xref: /dragonfly/sys/kern/kern_descrip.c (revision e8c03636)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
68  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
69  */
70 
71 #include "opt_compat.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/sysproto.h>
76 #include <sys/conf.h>
77 #include <sys/device.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/vnode.h>
83 #include <sys/proc.h>
84 #include <sys/nlookup.h>
85 #include <sys/stat.h>
86 #include <sys/filio.h>
87 #include <sys/fcntl.h>
88 #include <sys/unistd.h>
89 #include <sys/resourcevar.h>
90 #include <sys/event.h>
91 #include <sys/kern_syscall.h>
92 #include <sys/kcore.h>
93 #include <sys/kinfo.h>
94 #include <sys/un.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <sys/file2.h>
101 #include <sys/spinlock2.h>
102 
103 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
104 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
105 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
106 static void ffree(struct file *fp);
107 
108 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
109 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
110 		     "file desc to leader structures");
111 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
112 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
113 
114 static struct krate krate_uidinfo = { .freq = 1 };
115 
116 static	 d_open_t  fdopen;
117 #define NUMFDESC 64
118 
119 #define CDEV_MAJOR 22
120 static struct dev_ops fildesc_ops = {
121 	{ "FD", 0, 0 },
122 	.d_open =	fdopen,
123 };
124 
125 /*
126  * Descriptor management.
127  */
128 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
129 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin);
130 static int nfiles;		/* actual number of open files */
131 extern int cmask;
132 
133 /*
134  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
135  *
136  * MPSAFE - must be called with fdp->fd_spin exclusively held
137  */
138 static __inline
139 void
140 fdfixup_locked(struct filedesc *fdp, int fd)
141 {
142 	if (fd < fdp->fd_freefile) {
143 	       fdp->fd_freefile = fd;
144 	}
145 	while (fdp->fd_lastfile >= 0 &&
146 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
147 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
148 	) {
149 		--fdp->fd_lastfile;
150 	}
151 }
152 
153 /*
154  * System calls on descriptors.
155  *
156  * MPSAFE
157  */
158 int
159 sys_getdtablesize(struct getdtablesize_args *uap)
160 {
161 	struct proc *p = curproc;
162 	struct plimit *limit = p->p_limit;
163 	int dtsize;
164 
165 	spin_lock(&limit->p_spin);
166 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
167 		dtsize = INT_MAX;
168 	else
169 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
170 	spin_unlock(&limit->p_spin);
171 
172 	if (dtsize > maxfilesperproc)
173 		dtsize = maxfilesperproc;
174 	if (dtsize < minfilesperproc)
175 		dtsize = minfilesperproc;
176 	if (p->p_ucred->cr_uid && dtsize > maxfilesperuser)
177 		dtsize = maxfilesperuser;
178 	uap->sysmsg_result = dtsize;
179 	return (0);
180 }
181 
182 /*
183  * Duplicate a file descriptor to a particular value.
184  *
185  * note: keep in mind that a potential race condition exists when closing
186  * descriptors from a shared descriptor table (via rfork).
187  *
188  * MPSAFE
189  */
190 int
191 sys_dup2(struct dup2_args *uap)
192 {
193 	int error;
194 	int fd = 0;
195 
196 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
197 	uap->sysmsg_fds[0] = fd;
198 
199 	return (error);
200 }
201 
202 /*
203  * Duplicate a file descriptor.
204  *
205  * MPSAFE
206  */
207 int
208 sys_dup(struct dup_args *uap)
209 {
210 	int error;
211 	int fd = 0;
212 
213 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
214 	uap->sysmsg_fds[0] = fd;
215 
216 	return (error);
217 }
218 
219 /*
220  * MPALMOSTSAFE - acquires mplock for fp operations
221  */
222 int
223 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
224 {
225 	struct thread *td = curthread;
226 	struct proc *p = td->td_proc;
227 	struct file *fp;
228 	struct vnode *vp;
229 	u_int newmin;
230 	u_int oflags;
231 	u_int nflags;
232 	int tmp, error, flg = F_POSIX;
233 
234 	KKASSERT(p);
235 
236 	/*
237 	 * Operations on file descriptors that do not require a file pointer.
238 	 */
239 	switch (cmd) {
240 	case F_GETFD:
241 		error = fgetfdflags(p->p_fd, fd, &tmp);
242 		if (error == 0)
243 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
244 		return (error);
245 
246 	case F_SETFD:
247 		if (dat->fc_cloexec & FD_CLOEXEC)
248 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
249 		else
250 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
251 		return (error);
252 	case F_DUPFD:
253 		newmin = dat->fc_fd;
254 		error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
255 		return (error);
256 	default:
257 		break;
258 	}
259 
260 	/*
261 	 * Operations on file pointers
262 	 */
263 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
264 		return (EBADF);
265 
266 	switch (cmd) {
267 	case F_GETFL:
268 		dat->fc_flags = OFLAGS(fp->f_flag);
269 		error = 0;
270 		break;
271 
272 	case F_SETFL:
273 		oflags = fp->f_flag;
274 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
275 		nflags |= oflags & ~FCNTLFLAGS;
276 
277 		error = 0;
278 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
279 			error = EINVAL;
280 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
281 			tmp = nflags & FASYNC;
282 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
283 					 cred, NULL);
284 		}
285 		if (error == 0)
286 			fp->f_flag = nflags;
287 		break;
288 
289 	case F_GETOWN:
290 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
291 				 cred, NULL);
292 		break;
293 
294 	case F_SETOWN:
295 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
296 				 cred, NULL);
297 		break;
298 
299 	case F_SETLKW:
300 		flg |= F_WAIT;
301 		/* Fall into F_SETLK */
302 
303 	case F_SETLK:
304 		if (fp->f_type != DTYPE_VNODE) {
305 			error = EBADF;
306 			break;
307 		}
308 		vp = (struct vnode *)fp->f_data;
309 
310 		/*
311 		 * copyin/lockop may block
312 		 */
313 		if (dat->fc_flock.l_whence == SEEK_CUR)
314 			dat->fc_flock.l_start += fp->f_offset;
315 
316 		switch (dat->fc_flock.l_type) {
317 		case F_RDLCK:
318 			if ((fp->f_flag & FREAD) == 0) {
319 				error = EBADF;
320 				break;
321 			}
322 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
323 				lwkt_gettoken(&p->p_leader->p_token);
324 				p->p_leader->p_flags |= P_ADVLOCK;
325 				lwkt_reltoken(&p->p_leader->p_token);
326 			}
327 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
328 			    &dat->fc_flock, flg);
329 			break;
330 		case F_WRLCK:
331 			if ((fp->f_flag & FWRITE) == 0) {
332 				error = EBADF;
333 				break;
334 			}
335 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
336 				lwkt_gettoken(&p->p_leader->p_token);
337 				p->p_leader->p_flags |= P_ADVLOCK;
338 				lwkt_reltoken(&p->p_leader->p_token);
339 			}
340 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
341 			    &dat->fc_flock, flg);
342 			break;
343 		case F_UNLCK:
344 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
345 				&dat->fc_flock, F_POSIX);
346 			break;
347 		default:
348 			error = EINVAL;
349 			break;
350 		}
351 
352 		/*
353 		 * It is possible to race a close() on the descriptor while
354 		 * we were blocked getting the lock.  If this occurs the
355 		 * close might not have caught the lock.
356 		 */
357 		if (checkfdclosed(p->p_fd, fd, fp)) {
358 			dat->fc_flock.l_whence = SEEK_SET;
359 			dat->fc_flock.l_start = 0;
360 			dat->fc_flock.l_len = 0;
361 			dat->fc_flock.l_type = F_UNLCK;
362 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
363 					   F_UNLCK, &dat->fc_flock, F_POSIX);
364 		}
365 		break;
366 
367 	case F_GETLK:
368 		if (fp->f_type != DTYPE_VNODE) {
369 			error = EBADF;
370 			break;
371 		}
372 		vp = (struct vnode *)fp->f_data;
373 		/*
374 		 * copyin/lockop may block
375 		 */
376 		if (dat->fc_flock.l_type != F_RDLCK &&
377 		    dat->fc_flock.l_type != F_WRLCK &&
378 		    dat->fc_flock.l_type != F_UNLCK) {
379 			error = EINVAL;
380 			break;
381 		}
382 		if (dat->fc_flock.l_whence == SEEK_CUR)
383 			dat->fc_flock.l_start += fp->f_offset;
384 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
385 			    &dat->fc_flock, F_POSIX);
386 		break;
387 	default:
388 		error = EINVAL;
389 		break;
390 	}
391 
392 	fdrop(fp);
393 	return (error);
394 }
395 
396 /*
397  * The file control system call.
398  *
399  * MPSAFE
400  */
401 int
402 sys_fcntl(struct fcntl_args *uap)
403 {
404 	union fcntl_dat dat;
405 	int error;
406 
407 	switch (uap->cmd) {
408 	case F_DUPFD:
409 		dat.fc_fd = uap->arg;
410 		break;
411 	case F_SETFD:
412 		dat.fc_cloexec = uap->arg;
413 		break;
414 	case F_SETFL:
415 		dat.fc_flags = uap->arg;
416 		break;
417 	case F_SETOWN:
418 		dat.fc_owner = uap->arg;
419 		break;
420 	case F_SETLKW:
421 	case F_SETLK:
422 	case F_GETLK:
423 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
424 			       sizeof(struct flock));
425 		if (error)
426 			return (error);
427 		break;
428 	}
429 
430 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
431 
432 	if (error == 0) {
433 		switch (uap->cmd) {
434 		case F_DUPFD:
435 			uap->sysmsg_result = dat.fc_fd;
436 			break;
437 		case F_GETFD:
438 			uap->sysmsg_result = dat.fc_cloexec;
439 			break;
440 		case F_GETFL:
441 			uap->sysmsg_result = dat.fc_flags;
442 			break;
443 		case F_GETOWN:
444 			uap->sysmsg_result = dat.fc_owner;
445 		case F_GETLK:
446 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
447 			    sizeof(struct flock));
448 			break;
449 		}
450 	}
451 
452 	return (error);
453 }
454 
455 /*
456  * Common code for dup, dup2, and fcntl(F_DUPFD).
457  *
458  * The type flag can be either DUP_FIXED or DUP_VARIABLE.  DUP_FIXED tells
459  * kern_dup() to destructively dup over an existing file descriptor if new
460  * is already open.  DUP_VARIABLE tells kern_dup() to find the lowest
461  * unused file descriptor that is greater than or equal to new.
462  *
463  * MPSAFE
464  */
465 int
466 kern_dup(enum dup_type type, int old, int new, int *res)
467 {
468 	struct thread *td = curthread;
469 	struct proc *p = td->td_proc;
470 	struct filedesc *fdp = p->p_fd;
471 	struct file *fp;
472 	struct file *delfp;
473 	int oldflags;
474 	int holdleaders;
475 	int dtsize;
476 	int error, newfd;
477 
478 	/*
479 	 * Verify that we have a valid descriptor to dup from and
480 	 * possibly to dup to.
