE
739  */
740 int
741 sys_closefrom(struct closefrom_args *uap)
742 {
743 	return(kern_closefrom(uap->fd));
744 }
745 
746 /*
747  * Close all file descriptors greater then or equal to fd
748  *
749  * MPSAFE
750  */
751 int
752 kern_closefrom(int fd)
753 {
754 	struct thread *td = curthread;
755 	struct proc *p = td->td_proc;
756 	struct filedesc *fdp;
757 
758 	KKASSERT(p);
759 	fdp = p->p_fd;
760 
761 	if (fd < 0)
762 		return (EINVAL);
763 
764 	/*
765 	 * NOTE: This function will skip unassociated descriptors and
766 	 * reserved descriptors that have not yet been assigned.
767 	 * fd_lastfile can change as a side effect of kern_close().
768 	 */
769 	spin_lock_wr(&fdp->fd_spin);
770 	while (fd <= fdp->fd_lastfile) {
771 		if (fdp->fd_files[fd].fp != NULL) {
772 			spin_unlock_wr(&fdp->fd_spin);
773 			/* ok if this races another close */
774 			if (kern_close(fd) == EINTR)
775 				return (EINTR);
776 			spin_lock_wr(&fdp->fd_spin);
777 		}
778 		++fd;
779 	}
780 	spin_unlock_wr(&fdp->fd_spin);
781 	return (0);
782 }
783 
784 /*
785  * Close a file descriptor.
786  *
787  * MPSAFE
788  */
789 int
790 sys_close(struct close_args *uap)
791 {
792 	return(kern_close(uap->fd));
793 }
794 
795 /*
796  * MPALMOSTSAFE - acquires mplock around knote_fdclose() calls
797  */
798 int
799 kern_close(int fd)
800 {
801 	struct thread *td = curthread;
802 	struct proc *p = td->td_proc;
803 	struct filedesc *fdp;
804 	struct file *fp;
805 	int error;
806 	int holdleaders;
807 
808 	KKASSERT(p);
809 	fdp = p->p_fd;
810 
811 	spin_lock_wr(&fdp->fd_spin);
812 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
813 		spin_unlock_wr(&fdp->fd_spin);
814 		return (EBADF);
815 	}
816 	holdleaders = 0;
817 	if (p->p_fdtol != NULL) {
818 		/*
819 		 * Ask fdfree() to sleep to ensure that all relevant
820 		 * process leaders can be traversed in closef().
821 		 */
822 		fdp->fd_holdleaderscount++;
823 		holdleaders = 1;
824 	}
825 
826 	/*
827 	 * we now hold the fp reference that used to be owned by the descriptor
828 	 * array.
829 	 */
830 	spin_unlock_wr(&fdp->fd_spin);
831 	if (SLIST_FIRST(&fp->f_klist)) {
832 		get_mplock();
833 		knote_fdclose(fp, fdp, fd);
834 		rel_mplock();
835 	}
836 	error = closef(fp, p);
837 	if (holdleaders) {
838 		spin_lock_wr(&fdp->fd_spin);
839 		fdp->fd_holdleaderscount--;
840 		if (fdp->fd_holdleaderscount == 0 &&
841 		    fdp->fd_holdleaderswakeup != 0) {
842 			fdp->fd_holdleaderswakeup = 0;
843 			spin_unlock_wr(&fdp->fd_spin);
844 			wakeup(&fdp->fd_holdleaderscount);
845 		} else {
846 			spin_unlock_wr(&fdp->fd_spin);
847 		}
848 	}
849 	return (error);
850 }
851 
852 /*
853  * shutdown_args(int fd, int how)
854  */
855 int
856 kern_shutdown(int fd, int how)
857 {
858 	struct thread *td = curthread;
859 	struct proc *p = td->td_proc;
860 	struct file *fp;
861 	int error;
862 
863 	KKASSERT(p);
864 
865 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
866 		return (EBADF);
867 	error = fo_shutdown(fp, how);
868 	fdrop(fp);
869 
870 	return (error);
871 }
872 
873 /*
874  * MPALMOSTSAFE
875  */
876 int
877 sys_shutdown(struct shutdown_args *uap)
878 {
879 	int error;
880 
881 	get_mplock();
882 	error = kern_shutdown(uap->s, uap->how);
883 	rel_mplock();
884 
885 	return (error);
886 }
887 
888 /*
889  * MPSAFE
890  */
891 int
892 kern_fstat(int fd, struct stat *ub)
893 {
894 	struct thread *td = curthread;
895 	struct proc *p = td->td_proc;
896 	struct file *fp;
897 	int error;
898 
899 	KKASSERT(p);
900 
901 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
902 		return (EBADF);
903 	error = fo_stat(fp, ub, td->td_ucred);
904 	fdrop(fp);
905 
906 	return (error);
907 }
908 
909 /*
910  * Return status information about a file descriptor.
911  *
912  * MPSAFE
913  */
914 int
915 sys_fstat(struct fstat_args *uap)
916 {
917 	struct stat st;
918 	int error;
919 
920 	error = kern_fstat(uap->fd, &st);
921 
922 	if (error == 0)
923 		error = copyout(&st, uap->sb, sizeof(st));
924 	return (error);
925 }
926 
927 /*
928  * Return pathconf information about a file descriptor.
929  *
930  * MPALMOSTSAFE
931  */
932 int
933 sys_fpathconf(struct fpathconf_args *uap)
934 {
935 	struct thread *td = curthread;
936 	struct proc *p = td->td_proc;
937 	struct file *fp;
938 	struct vnode *vp;
939 	int error = 0;
940 
941 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
942 		return (EBADF);
943 
944 	switch (fp->f_type) {
945 	case DTYPE_PIPE:
946 	case DTYPE_SOCKET:
947 		if (uap->name != _PC_PIPE_BUF) {
948 			error = EINVAL;
949 		} else {
950 			uap->sysmsg_result = PIPE_BUF;
951 			error = 0;
952 		}
953 		break;
954 	case DTYPE_FIFO:
955 	case DTYPE_VNODE:
956 		vp = (struct vnode *)fp->f_data;
957 		get_mplock();
958 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
959 		rel_mplock();
960 		break;
961 	default:
962 		error = EOPNOTSUPP;
963 		break;
964 	}
965 	fdrop(fp);
966 	return(error);
967 }
968 
969 static int fdexpand;
970 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0, "");
971 
972 /*
973  * Grow the file table so it can hold through descriptor (want).
974  *
975  * The fdp's spinlock must be held exclusively on entry and may be held
976  * exclusively on return.  The spinlock may be cycled by the routine.
977  *
978  * MPSAFE
979  */
980 static void
981 fdgrow_locked(struct filedesc *fdp, int want)
982 {
983 	struct fdnode *newfiles;
984 	struct fdnode *oldfiles;
985 	int nf, extra;
986 
987 	nf = fdp->fd_nfiles;
988 	do {
989 		/* nf has to be of the form 2^n - 1 */
990 		nf = 2 * nf + 1;
991 	} while (nf <= want);
992 
993 	spin_unlock_wr(&fdp->fd_spin);
994 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
995 	spin_lock_wr(&fdp->fd_spin);
996 
997 	/*
998 	 * We could have raced another extend while we were not holding
999 	 * the spinlock.
1000 	 */
1001 	if (fdp->fd_nfiles >= nf) {
1002 		spin_unlock_wr(&fdp->fd_spin);
1003 		kfree(newfiles, M_FILEDESC);
1004 		spin_lock_wr(&fdp->fd_spin);
1005 		return;
1006 	}
1007 	/*
1008 	 * Copy the existing ofile and ofileflags arrays
1009 	 * and zero the new portion of each array.