481 	 *
482 	 * NOTE: maxfilesperuser is not applicable to dup()
483 	 */
484 retry:
485 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
486 		dtsize = INT_MAX;
487 	else
488 		dtsize = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
489 	if (dtsize > maxfilesperproc)
490 		dtsize = maxfilesperproc;
491 	if (dtsize < minfilesperproc)
492 		dtsize = minfilesperproc;
493 
494 	if (new < 0 || new > dtsize)
495 		return (EINVAL);
496 
497 	spin_lock(&fdp->fd_spin);
498 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
499 		spin_unlock(&fdp->fd_spin);
500 		return (EBADF);
501 	}
502 	if (type == DUP_FIXED && old == new) {
503 		*res = new;
504 		spin_unlock(&fdp->fd_spin);
505 		return (0);
506 	}
507 	fp = fdp->fd_files[old].fp;
508 	oldflags = fdp->fd_files[old].fileflags;
509 	fhold(fp);	/* MPSAFE - can be called with a spinlock held */
510 
511 	/*
512 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
513 	 * if the requested descriptor is beyond the current table size.
514 	 *
515 	 * This can block.  Retry if the source descriptor no longer matches
516 	 * or if our expectation in the expansion case races.
517 	 *
518 	 * If we are not expanding or allocating a new decriptor, then reset
519 	 * the target descriptor to a reserved state so we have a uniform
520 	 * setup for the next code block.
521 	 */
522 	if (type == DUP_VARIABLE || new >= fdp->fd_nfiles) {
523 		spin_unlock(&fdp->fd_spin);
524 		error = fdalloc(p, new, &newfd);
525 		spin_lock(&fdp->fd_spin);
526 		if (error) {
527 			spin_unlock(&fdp->fd_spin);
528 			fdrop(fp);
529 			return (error);
530 		}
531 		/*
532 		 * Check for ripout
533 		 */
534 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
535 			fsetfd_locked(fdp, NULL, newfd);
536 			spin_unlock(&fdp->fd_spin);
537 			fdrop(fp);
538 			goto retry;
539 		}
540 		/*
541 		 * Check for expansion race
542 		 */
543 		if (type != DUP_VARIABLE && new != newfd) {
544 			fsetfd_locked(fdp, NULL, newfd);
545 			spin_unlock(&fdp->fd_spin);
546 			fdrop(fp);
547 			goto retry;
548 		}
549 		/*
550 		 * Check for ripout, newfd reused old (this case probably
551 		 * can't occur).
552 		 */
553 		if (old == newfd) {
554 			fsetfd_locked(fdp, NULL, newfd);
555 			spin_unlock(&fdp->fd_spin);
556 			fdrop(fp);
557 			goto retry;
558 		}
559 		new = newfd;
560 		delfp = NULL;
561 	} else {
562 		if (fdp->fd_files[new].reserved) {
563 			spin_unlock(&fdp->fd_spin);
564 			fdrop(fp);
565 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
566 			tsleep(fdp, 0, "fdres", hz);
567 			goto retry;
568 		}
569 
570 		/*
571 		 * If the target descriptor was never allocated we have
572 		 * to allocate it.  If it was we have to clean out the
573 		 * old descriptor.  delfp inherits the ref from the
574 		 * descriptor table.
575 		 */
576 		delfp = fdp->fd_files[new].fp;
577 		fdp->fd_files[new].fp = NULL;
578 		fdp->fd_files[new].reserved = 1;
579 		if (delfp == NULL) {
580 			fdreserve_locked(fdp, new, 1);
581 			if (new > fdp->fd_lastfile)
582 				fdp->fd_lastfile = new;
583 		}
584 
585 	}
586 
587 	/*
588 	 * NOTE: still holding an exclusive spinlock
589 	 */
590 
591 	/*
592 	 * If a descriptor is being overwritten we may hve to tell
593 	 * fdfree() to sleep to ensure that all relevant process
594 	 * leaders can be traversed in closef().
595 	 */
596 	if (delfp != NULL && p->p_fdtol != NULL) {
597 		fdp->fd_holdleaderscount++;
598 		holdleaders = 1;
599 	} else {
600 		holdleaders = 0;
601 	}
602 	KASSERT(delfp == NULL || type == DUP_FIXED,
603 		("dup() picked an open file"));
604 
605 	/*
606 	 * Duplicate the source descriptor, update lastfile.  If the new
607 	 * descriptor was not allocated and we aren't replacing an existing
608 	 * descriptor we have to mark the descriptor as being in use.
609 	 *
610 	 * The fd_files[] array inherits fp's hold reference.
611 	 */
612 	fsetfd_locked(fdp, fp, new);
613 	fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
614 	spin_unlock(&fdp->fd_spin);
615 	fdrop(fp);
616 	*res = new;
617 
618 	/*
619 	 * If we dup'd over a valid file, we now own the reference to it
620 	 * and must dispose of it using closef() semantics (as if a
621 	 * close() were performed on it).
622 	 */
623 	if (delfp) {
624 		if (SLIST_FIRST(&delfp->f_klist))
625 			knote_fdclose(delfp, fdp, new);
626 		closef(delfp, p);
627 		if (holdleaders) {
628 			spin_lock(&fdp->fd_spin);
629 			fdp->fd_holdleaderscount--;
630 			if (fdp->fd_holdleaderscount == 0 &&
631 			    fdp->fd_holdleaderswakeup != 0) {
632 				fdp->fd_holdleaderswakeup = 0;
633 				spin_unlock(&fdp->fd_spin);
634 				wakeup(&fdp->fd_holdleaderscount);
635 			} else {
636 				spin_unlock(&fdp->fd_spin);
637 			}
638 		}
639 	}
640 	return (0);
641 }
642 
643 /*
644  * If sigio is on the list associated with a process or process group,
645  * disable signalling from the device, remove sigio from the list and
646  * free sigio.
647  *
648  * MPSAFE
649  */
650 void
651 funsetown(struct sigio **sigiop)
652 {
653 	struct pgrp *pgrp;
654 	struct proc *p;
655 	struct sigio *sigio;
656 
657 	if ((sigio = *sigiop) != NULL) {
658 		lwkt_gettoken(&proc_token);	/* protect sigio */
659 		KKASSERT(sigiop == sigio->sio_myref);
660 		sigio = *sigiop;
661 		*sigiop = NULL;
662 		lwkt_reltoken(&proc_token);
663 	}
664 	if (sigio == NULL)
665 		return;
666 
667 	if (sigio->sio_pgid < 0) {
668 		pgrp = sigio->sio_pgrp;
669 		sigio->sio_pgrp = NULL;
670 		lwkt_gettoken(&pgrp->pg_token);
671 		SLIST_REMOVE(&pgrp->pg_sigiolst, sigio, sigio, sio_pgsigio);
672 		lwkt_reltoken(&pgrp->pg_token);
673 		pgrel(pgrp);
674 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
675 		p = sigio->sio_proc;
676 		sigio->sio_proc = NULL;
677 		PHOLD(p);
678 		lwkt_gettoken(&p->p_token);
679 		SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
680 		lwkt_reltoken(&p->p_token);
681 		PRELE(p);
682 	}
683 	crfree(sigio->sio_ucred);
684 	sigio->sio_ucred = NULL;
685 	kfree(sigio, M_SIGIO);
686 }
687 
688 /*
689  * Free a list of sigio structures.  Caller is responsible for ensuring
690  * that the list is MPSAFE.
691  *
692  * MPSAFE
693  */
694 void
695 funsetownlst(struct sigiolst *sigiolst)
696 {
697 	struct sigio *sigio;
698 
699 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
700 		funsetown(sigio->sio_myref);
701 }
702 
703 /*
704  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
705  *
706  * After permission checking, add a sigio structure to the sigio list for
707  * the process or process group.
708  *
709  * MPSAFE
710  */
711 int
712 fsetown(pid_t pgid, struct sigio **sigiop)
713 {
714 	struct proc *proc = NULL;
715 	struct pgrp *pgrp = NULL;
716 	struct sigio *sigio;
717 	int error;
718 
719 	if (pgid == 0) {
720 		funsetown(sigiop);
721 		return (0);
722 	}
723 
724 	if (pgid > 0) {
725 		proc = pfind(pgid);
726 		if (proc == NULL) {
727 			error = ESRCH;
728 			goto done;
729 		}
730 
731 		/*
732 		 * Policy - Don't allow a process to FSETOWN a process
733 		 * in another session.
734 		 *
735 		 * Remove this test to allow maximum flexibility or
736 		 * restrict FSETOWN to the current process or process
737 		 * group for maximum safety.
738 		 */
739 		if (proc->p_session != curproc->p_session) {
740 			error = EPERM;
741 			goto done;
742 		}
743 	} else /* if (pgid < 0) */ {
744 		pgrp = pgfind(-pgid);
745 		if (pgrp == NULL) {
746 			error = ESRCH;
747 			goto done;
748 		}
749 
750 		/*
751 		 * Policy - Don't allow a process to FSETOWN a process
752 		 * in another session.
753 		 *
754 		 * Remove this test to allow maximum flexibility or
755 		 * restrict FSETOWN to the current process or process
756 		 * group for maximum safety.
757 		 */
758 		if (pgrp->pg_session != curproc->p_session) {
759 			error = EPERM;
760 			goto done;
761 		}
762 	}
763 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK | M_ZERO);
764 	if (pgid > 0) {
765 		KKASSERT(pgrp == NULL);
766 		lwkt_gettoken(&proc->p_token);
767 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
768 		sigio->sio_proc = proc;
769 		lwkt_reltoken(&proc->p_token);
770 	} else {
771 		KKASSERT(proc == NULL);
772 		lwkt_gettoken(&pgrp->pg_token);
773 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
774 		sigio->sio_pgrp = pgrp;
775 		lwkt_reltoken(&pgrp->pg_token);
776 		pgrp = NULL;
777 	}
778 	sigio->sio_pgid = pgid;
779 	sigio->sio_ucred = crhold(curthread->td_ucred);
780 	/* It would be convenient if p_ruid was in ucred. */
781 	sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
782 	sigio->sio_myref = sigiop;
783 
784 	lwkt_gettoken(&proc_token);
785 	while (*sigiop)
786 		funsetown(sigiop);
787 	*sigiop = sigio;
788 	lwkt_reltoken(&proc_token);
789 	error = 0;
790 done:
791 	if (pgrp)
792 		pgrel(pgrp);
793 	if (proc)
794 		PRELE(proc);
795 	return (error);
796 }
797 
798 /*
799  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
800  *
801  * MPSAFE
802  */
803 pid_t
804 fgetown(struct sigio **sigiop)
805 {
806 	struct sigio *sigio;
807 	pid_t own;
808 
809 	lwkt_gettoken(&proc_token);
810 	sigio = *sigiop;
811 	own = (sigio != NULL ? sigio->sio_pgid : 0);
812 	lwkt_reltoken(&proc_token);
813 
814 	return (own);
815 }
816 
817 /*
818  * Close many file descriptors.
819  *
820  * MPSAFE
821  */
822 int
823 sys_closefrom(struct closefrom_args *uap)
824 {
825 	return(kern_closefrom(uap->fd));
826 }
827 
828 /*
829  * Close all file descriptors greater then or equal to fd
830  *
831  * MPSAFE
832  */
833 int
834 kern_closefrom(int fd)
835 {
836 	struct thread *td = curthread;
837 	struct proc *p = td->td_proc;
838 	struct filedesc *fdp;
839 
840 	KKASSERT(p);
841 	fdp = p->p_fd;
842 
843 	if (fd < 0)
844 		return (EINVAL);
845 
846 	/*
847 	 * NOTE: This function will skip unassociated descriptors and
848 	 * reserved descriptors that have not yet been assigned.
849 	 * fd_lastfile can change as a side effect of kern_close().
850 	 */
851 	spin_lock(&fdp->fd_spin);
852 	while (fd <= fdp->fd_lastfile) {
853 		if (fdp->fd_files[fd].fp != NULL) {
854 			spin_unlock(&fdp->fd_spin);
855 			/* ok if this races another close */
856 			if (kern_close(fd) == EINTR)
857 				return (EINTR);
858 			spin_lock(&fdp->fd_spin);
859 		}
860 		++fd;
861 	}
862 	spin_unlock(&fdp->fd_spin);
863 	return (0);
864 }
865 
866 /*
867  * Close a file descriptor.
868  *
869  * MPSAFE
870  */
871 int
872 sys_close(struct close_args *uap)
873 {
874 	return(kern_close(uap->fd));
875 }
876 
877 /*
878  * MPSAFE
879  */
880 int
881 kern_close(int fd)
882 {
883 	struct thread *td = curthread;
884 	struct proc *p = td->td_proc;
885 	struct filedesc *fdp;
886 	struct file *fp;
887 	int error;
888 	int holdleaders;
889 
890 	KKASSERT(p);
891 	fdp = p->p_fd;
892 
893 	spin_lock(&fdp->fd_spin);
894 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
895 		spin_unlock(&fdp->fd_spin);
896 		return (EBADF);
897 	}
898 	holdleaders = 0;
899 	if (p->p_fdtol != NULL) {
900 		/*
901 		 * Ask fdfree() to sleep to ensure that all relevant
902 		 * process leaders can be traversed in closef().
903 		 */
904 		fdp->fd_holdleaderscount++;
905 		holdleaders = 1;
906 	}
907 
908 	/*
909 	 * we now hold the fp reference that used to be owned by the descriptor
910 	 * array.
911 	 */
912 	spin_unlock(&fdp->fd_spin);
913 	if (SLIST_FIRST(&fp->f_klist))
914 		knote_fdclose(fp, fdp, fd);
915 	error = closef(fp, p);
916 	if (holdleaders) {
917 		spin_lock(&fdp->fd_spin);
918 		fdp->fd_holdleaderscount--;
919 		if (fdp->fd_holdleaderscount == 0 &&
920 		    fdp->fd_holdleaderswakeup != 0) {
921 			fdp->fd_holdleaderswakeup = 0;
922 			spin_unlock(&fdp->fd_spin);
923 			wakeup(&fdp->fd_holdleaderscount);
924 		} else {
925 			spin_unlock(&fdp->fd_spin);
926 		}
927 	}
928 	return (error);
929 }
930 
931 /*
932  * shutdown_args(int fd, int how)
933  */
934 int
935 kern_shutdown(int fd, int how)
936 {
937 	struct thread *td = curthread;
938 	struct proc *p = td->td_proc;
939 	struct file *fp;
940 	int error;
941 
942 	KKASSERT(p);
943 
944 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
945 		return (EBADF);
946 	error = fo_shutdown(fp, how);
947 	fdrop(fp);
948 
949 	return (error);
950 }
951 
952 /*
953  * MPALMOSTSAFE
954  */
955 int
956 sys_shutdown(struct shutdown_args *uap)
957 {
958 	int error;
959 
960 	error = kern_shutdown(uap->s, uap->how);
961 
962 	return (error);
963 }
964 
965 /*
966  * MPSAFE
967  */
968 int
969 kern_fstat(int fd, struct stat *ub)
970 {
971 	struct thread *td = curthread;
972 	struct proc *p = td->td_proc;
973 	struct file *fp;
974 	int error;
975 
976 	KKASSERT(p);
977 
978 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
979 		return (EBADF);
980 	error = fo_stat(fp, ub, td->td_ucred);
981 	fdrop(fp);
982 
983 	return (error);
984 }
985 
986 /*
987  * Return status information about a file descriptor.
988  *
989  * MPSAFE
990  */
991 int
992 sys_fstat(struct fstat_args *uap)
993 {
994 	struct stat st;
995 	int error;
996 
997 	error = kern_fstat(uap->fd, &st);
998 
999 	if (error == 0)
1000 		error = copyout(&st, uap->sb, sizeof(st));
1001 	return (error);
1002 }
1003 
1004 /*
1005  * Return pathconf information about a file descriptor.
1006  *
1007  * MPALMOSTSAFE
1008  */
1009 int
1010 sys_fpathconf(struct fpathconf_args *uap)
1011 {
1012 	struct thread *td = curthread;
1013 	struct proc *p = td->td_proc;
1014 	struct file *fp;
1015 	struct vnode *vp;
1016 	int error = 0;
1017 
1018 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
1019 		return (EBADF);
1020 
1021 	switch (fp->f_type) {
1022 	case DTYPE_PIPE:
1023 	case DTYPE_SOCKET:
1024 		if (uap->name != _PC_PIPE_BUF) {
1025 			error = EINVAL;
1026 		} else {
1027 			uap->sysmsg_result = PIPE_BUF;
1028 			error = 0;
1029 		}
1030 		break;
1031 	case DTYPE_FIFO:
1032 	case DTYPE_VNODE:
1033 		vp = (struct vnode *)fp->f_data;
1034 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
1035 		break;
1036 	default:
1037 		error = EOPNOTSUPP;
1038 		break;
1039 	}
1040 	fdrop(fp);
1041 	return(error);
1042 }
1043 
1044 static int fdexpand;
1045 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0,
1046     "Number of times a file table has been expanded");
1047 
1048 /*
1049  * Grow the file table so it can hold through descriptor (want).
1050  *
1051  * The fdp's spinlock must be held exclusively on entry and may be held
1052  * exclusively on return.  The spinlock may be cycled by the routine.
1053  *
1054  * MPSAFE
1055  */
1056 static void
1057 fdgrow_locked(struct filedesc *fdp, int want)
1058 {
1059 	struct fdnode *newfiles;
1060 	struct fdnode *oldfiles;
1061 	int nf, extra;
1062 
1063 	nf = fdp->fd_nfiles;
1064 	do {
1065 		/* nf has to be of the form 2^n - 1 */
1066 		nf = 2 * nf + 1;
1067 	} while (nf <= want);
1068 
1069 	spin_unlock(&fdp->fd_spin);
1070 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
1071 	spin_lock(&fdp->fd_spin);
1072 
1073 	/*
1074 	 * We could have raced another extend while we were not holding
1075 	 * the spinlock.
1076 	 */
1077 	if (fdp->fd_nfiles >= nf) {
1078 		spin_unlock(&fdp->fd_spin);
1079 		kfree(newfiles, M_FILEDESC);
1080 		spin_lock(&fdp->fd_spin);
1081 		return;
1082 	}
1083 	/*
1084 	 * Copy the existing ofile and ofileflags arrays
1085 	 * and zero the new portion of each array.
1086 	 */
1087 	extra = nf - fdp->fd_nfiles;
1088 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1089 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1090 
1091 	oldfiles = fdp->fd_files;
1092 	fdp->fd_files = newfiles;
1093 	fdp->fd_nfiles = nf;
1094 
1095 	if (oldfiles != fdp->fd_builtin_files) {
1096 		spin_unlock(&fdp->fd_spin);
1097 		kfree(oldfiles, M_FILEDESC);
1098 		spin_lock(&fdp->fd_spin);
1099 	}
1100 	fdexpand++;
1101 }
1102 
1103 /*
1104  * Number of nodes in right subtree, including the root.
1105  */
1106 static __inline int
1107 right_subtree_size(int n)
1108 {
1109 	return (n ^ (n | (n + 1)));
1110 }
1111 
1112 /*
1113  * Bigger ancestor.
1114  */
1115 static __inline int
1116 right_ancestor(int n)
1117 {
1118 	return (n | (n + 1));
1119 }
1120 
1121 /*
1122  * Smaller ancestor.
1123  */
1124 static __inline int
1125 left_ancestor(int n)
1126 {
1127 	return ((n & (n + 1)) - 1);
1128 }
1129 
1130 /*
1131  * Traverse the in-place binary tree buttom-up adjusting the allocation
1132  * count so scans can determine where free descriptors are located.
1133  *
1134  * MPSAFE - caller must be holding an exclusive spinlock on fdp
1135  */
1136 static
1137 void
1138 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1139 {
1140 	while (fd >= 0) {
1141 		fdp->fd_files[fd].allocated += incr;
1142 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1143 		fd = left_ancestor(fd);
1144 	}
1145 }
1146 
1147 /*
1148  * Reserve a file descriptor for the process.  If no error occurs, the
1149  * caller MUST at some point call fsetfd() or assign a file pointer
1150  * or dispose of the reservation.
1151  *
1152  * MPSAFE
1153  */
1154 int
1155 fdalloc(struct proc *p, int want, int *result)
1156 {
1157 	struct filedesc *fdp = p->p_fd;
1158 	struct uidinfo *uip;
1159 	int fd, rsize, rsum, node, lim;
1160 
1161 	/*
1162 	 * Check dtable size limit
1163 	 */
1164 	spin_lock(&p->p_limit->p_spin);
1165 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1166 		lim = INT_MAX;
1167 	else
1168 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1169 	spin_unlock(&p->p_limit->p_spin);
1170 
1171 	if (lim > maxfilesperproc)
1172 		lim = maxfilesperproc;
1173 	if (lim < minfilesperproc)
1174 		lim = minfilesperproc;
1175 	if (want >= lim)
1176 		return (EMFILE);
1177 
1178 	/*
1179 	 * Check that the user has not run out of descriptors (non-root only).