1010 	 */
1011 	extra = nf - fdp->fd_nfiles;
1012 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1013 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1014 
1015 	oldfiles = fdp->fd_files;
1016 	fdp->fd_files = newfiles;
1017 	fdp->fd_nfiles = nf;
1018 
1019 	if (oldfiles != fdp->fd_builtin_files) {
1020 		spin_unlock_wr(&fdp->fd_spin);
1021 		kfree(oldfiles, M_FILEDESC);
1022 		spin_lock_wr(&fdp->fd_spin);
1023 	}
1024 	fdexpand++;
1025 }
1026 
1027 /*
1028  * Number of nodes in right subtree, including the root.
1029  */
1030 static __inline int
1031 right_subtree_size(int n)
1032 {
1033 	return (n ^ (n | (n + 1)));
1034 }
1035 
1036 /*
1037  * Bigger ancestor.
1038  */
1039 static __inline int
1040 right_ancestor(int n)
1041 {
1042 	return (n | (n + 1));
1043 }
1044 
1045 /*
1046  * Smaller ancestor.
1047  */
1048 static __inline int
1049 left_ancestor(int n)
1050 {
1051 	return ((n & (n + 1)) - 1);
1052 }
1053 
1054 /*
1055  * Traverse the in-place binary tree buttom-up adjusting the allocation
1056  * count so scans can determine where free descriptors are located.
1057  *
1058  * MPSAFE - caller must be holding an exclusive spinlock on fdp
1059  */
1060 static
1061 void
1062 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1063 {
1064 	while (fd >= 0) {
1065 		fdp->fd_files[fd].allocated += incr;
1066 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1067 		fd = left_ancestor(fd);
1068 	}
1069 }
1070 
1071 /*
1072  * Reserve a file descriptor for the process.  If no error occurs, the
1073  * caller MUST at some point call fsetfd() or assign a file pointer
1074  * or dispose of the reservation.
1075  *
1076  * MPSAFE
1077  */
1078 int
1079 fdalloc(struct proc *p, int want, int *result)
1080 {
1081 	struct filedesc *fdp = p->p_fd;
1082 	int fd, rsize, rsum, node, lim;
1083 
1084 	spin_lock_rd(&p->p_limit->p_spin);
1085 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1086 	spin_unlock_rd(&p->p_limit->p_spin);
1087 	if (want >= lim)
1088 		return (EMFILE);
1089 	spin_lock_wr(&fdp->fd_spin);
1090 	if (want >= fdp->fd_nfiles)
1091 		fdgrow_locked(fdp, want);
1092 
1093 	/*
1094 	 * Search for a free descriptor starting at the higher
1095 	 * of want or fd_freefile.  If that fails, consider
1096 	 * expanding the ofile array.
1097 	 *
1098 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1099 	 * count.  If we happen to see a value of 0 then we can shortcut
1100 	 * our search.  Otherwise we run through through the tree going
1101 	 * down branches we know have free descriptor(s) until we hit a
1102 	 * leaf node.  The leaf node will be free but will not necessarily
1103 	 * have an allocated field of 0.
1104 	 */
1105 retry:
1106 	/* move up the tree looking for a subtree with a free node */
1107 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1108 	     fd = right_ancestor(fd)) {
1109 		if (fdp->fd_files[fd].allocated == 0)
1110 			goto found;
1111 
1112 		rsize = right_subtree_size(fd);
1113 		if (fdp->fd_files[fd].allocated == rsize)
1114 			continue;	/* right subtree full */
1115 
1116 		/*
1117 		 * Free fd is in the right subtree of the tree rooted at fd.
1118 		 * Call that subtree R.  Look for the smallest (leftmost)
1119 		 * subtree of R with an unallocated fd: continue moving
1120 		 * down the left branch until encountering a full left
1121 		 * subtree, then move to the right.
1122 		 */
1123 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1124 			node = fd + rsize;
1125 			rsum += fdp->fd_files[node].allocated;
1126 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1127 				fd = node;	/* move to the right */
1128 				if (fdp->fd_files[node].allocated == 0)
1129 					goto found;
1130 				rsum = 0;
1131 			}
1132 		}
1133 		goto found;
1134 	}
1135 
1136 	/*
1137 	 * No space in current array.  Expand?
1138 	 */
1139 	if (fdp->fd_nfiles >= lim) {
1140 		spin_unlock_wr(&fdp->fd_spin);
1141 		return (EMFILE);
1142 	}
1143 	fdgrow_locked(fdp, want);
1144 	goto retry;
1145 
1146 found:
1147 	KKASSERT(fd < fdp->fd_nfiles);
1148 	if (fd > fdp->fd_lastfile)
1149 		fdp->fd_lastfile = fd;
1150 	if (want <= fdp->fd_freefile)
1151 		fdp->fd_freefile = fd;
1152 	*result = fd;
1153 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1154 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1155 	fdp->fd_files[fd].fileflags = 0;
1156 	fdp->fd_files[fd].reserved = 1;
1157 	fdreserve_locked(fdp, fd, 1);
1158 	spin_unlock_wr(&fdp->fd_spin);
1159 	return (0);
1160 }
1161 
1162 /*
1163  * Check to see whether n user file descriptors
1164  * are available to the process p.
1165  *
1166  * MPSAFE
1167  */
1168 int
1169 fdavail(struct proc *p, int n)
1170 {
1171 	struct filedesc *fdp = p->p_fd;
1172 	struct fdnode *fdnode;
1173 	int i, lim, last;
1174 
1175 	spin_lock_rd(&p->p_limit->p_spin);
1176 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1177 	spin_unlock_rd(&p->p_limit->p_spin);
1178 
1179 	spin_lock_rd(&fdp->fd_spin);
1180 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1181 		spin_unlock_rd(&fdp->fd_spin);
1182 		return (1);
1183 	}
1184 	last = min(fdp->fd_nfiles, lim);
1185 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1186 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1187 		if (fdnode->fp == NULL && --n <= 0) {
1188 			spin_unlock_rd(&fdp->fd_spin);
1189 			return (1);
1190 		}
1191 	}
1192 	spin_unlock_rd(&fdp->fd_spin);
1193 	return (0);
1194 }
1195 
1196 /*
1197  * Revoke open descriptors referencing (f_data, f_type)
1198  *
1199  * Any revoke executed within a prison is only able to
1200  * revoke descriptors for processes within that prison.
1201  *
1202  * Returns 0 on success or an error code.
1203  */
1204 struct fdrevoke_info {
1205 	void *data;
1206 	short type;
1207 	short unused;
1208 	int count;
1209 	int intransit;
1210 	struct ucred *cred;
1211 	struct file *nfp;
1212 };
1213 
1214 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1215 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1216 
1217 int
1218 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1219 {
1220 	struct fdrevoke_info info;
1221 	int error;
1222 
1223 	bzero(&info, sizeof(info));
1224 	info.data = f_data;
1225 	info.type = f_type;
1226 	info.cred = cred;
1227 	error = falloc(NULL, &info.nfp, NULL);
1228 	if (error)
1229 		return (error);
1230 
1231 	/*
1232 	 * Scan the file pointer table once.  dups do not dup file pointers,
1233 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1234 	 * being revoked.
1235 	 */
1236 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1237 
1238 	/*
1239 	 * If any fps were marked track down the related descriptors
1240 	 * and close them.  Any dup()s at this point will notice
1241 	 * the FREVOKED already set in the fp and do the right thing.
1242 	 *
1243 	 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1244 	 * socket) bumped the intransit counter and will require a
1245 	 * scan.  Races against fps leaving the socket are closed by
1246 	 * the socket code checking for FREVOKED.
1247 	 */
1248 	if (info.count)
1249 		allproc_scan(fdrevoke_proc_callback, &info);
1250 	if (info.intransit)
1251 		unp_revoke_gc(info.nfp);
1252 	fdrop(info.nfp);
1253 	return(0);
1254 }
1255 
1256 /*
1257  * Locate matching file pointers directly.
1258  */
1259 static int
1260 fdrevoke_check_callback(struct file *fp, void *vinfo)
1261 {
1262 	struct fdrevoke_info *info = vinfo;
1263 
1264 	/*
1265 	 * File pointers already flagged for revokation are skipped.