1180 	 * As a safety measure the dtable is allowed to have at least
1181 	 * minfilesperproc open fds regardless of the maxfilesperuser limit.
1182 	 */
1183 	if (p->p_ucred->cr_uid && fdp->fd_nfiles >= minfilesperproc) {
1184 		uip = p->p_ucred->cr_uidinfo;
1185 		if (uip->ui_openfiles > maxfilesperuser) {
1186 			krateprintf(&krate_uidinfo,
1187 				    "Warning: user %d pid %d (%s) ran out of "
1188 				    "file descriptors (%d/%d)\n",
1189 				    p->p_ucred->cr_uid, (int)p->p_pid,
1190 				    p->p_comm,
1191 				    uip->ui_openfiles, maxfilesperuser);
1192 			return(ENFILE);
1193 		}
1194 	}
1195 
1196 	/*
1197 	 * Grow the dtable if necessary
1198 	 */
1199 	spin_lock(&fdp->fd_spin);
1200 	if (want >= fdp->fd_nfiles)
1201 		fdgrow_locked(fdp, want);
1202 
1203 	/*
1204 	 * Search for a free descriptor starting at the higher
1205 	 * of want or fd_freefile.  If that fails, consider
1206 	 * expanding the ofile array.
1207 	 *
1208 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1209 	 * count.  If we happen to see a value of 0 then we can shortcut
1210 	 * our search.  Otherwise we run through through the tree going
1211 	 * down branches we know have free descriptor(s) until we hit a
1212 	 * leaf node.  The leaf node will be free but will not necessarily
1213 	 * have an allocated field of 0.
1214 	 */
1215 retry:
1216 	/* move up the tree looking for a subtree with a free node */
1217 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1218 	     fd = right_ancestor(fd)) {
1219 		if (fdp->fd_files[fd].allocated == 0)
1220 			goto found;
1221 
1222 		rsize = right_subtree_size(fd);
1223 		if (fdp->fd_files[fd].allocated == rsize)
1224 			continue;	/* right subtree full */
1225 
1226 		/*
1227 		 * Free fd is in the right subtree of the tree rooted at fd.
1228 		 * Call that subtree R.  Look for the smallest (leftmost)
1229 		 * subtree of R with an unallocated fd: continue moving
1230 		 * down the left branch until encountering a full left
1231 		 * subtree, then move to the right.
1232 		 */
1233 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1234 			node = fd + rsize;
1235 			rsum += fdp->fd_files[node].allocated;
1236 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1237 				fd = node;	/* move to the right */
1238 				if (fdp->fd_files[node].allocated == 0)
1239 					goto found;
1240 				rsum = 0;
1241 			}
1242 		}
1243 		goto found;
1244 	}
1245 
1246 	/*
1247 	 * No space in current array.  Expand?
1248 	 */
1249 	if (fdp->fd_nfiles >= lim) {
1250 		spin_unlock(&fdp->fd_spin);
1251 		return (EMFILE);
1252 	}
1253 	fdgrow_locked(fdp, want);
1254 	goto retry;
1255 
1256 found:
1257 	KKASSERT(fd < fdp->fd_nfiles);
1258 	if (fd > fdp->fd_lastfile)
1259 		fdp->fd_lastfile = fd;
1260 	if (want <= fdp->fd_freefile)
1261 		fdp->fd_freefile = fd;
1262 	*result = fd;
1263 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1264 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1265 	fdp->fd_files[fd].fileflags = 0;
1266 	fdp->fd_files[fd].reserved = 1;
1267 	fdreserve_locked(fdp, fd, 1);
1268 	spin_unlock(&fdp->fd_spin);
1269 	return (0);
1270 }
1271 
1272 /*
1273  * Check to see whether n user file descriptors
1274  * are available to the process p.
1275  *
1276  * MPSAFE
1277  */
1278 int
1279 fdavail(struct proc *p, int n)
1280 {
1281 	struct filedesc *fdp = p->p_fd;
1282 	struct fdnode *fdnode;
1283 	int i, lim, last;
1284 
1285 	spin_lock(&p->p_limit->p_spin);
1286 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1287 		lim = INT_MAX;
1288 	else
1289 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1290 	spin_unlock(&p->p_limit->p_spin);
1291 
1292 	if (lim > maxfilesperproc)
1293 		lim = maxfilesperproc;
1294 	if (lim < minfilesperproc)
1295 		lim = minfilesperproc;
1296 
1297 	spin_lock(&fdp->fd_spin);
1298 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1299 		spin_unlock(&fdp->fd_spin);
1300 		return (1);
1301 	}
1302 	last = min(fdp->fd_nfiles, lim);
1303 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1304 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1305 		if (fdnode->fp == NULL && --n <= 0) {
1306 			spin_unlock(&fdp->fd_spin);
1307 			return (1);
1308 		}
1309 	}
1310 	spin_unlock(&fdp->fd_spin);
1311 	return (0);
1312 }
1313 
1314 /*
1315  * Revoke open descriptors referencing (f_data, f_type)
1316  *
1317  * Any revoke executed within a prison is only able to
1318  * revoke descriptors for processes within that prison.
1319  *
1320  * Returns 0 on success or an error code.
1321  */
1322 struct fdrevoke_info {
1323 	void *data;
1324 	short type;
1325 	short unused;
1326 	int count;
1327 	int intransit;
1328 	struct ucred *cred;
1329 	struct file *nfp;
1330 };
1331 
1332 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1333 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1334 
1335 int
1336 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1337 {
1338 	struct fdrevoke_info info;
1339 	int error;
1340 
1341 	bzero(&info, sizeof(info));
1342 	info.data = f_data;
1343 	info.type = f_type;
1344 	info.cred = cred;
1345 	error = falloc(NULL, &info.nfp, NULL);
1346 	if (error)
1347 		return (error);
1348 
1349 	/*
1350 	 * Scan the file pointer table once.  dups do not dup file pointers,
1351 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1352 	 * being revoked.
1353 	 */
1354 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1355 
1356 	/*
1357 	 * If any fps were marked track down the related descriptors
1358 	 * and close them.  Any dup()s at this point will notice
1359 	 * the FREVOKED already set in the fp and do the right thing.
1360 	 *
1361 	 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1362 	 * socket) bumped the intransit counter and will require a
1363 	 * scan.  Races against fps leaving the socket are closed by
1364 	 * the socket code checking for FREVOKED.
1365 	 */
1366 	if (info.count)
1367 		allproc_scan(fdrevoke_proc_callback, &info);
1368 	if (info.intransit)
1369 		unp_revoke_gc(info.nfp);
1370 	fdrop(info.nfp);
1371 	return(0);
1372 }
1373 
1374 /*
1375  * Locate matching file pointers directly.
1376  *
1377  * WARNING: allfiles_scan_exclusive() holds a spinlock through these calls!
1378  */
1379 static int
1380 fdrevoke_check_callback(struct file *fp, void *vinfo)
1381 {
1382 	struct fdrevoke_info *info = vinfo;
1383 
1384 	/*
1385 	 * File pointers already flagged for revokation are skipped.
1386 	 */
1387 	if (fp->f_flag & FREVOKED)
1388 		return(0);
1389 
1390 	/*
1391 	 * If revoking from a prison file pointers created outside of
1392 	 * that prison, or file pointers without creds, cannot be revoked.
1393 	 */
1394 	if (info->cred->cr_prison &&
1395 	    (fp->f_cred == NULL ||
1396 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1397 		return(0);
1398 	}
1399 
1400 	/*
1401 	 * If the file pointer matches then mark it for revocation.  The
1402 	 * flag is currently only used by unp_revoke_gc().
1403 	 *
1404 	 * info->count is a heuristic and can race in a SMP environment.
1405 	 */
1406 	if (info->data == fp->f_data && info->type == fp->f_type) {
1407 		atomic_set_int(&fp->f_flag, FREVOKED);
1408 		info->count += fp->f_count;
1409 		if (fp->f_msgcount)
1410 			++info->intransit;
1411 	}
1412 	return(0);
1413 }
1414 
1415 /*
1416  * Locate matching file pointers via process descriptor tables.
1417  */
1418 static int
1419 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1420 {
1421 	struct fdrevoke_info *info = vinfo;
1422 	struct filedesc *fdp;
1423 	struct file *fp;
1424 	int n;
1425 
1426 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1427 		return(0);
1428 	if (info->cred->cr_prison &&
1429 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1430 		return(0);
1431 	}
1432 
1433 	/*
1434 	 * If the controlling terminal of the process matches the
1435 	 * vnode being revoked we clear the controlling terminal.
1436 	 *
1437 	 * The normal spec_close() may not catch this because it
1438 	 * uses curproc instead of p.
1439 	 */
1440 	if (p->p_session && info->type == DTYPE_VNODE &&
1441 	    info->data == p->p_session->s_ttyvp) {
1442 		p->p_session->s_ttyvp = NULL;
1443 		vrele(info->data);
1444 	}
1445 
1446 	/*
1447 	 * Softref the fdp to prevent it from being destroyed
1448 	 */
1449 	spin_lock(&p->p_spin);
1450 	if ((fdp = p->p_fd) == NULL) {
1451 		spin_unlock(&p->p_spin);
1452 		return(0);
1453 	}
1454 	atomic_add_int(&fdp->fd_softrefs, 1);
1455 	spin_unlock(&p->p_spin);
1456 
1457 	/*
1458 	 * Locate and close any matching file descriptors.
1459 	 */
1460 	spin_lock(&fdp->fd_spin);
1461 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1462 		if ((fp = fdp->fd_files[n].fp) == NULL)
1463 			continue;
1464 		if (fp->f_flag & FREVOKED) {
1465 			fhold(info->nfp);
1466 			fdp->fd_files[n].fp = info->nfp;
1467 			spin_unlock(&fdp->fd_spin);
1468 			knote_fdclose(fp, fdp, n);	/* XXX */
1469 			closef(fp, p);
1470 			spin_lock(&fdp->fd_spin);
1471 			--info->count;
1472 		}
1473 	}
1474 	spin_unlock(&fdp->fd_spin);
1475 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1476 	return(0);
1477 }
1478 
1479 /*
1480  * falloc:
1481  *	Create a new open file structure and reserve a file decriptor
1482  *	for the process that refers to it.
1483  *
1484  *	Root creds are checked using lp, or assumed if lp is NULL.  If
1485  *	resultfd is non-NULL then lp must also be non-NULL.  No file
1486  *	descriptor is reserved (and no process context is needed) if
1487  *	resultfd is NULL.
1488  *
1489  *	A file pointer with a refcount of 1 is returned.  Note that the
1490  *	file pointer is NOT associated with the descriptor.  If falloc
1491  *	returns success, fsetfd() MUST be called to either associate the
1492  *	file pointer or clear the reservation.