1266 	 */
1267 	if (fp->f_flag & FREVOKED)
1268 		return(0);
1269 
1270 	/*
1271 	 * If revoking from a prison file pointers created outside of
1272 	 * that prison, or file pointers without creds, cannot be revoked.
1273 	 */
1274 	if (info->cred->cr_prison &&
1275 	    (fp->f_cred == NULL ||
1276 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1277 		return(0);
1278 	}
1279 
1280 	/*
1281 	 * If the file pointer matches then mark it for revocation.  The
1282 	 * flag is currently only used by unp_revoke_gc().
1283 	 *
1284 	 * info->count is a heuristic and can race in a SMP environment.
1285 	 */
1286 	if (info->data == fp->f_data && info->type == fp->f_type) {
1287 		atomic_set_int(&fp->f_flag, FREVOKED);
1288 		info->count += fp->f_count;
1289 		if (fp->f_msgcount)
1290 			++info->intransit;
1291 	}
1292 	return(0);
1293 }
1294 
1295 /*
1296  * Locate matching file pointers via process descriptor tables.
1297  */
1298 static int
1299 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1300 {
1301 	struct fdrevoke_info *info = vinfo;
1302 	struct filedesc *fdp;
1303 	struct file *fp;
1304 	int n;
1305 
1306 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1307 		return(0);
1308 	if (info->cred->cr_prison &&
1309 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1310 		return(0);
1311 	}
1312 
1313 	/*
1314 	 * If the controlling terminal of the process matches the
1315 	 * vnode being revoked we clear the controlling terminal.
1316 	 *
1317 	 * The normal spec_close() may not catch this because it
1318 	 * uses curproc instead of p.
1319 	 */
1320 	if (p->p_session && info->type == DTYPE_VNODE &&
1321 	    info->data == p->p_session->s_ttyvp) {
1322 		p->p_session->s_ttyvp = NULL;
1323 		vrele(info->data);
1324 	}
1325 
1326 	/*
1327 	 * Softref the fdp to prevent it from being destroyed
1328 	 */
1329 	spin_lock_wr(&p->p_spin);
1330 	if ((fdp = p->p_fd) == NULL) {
1331 		spin_unlock_wr(&p->p_spin);
1332 		return(0);
1333 	}
1334 	atomic_add_int(&fdp->fd_softrefs, 1);
1335 	spin_unlock_wr(&p->p_spin);
1336 
1337 	/*
1338 	 * Locate and close any matching file descriptors.
1339 	 */
1340 	spin_lock_wr(&fdp->fd_spin);
1341 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1342 		if ((fp = fdp->fd_files[n].fp) == NULL)
1343 			continue;
1344 		if (fp->f_flag & FREVOKED) {
1345 			fhold(info->nfp);
1346 			fdp->fd_files[n].fp = info->nfp;
1347 			spin_unlock_wr(&fdp->fd_spin);
1348 			knote_fdclose(fp, fdp, n);	/* XXX */
1349 			closef(fp, p);
1350 			spin_lock_wr(&fdp->fd_spin);
1351 			--info->count;
1352 		}
1353 	}
1354 	spin_unlock_wr(&fdp->fd_spin);
1355 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1356 	return(0);
1357 }
1358 
1359 /*
1360  * falloc:
1361  *	Create a new open file structure and reserve a file decriptor
1362  *	for the process that refers to it.
1363  *
1364  *	Root creds are checked using lp, or assumed if lp is NULL.  If
1365  *	resultfd is non-NULL then lp must also be non-NULL.  No file
1366  *	descriptor is reserved (and no process context is needed) if
1367  *	resultfd is NULL.
1368  *
1369  *	A file pointer with a refcount of 1 is returned.  Note that the
1370  *	file pointer is NOT associated with the descriptor.  If falloc
1371  *	returns success, fsetfd() MUST be called to either associate the
1372  *	file pointer or clear the reservation.
1373  *
1374  * MPSAFE
1375  */
1376 int
1377 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
1378 {
1379 	static struct timeval lastfail;
1380 	static int curfail;
1381 	struct file *fp;
1382 	struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
1383 	int error;
1384 
1385 	fp = NULL;
1386 
1387 	/*
1388 	 * Handle filetable full issues and root overfill.
1389 	 */
1390 	if (nfiles >= maxfiles - maxfilesrootres &&
1391 	    (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
1392 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1393 			kprintf("kern.maxfiles limit exceeded by uid %d, "
1394 				"please see tuning(7).\n",
1395 				cred->cr_ruid);
1396 		}
1397 		error = ENFILE;
1398 		goto done;
1399 	}
1400 
1401 	/*
1402 	 * Allocate a new file descriptor.
1403 	 */
1404 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1405 	spin_init(&fp->f_spin);
1406 	SLIST_INIT(&fp->f_klist);
1407 	fp->f_count = 1;
1408 	fp->f_ops = &badfileops;
1409 	fp->f_seqcount = 1;
1410 	fp->f_cred = crhold(cred);
1411 	spin_lock_wr(&filehead_spin);
1412 	nfiles++;
1413 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1414 	spin_unlock_wr(&filehead_spin);
1415 	if (resultfd) {
1416 		if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
1417 			fdrop(fp);
1418 			fp = NULL;
1419 		}
1420 	} else {
1421 		error = 0;
1422 	}
1423 done:
1424 	*resultfp = fp;
1425 	return (error);
1426 }
1427 
1428 /*
1429  * MPSAFE
1430  */
1431 static
1432 int
1433 checkfpclosed(struct filedesc *fdp, int fd, struct file *fp)
1434 {
1435 	int error;
1436 
1437 	spin_lock_rd(&fdp->fd_spin);
1438 	if ((unsigned) fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1439 		error = EBADF;
1440 	else
1441 		error = 0;
1442 	spin_unlock_rd(&fdp->fd_spin);
1443 	return (error);
1444 }
1445 
1446 /*
1447  * Associate a file pointer with a previously reserved file descriptor.
1448  * This function always succeeds.
1449  *
1450  * If fp is NULL, the file descriptor is returned to the pool.
1451  */
1452 
1453 /*
1454  * MPSAFE (exclusive spinlock must be held on call)
1455  */
1456 static void
1457 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1458 {
1459 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1460 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1461 	if (fp) {
1462 		fhold(fp);
1463 		fdp->fd_files[fd].fp = fp;
1464 		fdp->fd_files[fd].reserved = 0;
1465 	} else {
1466 		fdp->fd_files[fd].reserved = 0;
1467 		fdreserve_locked(fdp, fd, -1);
1468 		fdfixup_locked(fdp, fd);
1469 	}
1470 }
1471 
1472 /*
1473  * MPSAFE
1474  */
1475 void
1476 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
1477 {
1478 	spin_lock_wr(&fdp->fd_spin);
1479 	fsetfd_locked(fdp, fp, fd);
1480 	spin_unlock_wr(&fdp->fd_spin);
1481 }
1482 
1483 /*
1484  * MPSAFE (exclusive spinlock must be held on call)
1485  */
1486 static
1487 struct file *
1488 funsetfd_locked(struct filedesc *fdp, int fd)
1489 {
1490 	struct file *fp;
1491 
1492 	if ((unsigned)fd >= fdp->fd_nfiles)
1493 		return (NULL);
1494 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1495 		return (NULL);
1496 	fdp->fd_files[fd].fp = NULL;
1497 	fdp->fd_files[fd].fileflags = 0;
1498 
1499 	fdreserve_locked(fdp, fd, -1);
1500 	fdfixup_locked(fdp, fd);
1501 	return(fp);
1502 }
1503 
1504 /*
1505  * MPSAFE
1506  */
1507 int
1508 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1509 {
1510 	int error;
1511 
1512 	spin_lock_rd(&fdp->fd_spin);
1513 	if (((u_int)fd) >= fdp->fd_nfiles) {
1514 		error = EBADF;
1515 	} else if (fdp->fd_files[fd].fp == NULL) {
1516 		error = EBADF;
1517 	} else {
1518 		*flagsp = fdp->fd_files[fd].fileflags;
1519 		error = 0;
1520 	}
1521 	spin_unlock_rd(&fdp->fd_spin);
1522 	return (error);
1523 }
1524 
1525 /*
1526  * MPSAFE
1527  */
1528 int
1529 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1530 {
1531 	int error;
1532 
1533 	spin_lock_wr(&fdp->fd_spin);
1534 	if (((u_int)fd) >= fdp->fd_nfiles) {
1535 		error = EBADF;
1536 	} else if (fdp->fd_files[fd].fp == NULL) {
1537 		error = EBADF;
1538 	} else {
1539 		fdp->fd_files[fd].fileflags |= add_flags;
1540 		error = 0;
1541 	}
1542 	spin_unlock_wr(&fdp->fd_spin);
1543 	return (error);
1544 }
1545 
1546 /*
1547  * MPSAFE
1548  */
1549 int
1550 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1551 {
1552 	int error;
1553 
1554 	spin_lock_wr(&fdp->fd_spin);
1555 	if (((u_int)fd) >= fdp->fd_nfiles) {
1556 		error = EBADF;
1557 	} else if (fdp->fd_files[fd].fp == NULL) {
1558 		error = EBADF;
1559 	} else {
1560 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1561 		error = 0;
1562 	}
1563 	spin_unlock_wr(&fdp->fd_spin);
1564 	return (error);
1565 }
1566 
1567 void
1568 fsetcred(struct file *fp, struct ucred *cr)
1569 {
1570 	crhold(cr);
1571 	crfree(fp->f_cred);
1572 	fp->f_cred = cr;
1573 }
1574 
1575 /*
1576  * Free a file descriptor.