1493  *
1494  * MPSAFE
1495  */
1496 int
1497 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
1498 {
1499 	static struct timeval lastfail;
1500 	static int curfail;
1501 	struct file *fp;
1502 	struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
1503 	int error;
1504 
1505 	fp = NULL;
1506 
1507 	/*
1508 	 * Handle filetable full issues and root overfill.
1509 	 */
1510 	if (nfiles >= maxfiles - maxfilesrootres &&
1511 	    (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
1512 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1513 			kprintf("kern.maxfiles limit exceeded by uid %d, "
1514 				"please see tuning(7).\n",
1515 				cred->cr_ruid);
1516 		}
1517 		error = ENFILE;
1518 		goto done;
1519 	}
1520 
1521 	/*
1522 	 * Allocate a new file descriptor.
1523 	 */
1524 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1525 	spin_init(&fp->f_spin);
1526 	SLIST_INIT(&fp->f_klist);
1527 	fp->f_count = 1;
1528 	fp->f_ops = &badfileops;
1529 	fp->f_seqcount = 1;
1530 	fsetcred(fp, cred);
1531 	spin_lock(&filehead_spin);
1532 	nfiles++;
1533 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1534 	spin_unlock(&filehead_spin);
1535 	if (resultfd) {
1536 		if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
1537 			fdrop(fp);
1538 			fp = NULL;
1539 		}
1540 	} else {
1541 		error = 0;
1542 	}
1543 done:
1544 	*resultfp = fp;
1545 	return (error);
1546 }
1547 
1548 /*
1549  * Check for races against a file descriptor by determining that the
1550  * file pointer is still associated with the specified file descriptor,
1551  * and a close is not currently in progress.
1552  *
1553  * MPSAFE
1554  */
1555 int
1556 checkfdclosed(struct filedesc *fdp, int fd, struct file *fp)
1557 {
1558 	int error;
1559 
1560 	spin_lock_shared(&fdp->fd_spin);
1561 	if ((unsigned)fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1562 		error = EBADF;
1563 	else
1564 		error = 0;
1565 	spin_unlock_shared(&fdp->fd_spin);
1566 	return (error);
1567 }
1568 
1569 /*
1570  * Associate a file pointer with a previously reserved file descriptor.
1571  * This function always succeeds.
1572  *
1573  * If fp is NULL, the file descriptor is returned to the pool.
1574  */
1575 
1576 /*
1577  * MPSAFE (exclusive spinlock must be held on call)
1578  */
1579 static void
1580 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1581 {
1582 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1583 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1584 	if (fp) {
1585 		fhold(fp);
1586 		fdp->fd_files[fd].fp = fp;
1587 		fdp->fd_files[fd].reserved = 0;
1588 	} else {
1589 		fdp->fd_files[fd].reserved = 0;
1590 		fdreserve_locked(fdp, fd, -1);
1591 		fdfixup_locked(fdp, fd);
1592 	}
1593 }
1594 
1595 /*
1596  * MPSAFE
1597  */
1598 void
1599 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
1600 {
1601 	spin_lock(&fdp->fd_spin);
1602 	fsetfd_locked(fdp, fp, fd);
1603 	spin_unlock(&fdp->fd_spin);
1604 }
1605 
1606 /*
1607  * MPSAFE (exclusive spinlock must be held on call)
1608  */
1609 static
1610 struct file *
1611 funsetfd_locked(struct filedesc *fdp, int fd)
1612 {
1613 	struct file *fp;
1614 
1615 	if ((unsigned)fd >= fdp->fd_nfiles)
1616 		return (NULL);
1617 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1618 		return (NULL);
1619 	fdp->fd_files[fd].fp = NULL;
1620 	fdp->fd_files[fd].fileflags = 0;
1621 
1622 	fdreserve_locked(fdp, fd, -1);
1623 	fdfixup_locked(fdp, fd);
1624 	return(fp);
1625 }
1626 
1627 /*
1628  * MPSAFE
1629  */
1630 int
1631 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1632 {
1633 	int error;
1634 
1635 	spin_lock(&fdp->fd_spin);
1636 	if (((u_int)fd) >= fdp->fd_nfiles) {
1637 		error = EBADF;
1638 	} else if (fdp->fd_files[fd].fp == NULL) {
1639 		error = EBADF;
1640 	} else {
1641 		*flagsp = fdp->fd_files[fd].fileflags;
1642 		error = 0;
1643 	}
1644 	spin_unlock(&fdp->fd_spin);
1645 	return (error);
1646 }
1647 
1648 /*
1649  * MPSAFE
1650  */
1651 int
1652 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1653 {
1654 	int error;
1655 
1656 	spin_lock(&fdp->fd_spin);
1657 	if (((u_int)fd) >= fdp->fd_nfiles) {
1658 		error = EBADF;
1659 	} else if (fdp->fd_files[fd].fp == NULL) {
1660 		error = EBADF;
1661 	} else {
1662 		fdp->fd_files[fd].fileflags |= add_flags;
1663 		error = 0;
1664 	}
1665 	spin_unlock(&fdp->fd_spin);
1666 	return (error);
1667 }
1668 
1669 /*
1670  * MPSAFE
1671  */
1672 int
1673 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1674 {
1675 	int error;
1676 
1677 	spin_lock(&fdp->fd_spin);
1678 	if (((u_int)fd) >= fdp->fd_nfiles) {
1679 		error = EBADF;
1680 	} else if (fdp->fd_files[fd].fp == NULL) {
1681 		error = EBADF;
1682 	} else {
1683 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1684 		error = 0;
1685 	}
1686 	spin_unlock(&fdp->fd_spin);
1687 	return (error);
1688 }
1689 
1690 /*
1691  * Set/Change/Clear the creds for a fp and synchronize the uidinfo.
1692  */
1693 void
1694 fsetcred(struct file *fp, struct ucred *ncr)
1695 {
1696 	struct ucred *ocr;
1697 	struct uidinfo *uip;
1698 
1699 	ocr = fp->f_cred;
1700 	if (ocr == NULL || ncr == NULL || ocr->cr_uidinfo != ncr->cr_uidinfo) {
1701 		if (ocr) {
1702 			uip = ocr->cr_uidinfo;
1703 			atomic_add_int(&uip->ui_openfiles, -1);
1704 		}
1705 		if (ncr) {
1706 			uip = ncr->cr_uidinfo;
1707 			atomic_add_int(&uip->ui_openfiles, 1);
1708 		}
1709 	}
1710 	if (ncr)
1711 		crhold(ncr);
1712 	fp->f_cred = ncr;
1713 	if (ocr)
1714 		crfree(ocr);
1715 }
1716 
1717 /*
1718  * Free a file descriptor.
1719  */
1720 static
1721 void
1722 ffree(struct file *fp)
1723 {
1724 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1725 	spin_lock(&filehead_spin);
1726 	LIST_REMOVE(fp, f_list);
1727 	nfiles--;
1728 	spin_unlock(&filehead_spin);
1729 	fsetcred(fp, NULL);
1730 	if (fp->f_nchandle.ncp)
1731 	    cache_drop(&fp->f_nchandle);
1732 	kfree(fp, M_FILE);
1733 }
1734 
1735 /*
1736  * called from init_main, initialize filedesc0 for proc0.
1737  */
1738 void
1739 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1740 {
1741 	p0->p_fd = fdp0;
1742 	p0->p_fdtol = NULL;
1743 	fdp0->fd_refcnt = 1;
1744 	fdp0->fd_cmask = cmask;
1745 	fdp0->fd_files = fdp0->fd_builtin_files;
1746 	fdp0->fd_nfiles = NDFILE;
1747 	fdp0->fd_lastfile = -1;
1748 	spin_init(&fdp0->fd_spin);
1749 }
1750 
1751 /*
1752  * Build a new filedesc structure.
1753  *
1754  * NOT MPSAFE (vref)
1755  */
1756 struct filedesc *
1757 fdinit(struct proc *p)
1758 {
1759 	struct filedesc *newfdp;
1760 	struct filedesc *fdp = p->p_fd;
1761 
1762 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1763 	spin_lock(&fdp->fd_spin);
1764 	if (fdp->fd_cdir) {
1765 		newfdp->fd_cdir = fdp->fd_cdir;
1766 		vref(newfdp->fd_cdir);
1767 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1768 	}
1769 
1770 	/*
1771 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1772 	 * proc0, but should unconditionally exist in other processes.
1773 	 */
1774 	if (fdp->fd_rdir) {
1775 		newfdp->fd_rdir = fdp->fd_rdir;
1776 		vref(newfdp->fd_rdir);
1777 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1778 	}
1779 	if (fdp->fd_jdir) {
1780 		newfdp->fd_jdir = fdp->fd_jdir;
1781 		vref(newfdp->fd_jdir);
1782 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1783 	}
1784 	spin_unlock(&fdp->fd_spin);
1785 
1786 	/* Create the file descriptor table. */
1787 	newfdp->fd_refcnt = 1;
1788 	newfdp->fd_cmask = cmask;
1789 	newfdp->fd_files = newfdp->fd_builtin_files;
1790 	newfdp->fd_nfiles = NDFILE;
1791 	newfdp->fd_lastfile = -1;
1792 	spin_init(&newfdp->fd_spin);
1793 
1794 	return (newfdp);
1795 }
1796 
1797 /*
1798  * Share a filedesc structure.
1799  *
1800  * MPSAFE
1801  */
1802 struct filedesc *
1803 fdshare(struct proc *p)
1804 {
1805 	struct filedesc *fdp;
1806 
1807 	fdp = p->p_fd;
1808 	spin_lock(&fdp->fd_spin);
1809 	fdp->fd_refcnt++;
1810 	spin_unlock(&fdp->fd_spin);
1811 	return (fdp);
1812 }
1813 
1814 /*
1815  * Copy a filedesc structure.
1816  *
1817  * MPSAFE
1818  */
1819 int
1820 fdcopy(struct proc *p, struct filedesc **fpp)
1821 {
1822 	struct filedesc *fdp = p->p_fd;
1823 	struct filedesc *newfdp;
1824 	struct fdnode *fdnode;
1825 	int i;
1826 	int ni;
1827 
1828 	/*
1829 	 * Certain daemons might not have file descriptors.
1830 	 */
1831 	if (fdp == NULL)
1832 		return (0);
1833 
1834 	/*
1835 	 * Allocate the new filedesc and fd_files[] array.  This can race
1836 	 * with operations by other threads on the fdp so we have to be
1837 	 * careful.
1838 	 */
1839 	newfdp = kmalloc(sizeof(struct filedesc),
1840 			 M_FILEDESC, M_WAITOK | M_ZERO | M_NULLOK);
1841 	if (newfdp == NULL) {
1842 		*fpp = NULL;
1843 		return (-1);
1844 	}
1845 again:
1846 	spin_lock(&fdp->fd_spin);
1847 	if (fdp->fd_lastfile < NDFILE) {
1848 		newfdp->fd_files = newfdp->fd_builtin_files;
1849 		i = NDFILE;
1850 	} else {
1851 		/*
1852 		 * We have to allocate (N^2-1) entries for our in-place
1853 		 * binary tree.  Allow the table to shrink.
1854 		 */
1855 		i = fdp->fd_nfiles;
1856 		ni = (i - 1) / 2;
1857 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1858 			i = ni;
1859 			ni = (i - 1) / 2;
1860 		}
1861 		spin_unlock(&fdp->fd_spin);
1862 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1863 					  M_FILEDESC, M_WAITOK | M_ZERO);
1864 
1865 		/*
1866 		 * Check for race, retry
1867 		 */
1868 		spin_lock(&fdp->fd_spin);
1869 		if (i <= fdp->fd_lastfile) {
1870 			spin_unlock(&fdp->fd_spin);
1871 			kfree(newfdp->fd_files, M_FILEDESC);
1872 			goto again;
1873 		}
1874 	}
1875 
1876 	/*
1877 	 * Dup the remaining fields. vref() and cache_hold() can be
1878 	 * safely called while holding the read spinlock on fdp.
1879 	 *
1880 	 * The read spinlock on fdp is still being held.
1881 	 *
1882 	 * NOTE: vref and cache_hold calls for the case where the vnode
1883 	 * or cache entry already has at least one ref may be called
1884 	 * while holding spin locks.
1885 	 */
1886 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1887 		vref(newfdp->fd_cdir);
1888 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1889 	}
1890 	/*
1891 	 * We must check for fd_rdir here, at least for now because
1892 	 * the init process is created before we have access to the
1893 	 * rootvode to take a reference to it.
1894 	 */
1895 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1896 		vref(newfdp->fd_rdir);
1897 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1898 	}
1899 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1900 		vref(newfdp->fd_jdir);
1901 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1902 	}
1903 	newfdp->fd_refcnt = 1;
1904 	newfdp->fd_nfiles = i;
1905 	newfdp->fd_lastfile = fdp->fd_lastfile;
1906 	newfdp->fd_freefile = fdp->fd_freefile;
1907 	newfdp->fd_cmask = fdp->fd_cmask;
1908 	spin_init(&newfdp->fd_spin);
1909 
1910 	/*
1911 	 * Copy the descriptor table through (i).  This also copies the
1912 	 * allocation state.   Then go through and ref the file pointers
1913 	 * and clean up any KQ descriptors.
1914 	 *
1915 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1916 	 * copied files yet we can ignore the return value from funsetfd().
1917 	 *
1918 	 * The read spinlock on fdp is still being held.
1919 	 */
1920 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1921 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1922 		fdnode = &newfdp->fd_files[i];
1923 		if (fdnode->reserved) {
1924 			fdreserve_locked(newfdp, i, -1);
1925 			fdnode->reserved = 0;
1926 			fdfixup_locked(newfdp, i);
1927 		} else if (fdnode->fp) {
1928 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1929 				(void)funsetfd_locked(newfdp, i);
1930 			} else {
1931 				fhold(fdnode->fp);
1932 			}
1933 		}
1934 	}
1935 	spin_unlock(&fdp->fd_spin);
1936 	*fpp = newfdp;
1937 	return (0);
1938 }
1939 
1940 /*
1941  * Release a filedesc structure.
1942  *
1943  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1944  */
1945 void
1946 fdfree(struct proc *p, struct filedesc *repl)
1947 {
1948 	struct filedesc *fdp;
1949 	struct fdnode *fdnode;
1950 	int i;
1951 	struct filedesc_to_leader *fdtol;
1952 	struct file *fp;
1953 	struct vnode *vp;
1954 	struct flock lf;
1955 
1956 	/*
1957 	 * Certain daemons might not have file descriptors.
1958 	 */
1959 	fdp = p->p_fd;
1960 	if (fdp == NULL) {
1961 		p->p_fd = repl;
1962 		return;
1963 	}
1964 
1965 	/*
1966 	 * Severe messing around to follow.
1967 	 */
1968 	spin_lock(&fdp->fd_spin);
1969 
1970 	/* Check for special need to clear POSIX style locks */
1971 	fdtol = p->p_fdtol;
1972 	if (fdtol != NULL) {
1973 		KASSERT(fdtol->fdl_refcount > 0,
1974 			("filedesc_to_refcount botch: fdl_refcount=%d",
1975 			 fdtol->fdl_refcount));
1976 		if (fdtol->fdl_refcount == 1 &&
1977 		    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
1978 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
1979 				fdnode = &fdp->fd_files[i];
1980 				if (fdnode->fp == NULL ||
1981 				    fdnode->fp->f_type != DTYPE_VNODE) {
1982 					continue;
1983 				}
1984 				fp = fdnode->fp;
1985 				fhold(fp);
1986 				spin_unlock(&fdp->fd_spin);
1987 
1988 				lf.l_whence = SEEK_SET;
1989 				lf.l_start = 0;
1990 				lf.l_len = 0;
1991 				lf.l_type = F_UNLCK;
1992 				vp = (struct vnode *)fp->f_data;
1993 				(void) VOP_ADVLOCK(vp,
1994 						   (caddr_t)p->p_leader,
1995 						   F_UNLCK,
1996 						   &lf,
1997 						   F_POSIX);
1998 				fdrop(fp);
1999 				spin_lock(&fdp->fd_spin);
2000 			}
2001 		}
2002 	retry:
2003 		if (fdtol->fdl_refcount == 1) {
2004 			if (fdp->fd_holdleaderscount > 0 &&
2005 			    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
2006 				/*
2007 				 * close() or do_dup() has cleared a reference
2008 				 * in a shared file descriptor table.
2009 				 */
2010 				fdp->fd_holdleaderswakeup = 1;
2011 				ssleep(&fdp->fd_holdleaderscount,
2012 				       &fdp->fd_spin, 0, "fdlhold", 0);
2013 				goto retry;
2014 			}
2015 			if (fdtol->fdl_holdcount > 0) {
2016 				/*
2017 				 * Ensure that fdtol->fdl_leader
2018 				 * remains valid in closef().
2019 				 */
2020 				fdtol->fdl_wakeup = 1;
2021 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
2022 				goto retry;
2023 			}
2024 		}
2025 		fdtol->fdl_refcount--;
2026 		if (fdtol->fdl_refcount == 0 &&
2027 		    fdtol->fdl_holdcount == 0) {
2028 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2029 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2030 		} else {
2031 			fdtol = NULL;
2032 		}
2033 		p->p_fdtol = NULL;
2034 		if (fdtol != NULL) {
2035 			spin_unlock(&fdp->fd_spin);
2036 			kfree(fdtol, M_FILEDESC_TO_LEADER);
2037 			spin_lock(&fdp->fd_spin);
2038 		}
2039 	}
2040 	if (--fdp->fd_refcnt > 0) {
2041 		spin_unlock(&fdp->fd_spin);
2042 		spin_lock(&p->p_spin);
2043 		p->p_fd = repl;
2044 		spin_unlock(&p->p_spin);
2045 		return;
2046 	}
2047 
2048 	/*
2049 	 * Even though we are the last reference to the structure allproc
2050 	 * scans may still reference the structure.  Maintain proper
2051 	 * locks until we can replace p->p_fd.
2052 	 *
2053 	 * Also note that kqueue's closef still needs to reference the
2054 	 * fdp via p->p_fd, so we have to close the descriptors before
2055 	 * we replace p->p_fd.
2056 	 */
2057 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
2058 		if (fdp->fd_files[i].fp) {
2059 			fp = funsetfd_locked(fdp, i);
2060 			if (fp) {
2061 				spin_unlock(&fdp->fd_spin);
2062 				if (SLIST_FIRST(&fp->f_klist))
2063 					knote_fdclose(fp, fdp, i);
2064 				closef(fp, p);
2065 				spin_lock(&fdp->fd_spin);
2066 			}
2067 		}
2068 	}
2069 	spin_unlock(&fdp->fd_spin);
2070 
2071 	/*
2072 	 * Interlock against an allproc scan operations (typically frevoke).
2073 	 */
2074 	spin_lock(&p->p_spin);
2075 	p->p_fd = repl;
2076 	spin_unlock(&p->p_spin);
2077 
2078 	/*
2079 	 * Wait for any softrefs to go away.  This race rarely occurs so
2080 	 * we can use a non-critical-path style poll/sleep loop.  The
2081 	 * race only occurs against allproc scans.
2082 	 *
2083 	 * No new softrefs can occur with the fdp disconnected from the
2084 	 * process.
2085 	 */
2086 	if (fdp->fd_softrefs) {
2087 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
2088 		while (fdp->fd_softrefs)
2089 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
2090 	}
2091 
2092 	if (fdp->fd_files != fdp->fd_builtin_files)
2093 		kfree(fdp->fd_files, M_FILEDESC);
2094 	if (fdp->fd_cdir) {
2095 		cache_drop(&fdp->fd_ncdir);
2096 		vrele(fdp->fd_cdir);
2097 	}
2098 	if (fdp->fd_rdir) {
2099 		cache_drop(&fdp->fd_nrdir);
2100 		vrele(fdp->fd_rdir);
2101 	}
2102 	if (fdp->fd_jdir) {
2103 		cache_drop(&fdp->fd_njdir);
2104 		vrele(fdp->fd_jdir);
2105 	}
2106 	kfree(fdp, M_FILEDESC);
2107 }
2108 
2109 /*
2110  * Retrieve and reference the file pointer associated with a descriptor.
2111  *
2112  * MPSAFE
2113  */
2114 struct file *
2115 holdfp(struct filedesc *fdp, int fd, int flag)
2116 {
2117 	struct file* fp;
2118 
2119 	spin_lock_shared(&fdp->fd_spin);
2120 	if (((u_int)fd) >= fdp->fd_nfiles) {
2121 		fp = NULL;
2122 		goto done;
2123 	}
2124 	if ((fp = fdp->fd_files[fd].fp) == NULL)
2125 		goto done;
2126 	if ((fp->f_flag & flag) == 0 && flag != -1) {
2127 		fp = NULL;
2128 		goto done;
2129 	}
2130 	fhold(fp);
2131 done:
2132 	spin_unlock_shared(&fdp->fd_spin);
2133 	return (fp);
2134 }
2135 
2136 /*
2137  * holdsock() - load the struct file pointer associated
2138  * with a socket into *fpp.  If an error occurs, non-zero
2139  * will be returned and *fpp will be set to NULL.