1577  */
1578 static
1579 void
1580 ffree(struct file *fp)
1581 {
1582 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1583 	spin_lock_wr(&filehead_spin);
1584 	LIST_REMOVE(fp, f_list);
1585 	nfiles--;
1586 	spin_unlock_wr(&filehead_spin);
1587 	crfree(fp->f_cred);
1588 	if (fp->f_nchandle.ncp)
1589 	    cache_drop(&fp->f_nchandle);
1590 	kfree(fp, M_FILE);
1591 }
1592 
1593 /*
1594  * called from init_main, initialize filedesc0 for proc0.
1595  */
1596 void
1597 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1598 {
1599 	p0->p_fd = fdp0;
1600 	p0->p_fdtol = NULL;
1601 	fdp0->fd_refcnt = 1;
1602 	fdp0->fd_cmask = cmask;
1603 	fdp0->fd_files = fdp0->fd_builtin_files;
1604 	fdp0->fd_nfiles = NDFILE;
1605 	fdp0->fd_lastfile = -1;
1606 	spin_init(&fdp0->fd_spin);
1607 }
1608 
1609 /*
1610  * Build a new filedesc structure.
1611  *
1612  * NOT MPSAFE (vref)
1613  */
1614 struct filedesc *
1615 fdinit(struct proc *p)
1616 {
1617 	struct filedesc *newfdp;
1618 	struct filedesc *fdp = p->p_fd;
1619 
1620 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1621 	spin_lock_rd(&fdp->fd_spin);
1622 	if (fdp->fd_cdir) {
1623 		newfdp->fd_cdir = fdp->fd_cdir;
1624 		vref(newfdp->fd_cdir);
1625 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1626 	}
1627 
1628 	/*
1629 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1630 	 * proc0, but should unconditionally exist in other processes.
1631 	 */
1632 	if (fdp->fd_rdir) {
1633 		newfdp->fd_rdir = fdp->fd_rdir;
1634 		vref(newfdp->fd_rdir);
1635 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1636 	}
1637 	if (fdp->fd_jdir) {
1638 		newfdp->fd_jdir = fdp->fd_jdir;
1639 		vref(newfdp->fd_jdir);
1640 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1641 	}
1642 	spin_unlock_rd(&fdp->fd_spin);
1643 
1644 	/* Create the file descriptor table. */
1645 	newfdp->fd_refcnt = 1;
1646 	newfdp->fd_cmask = cmask;
1647 	newfdp->fd_files = newfdp->fd_builtin_files;
1648 	newfdp->fd_nfiles = NDFILE;
1649 	newfdp->fd_lastfile = -1;
1650 	spin_init(&newfdp->fd_spin);
1651 
1652 	return (newfdp);
1653 }
1654 
1655 /*
1656  * Share a filedesc structure.
1657  *
1658  * MPSAFE
1659  */
1660 struct filedesc *
1661 fdshare(struct proc *p)
1662 {
1663 	struct filedesc *fdp;
1664 
1665 	fdp = p->p_fd;
1666 	spin_lock_wr(&fdp->fd_spin);
1667 	fdp->fd_refcnt++;
1668 	spin_unlock_wr(&fdp->fd_spin);
1669 	return (fdp);
1670 }
1671 
1672 /*
1673  * Copy a filedesc structure.
1674  *
1675  * MPSAFE
1676  */
1677 struct filedesc *
1678 fdcopy(struct proc *p)
1679 {
1680 	struct filedesc *fdp = p->p_fd;
1681 	struct filedesc *newfdp;
1682 	struct fdnode *fdnode;
1683 	int i;
1684 	int ni;
1685 
1686 	/*
1687 	 * Certain daemons might not have file descriptors.
1688 	 */
1689 	if (fdp == NULL)
1690 		return (NULL);
1691 
1692 	/*
1693 	 * Allocate the new filedesc and fd_files[] array.  This can race
1694 	 * with operations by other threads on the fdp so we have to be
1695 	 * careful.
1696 	 */
1697 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK | M_ZERO);
1698 again:
1699 	spin_lock_rd(&fdp->fd_spin);
1700 	if (fdp->fd_lastfile < NDFILE) {
1701 		newfdp->fd_files = newfdp->fd_builtin_files;
1702 		i = NDFILE;
1703 	} else {
1704 		/*
1705 		 * We have to allocate (N^2-1) entries for our in-place
1706 		 * binary tree.  Allow the table to shrink.
1707 		 */
1708 		i = fdp->fd_nfiles;
1709 		ni = (i - 1) / 2;
1710 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1711 			i = ni;
1712 			ni = (i - 1) / 2;
1713 		}
1714 		spin_unlock_rd(&fdp->fd_spin);
1715 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1716 					  M_FILEDESC, M_WAITOK | M_ZERO);
1717 
1718 		/*
1719 		 * Check for race, retry
1720 		 */
1721 		spin_lock_rd(&fdp->fd_spin);
1722 		if (i <= fdp->fd_lastfile) {
1723 			spin_unlock_rd(&fdp->fd_spin);
1724 			kfree(newfdp->fd_files, M_FILEDESC);
1725 			goto again;
1726 		}
1727 	}
1728 
1729 	/*
1730 	 * Dup the remaining fields. vref() and cache_hold() can be
1731 	 * safely called while holding the read spinlock on fdp.
1732 	 *
1733 	 * The read spinlock on fdp is still being held.
1734 	 *
1735 	 * NOTE: vref and cache_hold calls for the case where the vnode
1736 	 * or cache entry already has at least one ref may be called
1737 	 * while holding spin locks.
1738 	 */
1739 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1740 		vref(newfdp->fd_cdir);
1741 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1742 	}
1743 	/*
1744 	 * We must check for fd_rdir here, at least for now because
1745 	 * the init process is created before we have access to the
1746 	 * rootvode to take a reference to it.
1747 	 */
1748 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1749 		vref(newfdp->fd_rdir);
1750 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1751 	}
1752 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1753 		vref(newfdp->fd_jdir);
1754 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1755 	}
1756 	newfdp->fd_refcnt = 1;
1757 	newfdp->fd_nfiles = i;
1758 	newfdp->fd_lastfile = fdp->fd_lastfile;
1759 	newfdp->fd_freefile = fdp->fd_freefile;
1760 	newfdp->fd_cmask = fdp->fd_cmask;
1761 	spin_init(&newfdp->fd_spin);
1762 
1763 	/*
1764 	 * Copy the descriptor table through (i).  This also copies the
1765 	 * allocation state.   Then go through and ref the file pointers
1766 	 * and clean up any KQ descriptors.
1767 	 *
1768 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1769 	 * copied files yet we can ignore the return value from funsetfd().
1770 	 *
1771 	 * The read spinlock on fdp is still being held.
1772 	 */
1773 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1774 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1775 		fdnode = &newfdp->fd_files[i];
1776 		if (fdnode->reserved) {
1777 			fdreserve_locked(newfdp, i, -1);
1778 			fdnode->reserved = 0;
1779 			fdfixup_locked(newfdp, i);
1780 		} else if (fdnode->fp) {
1781 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1782 				(void)funsetfd_locked(newfdp, i);
1783 			} else {
1784 				fhold(fdnode->fp);
1785 			}
1786 		}
1787 	}
1788 	spin_unlock_rd(&fdp->fd_spin);
1789 	return (newfdp);
1790 }
1791 
1792 /*
1793  * Release a filedesc structure.
1794  *
1795  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1796  */
1797 void
1798 fdfree(struct proc *p, struct filedesc *repl)
1799 {
1800 	struct filedesc *fdp;
1801 	struct fdnode *fdnode;
1802 	int i;
1803 	struct filedesc_to_leader *fdtol;
1804 	struct file *fp;
1805 	struct vnode *vp;
1806 	struct flock lf;
1807 
1808 	/*
1809 	 * Certain daemons might not have file descriptors.
1810 	 */
1811 	fdp = p->p_fd;
1812 	if (fdp == NULL) {
1813 		p->p_fd = repl;
1814 		return;
1815 	}
1816 
1817 	/*
1818 	 * Severe messing around to follow.
1819 	 */
1820 	spin_lock_wr(&fdp->fd_spin);
1821 
1822 	/* Check for special need to clear POSIX style locks */
1823 	fdtol = p->p_fdtol;
1824 	if (fdtol != NULL) {
1825 		KASSERT(fdtol->fdl_refcount > 0,
1826 			("filedesc_to_refcount botch: fdl_refcount=%d",
1827 			 fdtol->fdl_refcount));
1828 		if (fdtol->fdl_refcount == 1 &&
1829 		    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1830 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
1831 				fdnode = &fdp->fd_files[i];
1832 				if (fdnode->fp == NULL ||
1833 				    fdnode->fp->f_type != DTYPE_VNODE) {
1834 					continue;
1835 				}
1836 				fp = fdnode->fp;
1837 				fhold(fp);
1838 				spin_unlock_wr(&fdp->fd_spin);
1839 
1840 				lf.l_whence = SEEK_SET;
1841 				lf.l_start = 0;
1842 				lf.l_len = 0;
1843 				lf.l_type = F_UNLCK;
1844 				vp = (struct vnode *)fp->f_data;
1845 				(void) VOP_ADVLOCK(vp,
1846 						   (caddr_t)p->p_leader,
1847 						   F_UNLCK,
1848 						   &lf,
1849 						   F_POSIX);
1850 				fdrop(fp);
1851 				spin_lock_wr(&fdp->fd_spin);
1852 			}
1853 		}
1854 	retry:
1855 		if (fdtol->fdl_refcount == 1) {
1856 			if (fdp->fd_holdleaderscount > 0 &&
1857 			    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1858 				/*
1859 				 * close() or do_dup() has cleared a reference
1860 				 * in a shared file descriptor table.
1861 				 */
1862 				fdp->fd_holdleaderswakeup = 1;
1863 				ssleep(&fdp->fd_holdleaderscount,
1864 				       &fdp->fd_spin, 0, "fdlhold", 0);
1865 				goto retry;
1866 			}
1867 			if (fdtol->fdl_holdcount > 0) {
1868 				/*
1869 				 * Ensure that fdtol->fdl_leader
1870 				 * remains valid in closef().
1871 				 */
1872 				fdtol->fdl_wakeup = 1;
1873 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
1874 				goto retry;
1875 			}
1876 		}
1877 		fdtol->fdl_refcount--;
1878 		if (fdtol->fdl_refcount == 0 &&
1879 		    fdtol->fdl_holdcount == 0) {
1880 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
1881 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
1882 		} else {
1883 			fdtol = NULL;
1884 		}
1885 		p->p_fdtol = NULL;
1886 		if (fdtol != NULL) {
1887 			spin_unlock_wr(&fdp->fd_spin);
1888 			kfree(fdtol, M_FILEDESC_TO_LEADER);
1889 			spin_lock_wr(&fdp->fd_spin);
1890 		}
1891 	}
1892 	if (--fdp->fd_refcnt > 0) {
1893 		spin_unlock_wr(&fdp->fd_spin);
1894 		spin_lock_wr(&p->p_spin);
1895 		p->p_fd = repl;
1896 		spin_unlock_wr(&p->p_spin);
1897 		return;
1898 	}
1899 
1900 	/*
1901 	 * Even though we are the last reference to the structure allproc
1902 	 * scans may still reference the structure.  Maintain proper
1903 	 * locks until we can replace p->p_fd.
1904 	 *
1905 	 * Also note that kqueue's closef still needs to reference the
1906 	 * fdp via p->p_fd, so we have to close the descriptors before
1907 	 * we replace p->p_fd.
1908 	 */
1909 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
1910 		if (fdp->fd_files[i].fp) {
1911 			fp = funsetfd_locked(fdp, i);
1912 			if (fp) {
1913 				spin_unlock_wr(&fdp->fd_spin);
1914 				closef(fp, p);
1915 				spin_lock_wr(&fdp->fd_spin);
1916 			}
1917 		}
1918 	}
1919 	spin_unlock_wr(&fdp->fd_spin);
1920 
1921 	/*
1922 	 * Interlock against an allproc scan operations (typically frevoke).
1923 	 */
1924 	spin_lock_wr(&p->p_spin);
1925 	p->p_fd = repl;
1926 	spin_unlock_wr(&p->p_spin);
1927 
1928 	/*
1929 	 * Wait for any softrefs to go away.  This race rarely occurs so
1930 	 * we can use a non-critical-path style poll/sleep loop.  The
1931 	 * race only occurs against allproc scans.
1932 	 *
1933 	 * No new softrefs can occur with the fdp disconnected from the
1934 	 * process.
1935 	 */
1936 	if (fdp->fd_softrefs) {
1937 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
1938 		while (fdp->fd_softrefs)
1939 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
1940 	}
1941 
1942 	if (fdp->fd_files != fdp->fd_builtin_files)
1943 		kfree(fdp->fd_files, M_FILEDESC);
1944 	if (fdp->fd_cdir) {
1945 		cache_drop(&fdp->fd_ncdir);
1946 		vrele(fdp->fd_cdir);
1947 	}
1948 	if (fdp->fd_rdir) {
1949 		cache_drop(&fdp->fd_nrdir);
1950 		vrele(fdp->fd_rdir);
1951 	}
1952 	if (fdp->fd_jdir) {
1953 		cache_drop(&fdp->fd_njdir);
1954 		vrele(fdp->fd_jdir);
1955 	}
1956 	kfree(fdp, M_FILEDESC);
1957 }
1958 
1959 /*
1960  * Retrieve and reference the file pointer associated with a descriptor.
1961  *
1962  * MPSAFE
1963  */
1964 struct file *
1965 holdfp(struct filedesc *fdp, int fd, int flag)
1966 {
1967 	struct file* fp;
1968 
1969 	spin_lock_rd(&fdp->fd_spin);
1970 	if (((u_int)fd) >= fdp->fd_nfiles) {
1971 		fp = NULL;
1972 		goto done;
1973 	}
1974 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1975 		goto done;
1976 	if ((fp->f_flag & flag) == 0 && flag != -1) {
1977 		fp = NULL;
1978 		goto done;
1979 	}
1980 	fhold(fp);
1981 done:
1982 	spin_unlock_rd(&fdp->fd_spin);
1983 	return (fp);
1984 }
1985 
1986 /*
1987  * holdsock() - load the struct file pointer associated
1988  * with a socket into *fpp.  If an error occurs, non-zero
1989  * will be returned and *fpp will be set to NULL.