2140  *
2141  * MPSAFE
2142  */
2143 int
2144 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2145 {
2146 	struct file *fp;
2147 	int error;
2148 
2149 	spin_lock_shared(&fdp->fd_spin);
2150 	if ((unsigned)fd >= fdp->fd_nfiles) {
2151 		error = EBADF;
2152 		fp = NULL;
2153 		goto done;
2154 	}
2155 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2156 		error = EBADF;
2157 		goto done;
2158 	}
2159 	if (fp->f_type != DTYPE_SOCKET) {
2160 		error = ENOTSOCK;
2161 		goto done;
2162 	}
2163 	fhold(fp);
2164 	error = 0;
2165 done:
2166 	spin_unlock_shared(&fdp->fd_spin);
2167 	*fpp = fp;
2168 	return (error);
2169 }
2170 
2171 /*
2172  * Convert a user file descriptor to a held file pointer.
2173  *
2174  * MPSAFE
2175  */
2176 int
2177 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2178 {
2179 	struct file *fp;
2180 	int error;
2181 
2182 	spin_lock_shared(&fdp->fd_spin);
2183 	if ((unsigned)fd >= fdp->fd_nfiles) {
2184 		error = EBADF;
2185 		fp = NULL;
2186 		goto done;
2187 	}
2188 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2189 		error = EBADF;
2190 		goto done;
2191 	}
2192 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2193 		fp = NULL;
2194 		error = EINVAL;
2195 		goto done;
2196 	}
2197 	fhold(fp);
2198 	error = 0;
2199 done:
2200 	spin_unlock_shared(&fdp->fd_spin);
2201 	*fpp = fp;
2202 	return (error);
2203 }
2204 
2205 /*
2206  * For setugid programs, we don't want to people to use that setugidness
2207  * to generate error messages which write to a file which otherwise would
2208  * otherwise be off-limits to the process.
2209  *
2210  * This is a gross hack to plug the hole.  A better solution would involve
2211  * a special vop or other form of generalized access control mechanism.  We
2212  * go ahead and just reject all procfs file systems accesses as dangerous.
2213  *
2214  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2215  * sufficient.  We also don't for check setugidness since we know we are.
2216  */
2217 static int
2218 is_unsafe(struct file *fp)
2219 {
2220 	if (fp->f_type == DTYPE_VNODE &&
2221 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2222 		return (1);
2223 	return (0);
2224 }
2225 
2226 /*
2227  * Make this setguid thing safe, if at all possible.
2228  *
2229  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2230  */
2231 void
2232 setugidsafety(struct proc *p)
2233 {
2234 	struct filedesc *fdp = p->p_fd;
2235 	int i;
2236 
2237 	/* Certain daemons might not have file descriptors. */
2238 	if (fdp == NULL)
2239 		return;
2240 
2241 	/*
2242 	 * note: fdp->fd_files may be reallocated out from under us while
2243 	 * we are blocked in a close.  Be careful!
2244 	 */
2245 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2246 		if (i > 2)
2247 			break;
2248 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2249 			struct file *fp;
2250 
2251 			/*
2252 			 * NULL-out descriptor prior to close to avoid
2253 			 * a race while close blocks.
2254 			 */
2255 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2256 				knote_fdclose(fp, fdp, i);
2257 				closef(fp, p);
2258 			}
2259 		}
2260 	}
2261 }
2262 
2263 /*
2264  * Close any files on exec?
2265  *
2266  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2267  */
2268 void
2269 fdcloseexec(struct proc *p)
2270 {
2271 	struct filedesc *fdp = p->p_fd;
2272 	int i;
2273 
2274 	/* Certain daemons might not have file descriptors. */
2275 	if (fdp == NULL)
2276 		return;
2277 
2278 	/*
2279 	 * We cannot cache fd_files since operations may block and rip
2280 	 * them out from under us.
2281 	 */
2282 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2283 		if (fdp->fd_files[i].fp != NULL &&
2284 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2285 			struct file *fp;
2286 
2287 			/*
2288 			 * NULL-out descriptor prior to close to avoid
2289 			 * a race while close blocks.
2290 			 */
2291 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2292 				knote_fdclose(fp, fdp, i);
2293 				closef(fp, p);
2294 			}
2295 		}
2296 	}
2297 }
2298 
2299 /*
2300  * It is unsafe for set[ug]id processes to be started with file
2301  * descriptors 0..2 closed, as these descriptors are given implicit
2302  * significance in the Standard C library.  fdcheckstd() will create a
2303  * descriptor referencing /dev/null for each of stdin, stdout, and
2304  * stderr that is not already open.
2305  *
2306  * NOT MPSAFE - calls falloc, vn_open, etc
2307  */
2308 int
2309 fdcheckstd(struct lwp *lp)
2310 {
2311 	struct nlookupdata nd;
2312 	struct filedesc *fdp;
2313 	struct file *fp;
2314 	int retval;
2315 	int i, error, flags, devnull;
2316 
2317 	fdp = lp->lwp_proc->p_fd;
2318 	if (fdp == NULL)
2319 		return (0);
2320 	devnull = -1;
2321 	error = 0;
2322 	for (i = 0; i < 3; i++) {
2323 		if (fdp->fd_files[i].fp != NULL)
2324 			continue;
2325 		if (devnull < 0) {
2326 			if ((error = falloc(lp, &fp, &devnull)) != 0)
2327 				break;
2328 
2329 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2330 						NLC_FOLLOW|NLC_LOCKVP);
2331 			flags = FREAD | FWRITE;
2332 			if (error == 0)
2333 				error = vn_open(&nd, fp, flags, 0);
2334 			if (error == 0)
2335 				fsetfd(fdp, fp, devnull);
2336 			else
2337 				fsetfd(fdp, NULL, devnull);
2338 			fdrop(fp);
2339 			nlookup_done(&nd);
2340 			if (error)
2341 				break;
2342 			KKASSERT(i == devnull);
2343 		} else {
2344 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2345 			if (error != 0)
2346 				break;
2347 		}
2348 	}
2349 	return (error);
2350 }
2351 
2352 /*
2353  * Internal form of close.
2354  * Decrement reference count on file structure.
2355  * Note: td and/or p may be NULL when closing a file
2356  * that was being passed in a message.
2357  *
2358  * MPALMOSTSAFE - acquires mplock for VOP operations
2359  */
2360 int
2361 closef(struct file *fp, struct proc *p)
2362 {
2363 	struct vnode *vp;
2364 	struct flock lf;
2365 	struct filedesc_to_leader *fdtol;
2366 
2367 	if (fp == NULL)
2368 		return (0);
2369 
2370 	/*
2371 	 * POSIX record locking dictates that any close releases ALL
2372 	 * locks owned by this process.  This is handled by setting
2373 	 * a flag in the unlock to free ONLY locks obeying POSIX
2374 	 * semantics, and not to free BSD-style file locks.
2375 	 * If the descriptor was in a message, POSIX-style locks
2376 	 * aren't passed with the descriptor.
2377 	 */
2378 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2379 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2380 	) {
2381 		if ((p->p_leader->p_flags & P_ADVLOCK) != 0) {
2382 			lf.l_whence = SEEK_SET;
2383 			lf.l_start = 0;
2384 			lf.l_len = 0;
2385 			lf.l_type = F_UNLCK;
2386 			vp = (struct vnode *)fp->f_data;
2387 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2388 					   &lf, F_POSIX);
2389 		}
2390 		fdtol = p->p_fdtol;
2391 		if (fdtol != NULL) {
2392 			lwkt_gettoken(&p->p_token);
2393 			/*
2394 			 * Handle special case where file descriptor table
2395 			 * is shared between multiple process leaders.
2396 			 */
2397 			for (fdtol = fdtol->fdl_next;
2398 			     fdtol != p->p_fdtol;
2399 			     fdtol = fdtol->fdl_next) {
2400 				if ((fdtol->fdl_leader->p_flags &
2401 				     P_ADVLOCK) == 0)
2402 					continue;
2403 				fdtol->fdl_holdcount++;
2404 				lf.l_whence = SEEK_SET;
2405 				lf.l_start = 0;
2406 				lf.l_len = 0;
2407 				lf.l_type = F_UNLCK;
2408 				vp = (struct vnode *)fp->f_data;
2409 				(void) VOP_ADVLOCK(vp,
2410 						   (caddr_t)fdtol->fdl_leader,
2411 						   F_UNLCK, &lf, F_POSIX);
2412 				fdtol->fdl_holdcount--;
2413 				if (fdtol->fdl_holdcount == 0 &&
2414 				    fdtol->fdl_wakeup != 0) {
2415 					fdtol->fdl_wakeup = 0;
2416 					wakeup(fdtol);
2417 				}
2418 			}
2419 			lwkt_reltoken(&p->p_token);
2420 		}
2421 	}
2422 	return (fdrop(fp));
2423 }
2424 
2425 /*
2426  * MPSAFE
2427  *
2428  * fhold() can only be called if f_count is already at least 1 (i.e. the
2429  * caller of fhold() already has a reference to the file pointer in some
2430  * manner or other).
2431  *
2432  * f_count is not spin-locked.  Instead, atomic ops are used for
2433  * incrementing, decrementing, and handling the 1->0 transition.
2434  */
2435 void
2436 fhold(struct file *fp)
2437 {
2438 	atomic_add_int(&fp->f_count, 1);
2439 }
2440 
2441 /*
2442  * fdrop() - drop a reference to a descriptor
2443  *
2444  * MPALMOSTSAFE - acquires mplock for final close sequence
2445  */
2446 int
2447 fdrop(struct file *fp)
2448 {
2449 	struct flock lf;
2450 	struct vnode *vp;
2451 	int error;
2452 
2453 	/*
2454 	 * A combined fetch and subtract is needed to properly detect
2455 	 * 1->0 transitions, otherwise two cpus dropping from a ref
2456 	 * count of 2 might both try to run the 1->0 code.
2457 	 */
2458 	if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2459 		return (0);
2460 
2461 	KKASSERT(SLIST_FIRST(&fp->f_klist) == NULL);
2462 
2463 	/*
2464 	 * The last reference has gone away, we own the fp structure free
2465 	 * and clear.
2466 	 */
2467 	if (fp->f_count < 0)
2468 		panic("fdrop: count < 0");
2469 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2470 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2471 	) {
2472 		lf.l_whence = SEEK_SET;
2473 		lf.l_start = 0;
2474 		lf.l_len = 0;
2475 		lf.l_type = F_UNLCK;
2476 		vp = (struct vnode *)fp->f_data;
2477 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2478 	}
2479 	if (fp->f_ops != &badfileops)
2480 		error = fo_close(fp);
2481 	else
2482 		error = 0;
2483 	ffree(fp);
2484 	return (error);
2485 }
2486 
2487 /*
2488  * Apply an advisory lock on a file descriptor.