1990  *
1991  * MPSAFE
1992  */
1993 int
1994 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
1995 {
1996 	struct file *fp;
1997 	int error;
1998 
1999 	spin_lock_rd(&fdp->fd_spin);
2000 	if ((unsigned)fd >= fdp->fd_nfiles) {
2001 		error = EBADF;
2002 		fp = NULL;
2003 		goto done;
2004 	}
2005 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2006 		error = EBADF;
2007 		goto done;
2008 	}
2009 	if (fp->f_type != DTYPE_SOCKET) {
2010 		error = ENOTSOCK;
2011 		goto done;
2012 	}
2013 	fhold(fp);
2014 	error = 0;
2015 done:
2016 	spin_unlock_rd(&fdp->fd_spin);
2017 	*fpp = fp;
2018 	return (error);
2019 }
2020 
2021 /*
2022  * Convert a user file descriptor to a held file pointer.
2023  *
2024  * MPSAFE
2025  */
2026 int
2027 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2028 {
2029 	struct file *fp;
2030 	int error;
2031 
2032 	spin_lock_rd(&fdp->fd_spin);
2033 	if ((unsigned)fd >= fdp->fd_nfiles) {
2034 		error = EBADF;
2035 		fp = NULL;
2036 		goto done;
2037 	}
2038 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2039 		error = EBADF;
2040 		goto done;
2041 	}
2042 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2043 		fp = NULL;
2044 		error = EINVAL;
2045 		goto done;
2046 	}
2047 	fhold(fp);
2048 	error = 0;
2049 done:
2050 	spin_unlock_rd(&fdp->fd_spin);
2051 	*fpp = fp;
2052 	return (error);
2053 }
2054 
2055 /*
2056  * For setugid programs, we don't want to people to use that setugidness
2057  * to generate error messages which write to a file which otherwise would
2058  * otherwise be off-limits to the process.
2059  *
2060  * This is a gross hack to plug the hole.  A better solution would involve
2061  * a special vop or other form of generalized access control mechanism.  We
2062  * go ahead and just reject all procfs file systems accesses as dangerous.
2063  *
2064  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2065  * sufficient.  We also don't for check setugidness since we know we are.
2066  */
2067 static int
2068 is_unsafe(struct file *fp)
2069 {
2070 	if (fp->f_type == DTYPE_VNODE &&
2071 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2072 		return (1);
2073 	return (0);
2074 }
2075 
2076 /*
2077  * Make this setguid thing safe, if at all possible.
2078  *
2079  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2080  */
2081 void
2082 setugidsafety(struct proc *p)
2083 {
2084 	struct filedesc *fdp = p->p_fd;
2085 	int i;
2086 
2087 	/* Certain daemons might not have file descriptors. */
2088 	if (fdp == NULL)
2089 		return;
2090 
2091 	/*
2092 	 * note: fdp->fd_files may be reallocated out from under us while
2093 	 * we are blocked in a close.  Be careful!
2094 	 */
2095 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2096 		if (i > 2)
2097 			break;
2098 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2099 			struct file *fp;
2100 
2101 			/*
2102 			 * NULL-out descriptor prior to close to avoid
2103 			 * a race while close blocks.
2104 			 */
2105 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2106 				knote_fdclose(fp, fdp, i);
2107 				closef(fp, p);
2108 			}
2109 		}
2110 	}
2111 }
2112 
2113 /*
2114  * Close any files on exec?
2115  *
2116  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2117  */
2118 void
2119 fdcloseexec(struct proc *p)
2120 {
2121 	struct filedesc *fdp = p->p_fd;
2122 	int i;
2123 
2124 	/* Certain daemons might not have file descriptors. */
2125 	if (fdp == NULL)
2126 		return;
2127 
2128 	/*
2129 	 * We cannot cache fd_files since operations may block and rip
2130 	 * them out from under us.
2131 	 */
2132 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2133 		if (fdp->fd_files[i].fp != NULL &&
2134 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2135 			struct file *fp;
2136 
2137 			/*
2138 			 * NULL-out descriptor prior to close to avoid
2139 			 * a race while close blocks.
2140 			 */
2141 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2142 				knote_fdclose(fp, fdp, i);
2143 				closef(fp, p);
2144 			}
2145 		}
2146 	}
2147 }
2148 
2149 /*
2150  * It is unsafe for set[ug]id processes to be started with file
2151  * descriptors 0..2 closed, as these descriptors are given implicit
2152  * significance in the Standard C library.  fdcheckstd() will create a
2153  * descriptor referencing /dev/null for each of stdin, stdout, and
2154  * stderr that is not already open.
2155  *
2156  * NOT MPSAFE - calls falloc, vn_open, etc
2157  */
2158 int
2159 fdcheckstd(struct lwp *lp)
2160 {
2161 	struct nlookupdata nd;
2162 	struct filedesc *fdp;
2163 	struct file *fp;
2164 	int retval;
2165 	int i, error, flags, devnull;
2166 
2167 	fdp = lp->lwp_proc->p_fd;
2168 	if (fdp == NULL)
2169 		return (0);
2170 	devnull = -1;
2171 	error = 0;
2172 	for (i = 0; i < 3; i++) {
2173 		if (fdp->fd_files[i].fp != NULL)
2174 			continue;
2175 		if (devnull < 0) {
2176 			if ((error = falloc(lp, &fp, &devnull)) != 0)
2177 				break;
2178 
2179 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2180 						NLC_FOLLOW|NLC_LOCKVP);
2181 			flags = FREAD | FWRITE;
2182 			if (error == 0)
2183 				error = vn_open(&nd, fp, flags, 0);
2184 			if (error == 0)
2185 				fsetfd(fdp, fp, devnull);
2186 			else
2187 				fsetfd(fdp, NULL, devnull);
2188 			fdrop(fp);
2189 			nlookup_done(&nd);
2190 			if (error)
2191 				break;
2192 			KKASSERT(i == devnull);
2193 		} else {
2194 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2195 			if (error != 0)
2196 				break;
2197 		}
2198 	}
2199 	return (error);
2200 }
2201 
2202 /*
2203  * Internal form of close.
2204  * Decrement reference count on file structure.
2205  * Note: td and/or p may be NULL when closing a file
2206  * that was being passed in a message.
2207  *
2208  * MPALMOSTSAFE - acquires mplock for VOP operations
2209  */
2210 int
2211 closef(struct file *fp, struct proc *p)
2212 {
2213 	struct vnode *vp;
2214 	struct flock lf;
2215 	struct filedesc_to_leader *fdtol;
2216 
2217 	if (fp == NULL)
2218 		return (0);
2219 
2220 	/*
2221 	 * POSIX record locking dictates that any close releases ALL
2222 	 * locks owned by this process.  This is handled by setting
2223 	 * a flag in the unlock to free ONLY locks obeying POSIX
2224 	 * semantics, and not to free BSD-style file locks.
2225 	 * If the descriptor was in a message, POSIX-style locks
2226 	 * aren't passed with the descriptor.
2227 	 */
2228 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2229 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2230 	) {
2231 		get_mplock();
2232 		if ((p->p_leader->p_flag & P_ADVLOCK) != 0) {
2233 			lf.l_whence = SEEK_SET;
2234 			lf.l_start = 0;
2235 			lf.l_len = 0;
2236 			lf.l_type = F_UNLCK;
2237 			vp = (struct vnode *)fp->f_data;
2238 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2239 					   &lf, F_POSIX);
2240 		}
2241 		fdtol = p->p_fdtol;
2242 		if (fdtol != NULL) {
2243 			/*
2244 			 * Handle special case where file descriptor table
2245 			 * is shared between multiple process leaders.
2246 			 */
2247 			for (fdtol = fdtol->fdl_next;
2248 			     fdtol != p->p_fdtol;
2249 			     fdtol = fdtol->fdl_next) {
2250 				if ((fdtol->fdl_leader->p_flag &
2251 				     P_ADVLOCK) == 0)
2252 					continue;
2253 				fdtol->fdl_holdcount++;
2254 				lf.l_whence = SEEK_SET;
2255 				lf.l_start = 0;
2256 				lf.l_len = 0;
2257 				lf.l_type = F_UNLCK;
2258 				vp = (struct vnode *)fp->f_data;
2259 				(void) VOP_ADVLOCK(vp,
2260 						   (caddr_t)fdtol->fdl_leader,
2261 						   F_UNLCK, &lf, F_POSIX);
2262 				fdtol->fdl_holdcount--;
2263 				if (fdtol->fdl_holdcount == 0 &&
2264 				    fdtol->fdl_wakeup != 0) {
2265 					fdtol->fdl_wakeup = 0;
2266 					wakeup(fdtol);
2267 				}
2268 			}
2269 		}
2270 		rel_mplock();
2271 	}
2272 	return (fdrop(fp));
2273 }
2274 
2275 /*
2276  * MPSAFE
2277  *
2278  * fhold() can only be called if f_count is already at least 1 (i.e. the
2279  * caller of fhold() already has a reference to the file pointer in some
2280  * manner or other).
2281  *
2282  * f_count is not spin-locked.  Instead, atomic ops are used for
2283  * incrementing, decrementing, and handling the 1->0 transition.
2284  */
2285 void
2286 fhold(struct file *fp)
2287 {
2288 	atomic_add_int(&fp->f_count, 1);
2289 }
2290 
2291 /*
2292  * fdrop() - drop a reference to a descriptor
2293  *
2294  * MPALMOSTSAFE - acquires mplock for final close sequence
2295  */
2296 int
2297 fdrop(struct file *fp)
2298 {
2299 	struct flock lf;
2300 	struct vnode *vp;
2301 	int error;
2302 
2303 	/*
2304 	 * A combined fetch and subtract is needed to properly detect
2305 	 * 1->0 transitions, otherwise two cpus dropping from a ref
2306 	 * count of 2 might both try to run the 1->0 code.
2307 	 */
2308 	if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2309 		return (0);
2310 
2311 	get_mplock();
2312 
2313 	/*
2314 	 * The last reference has gone away, we own the fp structure free
2315 	 * and clear.
2316 	 */
2317 	if (fp->f_count < 0)
2318 		panic("fdrop: count < 0");
2319 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2320 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2321 	) {
2322 		lf.l_whence = SEEK_SET;
2323 		lf.l_start = 0;
2324 		lf.l_len = 0;
2325 		lf.l_type = F_UNLCK;
2326 		vp = (struct vnode *)fp->f_data;
2327 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2328 	}
2329 	if (fp->f_ops != &badfileops)
2330 		error = fo_close(fp);
2331 	else
2332 		error = 0;
2333 	ffree(fp);
2334 	rel_mplock();
2335 	return (error);
2336 }
2337 
2338 /*
2339  * Apply an advisory lock on a file descriptor.
2340  *
2341  * Just attempt to get a record lock of the requested type on
2342  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2343  *
2344  * MPALMOSTSAFE
2345  */
2346 int
2347 sys_flock(struct flock_args *uap)
2348 {
2349 	struct proc *p = curproc;
2350 	struct file *fp;
2351 	struct vnode *vp;
2352 	struct flock lf;
2353 	int error;
2354 
2355 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2356 		return (EBADF);
2357 	get_mplock();
2358 	if (fp->f_type != DTYPE_VNODE) {
2359 		error = EOPNOTSUPP;
2360 		goto done;
2361 	}
2362 	vp = (struct vnode *)fp->f_data;
2363 	lf.l_whence = SEEK_SET;
2364 	lf.l_start = 0;
2365 	lf.l_len = 0;
2366 	if (uap->how & LOCK_UN) {
2367 		lf.l_type = F_UNLCK;
2368 		fp->f_flag &= ~FHASLOCK;
2369 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2370 		goto done;
2371 	}
2372 	if (uap->how & LOCK_EX)
2373 		lf.l_type = F_WRLCK;
2374 	else if (uap->how & LOCK_SH)
2375 		lf.l_type = F_RDLCK;
2376 	else {
2377 		error = EBADF;
2378 		goto done;
2379 	}
2380 	fp->f_flag |= FHASLOCK;
2381 	if (uap->how & LOCK_NB)
2382 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2383 	else
2384 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2385 done:
2386 	rel_mplock();
2387 	fdrop(fp);
2388 	return (error);
2389 }
2390 
2391 /*
2392  * File Descriptor pseudo-device driver (/dev/fd/).
2393  *
2394  * Opening minor device N dup()s the file (if any) connected to file
2395  * descriptor N belonging to the calling process.  Note that this driver
2396  * consists of only the ``open()'' routine, because all subsequent
2397  * references to this file will be direct to the other driver.
2398  */
2399 static int
2400 fdopen(struct dev_open_args *ap)
2401 {
2402 	thread_t td = curthread;
2403 
2404 	KKASSERT(td->td_lwp != NULL);
2405 
2406 	/*
2407 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2408 	 * the file descriptor being sought for duplication. The error
2409 	 * return ensures that the vnode for this device will be released
2410 	 * by vn_open. Open will detect this special error and take the
2411 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2412 	 * will simply report the error.
2413 	 */
2414 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2415 	return (ENODEV);
2416 }
2417 
2418 /*
2419  * The caller has reserved the file descriptor dfd for us.  On success we
2420  * must fsetfd() it.  On failure the caller will clean it up.
2421  *
2422  * MPSAFE
2423  */
2424 int
2425 dupfdopen(struct filedesc *fdp, int dfd, int sfd, int mode, int error)
2426 {
2427 	struct file *wfp;
2428 	struct file *xfp;
2429 	int werror;
2430 
2431 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2432 		return (EBADF);
2433 
2434 	/*
2435 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2436 	 * will dup a dummy descriptor instead of the real one.
2437 	 */
2438 	if (wfp->f_flag & FREVOKED) {
2439 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2440 		fdrop(wfp);
2441 		wfp = NULL;
2442 		werror = falloc(NULL, &wfp, NULL);
2443 		if (werror)
2444 			return (werror);
2445 	}
2446 
2447 	/*
2448 	 * There are two cases of interest here.
2449 	 *
2450 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2451 	 *
2452 	 * For ENXIO steal away the file structure from sfd and store it
2453 	 * dfd.  sfd is effectively closed by this operation.
2454 	 *
2455 	 * Any other error code is just returned.
2456 	 */
2457 	switch (error) {
2458 	case ENODEV:
2459 		/*
2460 		 * Check that the mode the file is being opened for is a
2461 		 * subset of the mode of the existing descriptor.
2462 		 */
2463 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2464 			error = EACCES;
2465 			break;
2466 		}
2467 		spin_lock_wr(&fdp->fd_spin);
2468 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2469 		fsetfd_locked(fdp, wfp, dfd);
2470 		spin_unlock_wr(&fdp->fd_spin);
2471 		error = 0;
2472 		break;
2473 	case ENXIO:
2474 		/*
2475 		 * Steal away the file pointer from dfd, and stuff it into indx.
2476 		 */
2477 		spin_lock_wr(&fdp->fd_spin);
2478 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2479 		fsetfd(fdp, wfp, dfd);
2480 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL) {
2481 			spin_unlock_wr(&fdp->fd_spin);
2482 			fdrop(xfp);
2483 		} else {
2484 			spin_unlock_wr(&fdp->fd_spin);
2485 		}
2486 		error = 0;
2487 		break;
2488 	default:
2489 		break;
2490 	}
2491 	fdrop(wfp);
2492 	return (error);
2493 }
2494 
2495 /*
2496  * NOT MPSAFE - I think these refer to a common file descriptor table
2497  * and we need to spinlock that to link fdtol in.
2498  */
2499 struct filedesc_to_leader *
2500 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2501 			 struct proc *leader)
2502 {
2503 	struct filedesc_to_leader *fdtol;
2504 
2505 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2506 			M_FILEDESC_TO_LEADER, M_WAITOK);
2507 	fdtol->fdl_refcount = 1;
2508 	fdtol->fdl_holdcount = 0;
2509 	fdtol->fdl_wakeup = 0;
2510 	fdtol->fdl_leader = leader;
2511 	if (old != NULL) {
2512 		fdtol->fdl_next = old->fdl_next;
2513 		fdtol->fdl_prev = old;
2514 		old->fdl_next = fdtol;
2515 		fdtol->fdl_next->fdl_prev = fdtol;
2516 	} else {
2517 		fdtol->fdl_next = fdtol;
2518 		fdtol->fdl_prev = fdtol;
2519 	}
2520 	return fdtol;
2521 }
2522 
2523 /*
2524  * Scan all file pointers in the system.  The callback is made with
2525  * the master list spinlock held exclusively.
2526  *
2527  * MPSAFE
2528  */
2529 void
2530 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2531 {
2532 	struct file *fp;
2533 	int res;
2534 
2535 	spin_lock_wr(&filehead_spin);
2536 	LIST_FOREACH(fp, &filehead, f_list) {
2537 		res = callback(fp, data);
2538 		if (res < 0)
2539 			break;
2540 	}
2541 	spin_unlock_wr(&filehead_spin);
2542 }
2543 
2544 /*
2545  * Get file structures.
2546  *
2547  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2548  */
2549 
2550 struct sysctl_kern_file_info {
2551 	int count;
2552 	int error;
2553 	struct sysctl_req *req;
2554 };
2555 
2556 static int sysctl_kern_file_callback(struct proc *p, void *data);
2557 
2558 static int
2559 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2560 {
2561 	struct sysctl_kern_file_info info;
2562 
2563 	/*
2564 	 * Note: because the number of file descriptors is calculated
2565 	 * in different ways for sizing vs returning the data,
2566 	 * there is information leakage from the first loop.  However,
2567 	 * it is of a similar order of magnitude to the leakage from
2568 	 * global system statistics such as kern.openfiles.
2569 	 *
2570 	 * When just doing a count, note that we cannot just count
2571 	 * the elements and add f_count via the filehead list because
2572 	 * threaded processes share their descriptor table and f_count might
2573 	 * still be '1' in that case.
2574 	 *
2575 	 * Since the SYSCTL op can block, we must hold the process to
2576 	 * prevent it being ripped out from under us either in the
2577 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2578 	 * process may be in varying states of disrepair.  If the process
2579 	 * is in SZOMB we may have caught it just as it is being removed
2580 	 * from the allproc list, we must skip it in that case to maintain
2581 	 * an unbroken chain through the allproc list.
2582 	 */
2583 	info.count = 0;
2584 	info.error = 0;
2585 	info.req = req;
2586 	allproc_scan(sysctl_kern_file_callback, &info);
2587 
2588 	/*
2589 	 * When just calculating the size, overestimate a bit to try to
2590 	 * prevent system activity from causing the buffer-fill call
2591 	 * to fail later on.
2592 	 */
2593 	if (req->oldptr == NULL) {
2594 		info.count = (info.count + 16) + (info.count / 10);
2595 		info.error = SYSCTL_OUT(req, NULL,
2596 					info.count * sizeof(struct kinfo_file));
2597 	}
2598 	return (info.error);
2599 }
2600 
2601 static int
2602 sysctl_kern_file_callback(struct proc *p, void *data)
2603 {
2604 	struct sysctl_kern_file_info *info = data;
2605 	struct kinfo_file kf;
2606 	struct filedesc *fdp;
2607 	struct file *fp;
2608 	uid_t uid;
2609 	int n;
2610 
2611 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2612 		return(0);
2613 	if (!PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0)
2614 		return(0);
2615 
2616 	/*
2617 	 * Softref the fdp to prevent it from being destroyed
2618 	 */
2619 	spin_lock_wr(&p->p_spin);
2620 	if ((fdp = p->p_fd) == NULL) {
2621 		spin_unlock_wr(&p->p_spin);
2622 		return(0);
2623 	}
2624 	atomic_add_int(&fdp->fd_softrefs, 1);
2625 	spin_unlock_wr(&p->p_spin);
2626 
2627 	/*
2628 	 * The fdp's own spinlock prevents the contents from being
2629 	 * modified.
2630 	 */
2631 	spin_lock_rd(&fdp->fd_spin);
2632 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2633 		if ((fp = fdp->fd_files[n].fp) == NULL)
2634 			continue;
2635 		if (info->req->oldptr == NULL) {
2636 			++info->count;
2637 		} else {
2638 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2639 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2640 			spin_unlock_rd(&fdp->fd_spin);
2641 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2642 			spin_lock_rd(&fdp->fd_spin);
2643 			if (info->error)
2644 				break;
2645 		}
2646 	}
2647 	spin_unlock_rd(&fdp->fd_spin);
2648 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2649 	if (info->error)
2650 		return(-1);
2651 	return(0);
2652 }
2653 
2654 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2655     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2656 
2657 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2658     &maxfilesperproc, 0, "Maximum files allowed open per process");
2659 
2660 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2661     &maxfiles, 0, "Maximum number of files");
2662 
2663 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2664     &maxfilesrootres, 0, "Descriptors reserved for root use");
2665 
2666 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2667 	&nfiles, 0, "System-wide number of open files");
2668 
2669 static void
2670 fildesc_drvinit(void *unused)
2671 {
2672 	int fd;
2673 
2674 	for (fd = 0; fd < NUMFDESC; fd++) {
2675 		make_dev(&fildesc_ops, fd,
2676 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2677 	}
2678 
2679 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2680 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2681 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2682 }
2683 
2684 /*
2685  * MPSAFE
2686  */
2687 struct fileops badfileops = {
2688 	.fo_read = badfo_readwrite,
2689 	.fo_write = badfo_readwrite,
2690 	.fo_ioctl = badfo_ioctl,
2691 	.fo_poll = badfo_poll,
2692 	.fo_kqfilter = badfo_kqfilter,
2693 	.fo_stat = badfo_stat,
2694 	.fo_close = badfo_close,
2695 	.fo_shutdown = badfo_shutdown
2696 };
2697 
2698 /*
2699  * MPSAFE
2700  */
2701 int
2702 badfo_readwrite(
2703 	struct file *fp,
2704 	struct uio *uio,
2705 	struct ucred *cred,
2706 	int flags
2707 ) {
2708 	return (EBADF);
2709 }
2710 
2711 /*
2712  * MPSAFE
2713  */
2714 int
2715 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2716 	    struct ucred *cred, struct sysmsg *msgv)
2717 {
2718 	return (EBADF);
2719 }
2720 
2721 /*
2722  * MPSAFE
2723  */
2724 int
2725 badfo_poll(struct file *fp, int events, struct ucred *cred)
2726 {
2727 	return (0);
2728 }
2729 
2730 /*
2731  * MPSAFE
2732  */
2733 int
2734 badfo_kqfilter(struct file *fp, struct knote *kn)
2735 {
2736 	return (0);
2737 }
2738 
2739 int
2740 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2741 {
2742 	return (EBADF);
2743 }
2744 
2745 /*
2746  * MPSAFE
2747  */
2748 int
2749 badfo_close(struct file *fp)
2750 {
2751 	return (EBADF);
2752 }
2753 
2754 /*
2755  * MPSAFE
2756  */
2757 int
2758 badfo_shutdown(struct file *fp, int how)
2759 {
2760 	return (EBADF);
2761 }
2762 
2763 /*
2764  * MPSAFE
2765  */
2766 int
2767 nofo_shutdown(struct file *fp, int how)
2768 {
2769 	return (EOPNOTSUPP);
2770 }
2771 
2772 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2773 					fildesc_drvinit,NULL)
2774