2489  *
2490  * Just attempt to get a record lock of the requested type on
2491  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2492  *
2493  * MPALMOSTSAFE
2494  */
2495 int
2496 sys_flock(struct flock_args *uap)
2497 {
2498 	struct proc *p = curproc;
2499 	struct file *fp;
2500 	struct vnode *vp;
2501 	struct flock lf;
2502 	int error;
2503 
2504 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2505 		return (EBADF);
2506 	if (fp->f_type != DTYPE_VNODE) {
2507 		error = EOPNOTSUPP;
2508 		goto done;
2509 	}
2510 	vp = (struct vnode *)fp->f_data;
2511 	lf.l_whence = SEEK_SET;
2512 	lf.l_start = 0;
2513 	lf.l_len = 0;
2514 	if (uap->how & LOCK_UN) {
2515 		lf.l_type = F_UNLCK;
2516 		fp->f_flag &= ~FHASLOCK;
2517 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2518 		goto done;
2519 	}
2520 	if (uap->how & LOCK_EX)
2521 		lf.l_type = F_WRLCK;
2522 	else if (uap->how & LOCK_SH)
2523 		lf.l_type = F_RDLCK;
2524 	else {
2525 		error = EBADF;
2526 		goto done;
2527 	}
2528 	fp->f_flag |= FHASLOCK;
2529 	if (uap->how & LOCK_NB)
2530 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2531 	else
2532 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2533 done:
2534 	fdrop(fp);
2535 	return (error);
2536 }
2537 
2538 /*
2539  * File Descriptor pseudo-device driver (/dev/fd/).
2540  *
2541  * Opening minor device N dup()s the file (if any) connected to file
2542  * descriptor N belonging to the calling process.  Note that this driver
2543  * consists of only the ``open()'' routine, because all subsequent
2544  * references to this file will be direct to the other driver.
2545  */
2546 static int
2547 fdopen(struct dev_open_args *ap)
2548 {
2549 	thread_t td = curthread;
2550 
2551 	KKASSERT(td->td_lwp != NULL);
2552 
2553 	/*
2554 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2555 	 * the file descriptor being sought for duplication. The error
2556 	 * return ensures that the vnode for this device will be released
2557 	 * by vn_open. Open will detect this special error and take the
2558 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2559 	 * will simply report the error.
2560 	 */
2561 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2562 	return (ENODEV);
2563 }
2564 
2565 /*
2566  * The caller has reserved the file descriptor dfd for us.  On success we
2567  * must fsetfd() it.  On failure the caller will clean it up.
2568  *
2569  * MPSAFE
2570  */
2571 int
2572 dupfdopen(struct filedesc *fdp, int dfd, int sfd, int mode, int error)
2573 {
2574 	struct file *wfp;
2575 	struct file *xfp;
2576 	int werror;
2577 
2578 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2579 		return (EBADF);
2580 
2581 	/*
2582 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2583 	 * will dup a dummy descriptor instead of the real one.
2584 	 */
2585 	if (wfp->f_flag & FREVOKED) {
2586 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2587 		fdrop(wfp);
2588 		wfp = NULL;
2589 		werror = falloc(NULL, &wfp, NULL);
2590 		if (werror)
2591 			return (werror);
2592 	}
2593 
2594 	/*
2595 	 * There are two cases of interest here.
2596 	 *
2597 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2598 	 *
2599 	 * For ENXIO steal away the file structure from sfd and store it
2600 	 * dfd.  sfd is effectively closed by this operation.
2601 	 *
2602 	 * Any other error code is just returned.
2603 	 */
2604 	switch (error) {
2605 	case ENODEV:
2606 		/*
2607 		 * Check that the mode the file is being opened for is a
2608 		 * subset of the mode of the existing descriptor.
2609 		 */
2610 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2611 			error = EACCES;
2612 			break;
2613 		}
2614 		spin_lock(&fdp->fd_spin);
2615 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2616 		fsetfd_locked(fdp, wfp, dfd);
2617 		spin_unlock(&fdp->fd_spin);
2618 		error = 0;
2619 		break;
2620 	case ENXIO:
2621 		/*
2622 		 * Steal away the file pointer from dfd, and stuff it into indx.
2623 		 */
2624 		spin_lock(&fdp->fd_spin);
2625 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2626 		fsetfd(fdp, wfp, dfd);
2627 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL) {
2628 			spin_unlock(&fdp->fd_spin);
2629 			fdrop(xfp);
2630 		} else {
2631 			spin_unlock(&fdp->fd_spin);
2632 		}
2633 		error = 0;
2634 		break;
2635 	default:
2636 		break;
2637 	}
2638 	fdrop(wfp);
2639 	return (error);
2640 }
2641 
2642 /*
2643  * NOT MPSAFE - I think these refer to a common file descriptor table
2644  * and we need to spinlock that to link fdtol in.
2645  */
2646 struct filedesc_to_leader *
2647 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2648 			 struct proc *leader)
2649 {
2650 	struct filedesc_to_leader *fdtol;
2651 
2652 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2653 			M_FILEDESC_TO_LEADER, M_WAITOK | M_ZERO);
2654 	fdtol->fdl_refcount = 1;
2655 	fdtol->fdl_holdcount = 0;
2656 	fdtol->fdl_wakeup = 0;
2657 	fdtol->fdl_leader = leader;
2658 	if (old != NULL) {
2659 		fdtol->fdl_next = old->fdl_next;
2660 		fdtol->fdl_prev = old;
2661 		old->fdl_next = fdtol;
2662 		fdtol->fdl_next->fdl_prev = fdtol;
2663 	} else {
2664 		fdtol->fdl_next = fdtol;
2665 		fdtol->fdl_prev = fdtol;
2666 	}
2667 	return fdtol;
2668 }
2669 
2670 /*
2671  * Scan all file pointers in the system.  The callback is made with
2672  * the master list spinlock held exclusively.
2673  *
2674  * MPSAFE
2675  */
2676 void
2677 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2678 {
2679 	struct file *fp;
2680 	int res;
2681 
2682 	spin_lock(&filehead_spin);
2683 	LIST_FOREACH(fp, &filehead, f_list) {
2684 		res = callback(fp, data);
2685 		if (res < 0)
2686 			break;
2687 	}
2688 	spin_unlock(&filehead_spin);
2689 }
2690 
2691 /*
2692  * Get file structures.
2693  *
2694  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2695  */
2696 
2697 struct sysctl_kern_file_info {
2698 	int count;
2699 	int error;
2700 	struct sysctl_req *req;
2701 };
2702 
2703 static int sysctl_kern_file_callback(struct proc *p, void *data);
2704 
2705 static int
2706 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2707 {
2708 	struct sysctl_kern_file_info info;
2709 
2710 	/*
2711 	 * Note: because the number of file descriptors is calculated
2712 	 * in different ways for sizing vs returning the data,
2713 	 * there is information leakage from the first loop.  However,
2714 	 * it is of a similar order of magnitude to the leakage from
2715 	 * global system statistics such as kern.openfiles.
2716 	 *
2717 	 * When just doing a count, note that we cannot just count
2718 	 * the elements and add f_count via the filehead list because
2719 	 * threaded processes share their descriptor table and f_count might
2720 	 * still be '1' in that case.
2721 	 *
2722 	 * Since the SYSCTL op can block, we must hold the process to
2723 	 * prevent it being ripped out from under us either in the
2724 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2725 	 * process may be in varying states of disrepair.  If the process
2726 	 * is in SZOMB we may have caught it just as it is being removed
2727 	 * from the allproc list, we must skip it in that case to maintain
2728 	 * an unbroken chain through the allproc list.
2729 	 */
2730 	info.count = 0;
2731 	info.error = 0;
2732 	info.req = req;
2733 	allproc_scan(sysctl_kern_file_callback, &info);
2734 
2735 	/*
2736 	 * When just calculating the size, overestimate a bit to try to
2737 	 * prevent system activity from causing the buffer-fill call
2738 	 * to fail later on.
2739 	 */
2740 	if (req->oldptr == NULL) {
2741 		info.count = (info.count + 16) + (info.count / 10);
2742 		info.error = SYSCTL_OUT(req, NULL,
2743 					info.count * sizeof(struct kinfo_file));
2744 	}
2745 	return (info.error);
2746 }
2747 
2748 static int
2749 sysctl_kern_file_callback(struct proc *p, void *data)
2750 {
2751 	struct sysctl_kern_file_info *info = data;
2752 	struct kinfo_file kf;
2753 	struct filedesc *fdp;
2754 	struct file *fp;
2755 	uid_t uid;
2756 	int n;
2757 
2758 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2759 		return(0);
2760 	if (!PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0)
2761 		return(0);
2762 
2763 	/*
2764 	 * Softref the fdp to prevent it from being destroyed
2765 	 */
2766 	spin_lock(&p->p_spin);
2767 	if ((fdp = p->p_fd) == NULL) {
2768 		spin_unlock(&p->p_spin);
2769 		return(0);
2770 	}
2771 	atomic_add_int(&fdp->fd_softrefs, 1);
2772 	spin_unlock(&p->p_spin);
2773 
2774 	/*
2775 	 * The fdp's own spinlock prevents the contents from being
2776 	 * modified.
2777 	 */
2778 	spin_lock_shared(&fdp->fd_spin);
2779 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2780 		if ((fp = fdp->fd_files[n].fp) == NULL)
2781 			continue;
2782 		if (info->req->oldptr == NULL) {
2783 			++info->count;
2784 		} else {
2785 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2786 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2787 			spin_unlock_shared(&fdp->fd_spin);
2788 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2789 			spin_lock_shared(&fdp->fd_spin);
2790 			if (info->error)
2791 				break;
2792 		}
2793 	}
2794 	spin_unlock_shared(&fdp->fd_spin);
2795 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2796 	if (info->error)
2797 		return(-1);
2798 	return(0);
2799 }
2800 
2801 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2802     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2803 
2804 SYSCTL_INT(_kern, OID_AUTO, minfilesperproc, CTLFLAG_RW,
2805     &minfilesperproc, 0, "Minimum files allowed open per process");
2806 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2807     &maxfilesperproc, 0, "Maximum files allowed open per process");
2808 SYSCTL_INT(_kern, OID_AUTO, maxfilesperuser, CTLFLAG_RW,
2809     &maxfilesperuser, 0, "Maximum files allowed open per user");
2810 
2811 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2812     &maxfiles, 0, "Maximum number of files");
2813 
2814 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2815     &maxfilesrootres, 0, "Descriptors reserved for root use");
2816 
2817 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2818 	&nfiles, 0, "System-wide number of open files");
2819 
2820 static void
2821 fildesc_drvinit(void *unused)
2822 {
2823 	int fd;
2824 
2825 	for (fd = 0; fd < NUMFDESC; fd++) {
2826 		make_dev(&fildesc_ops, fd,
2827 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2828 	}
2829 
2830 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2831 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2832 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2833 }
2834 
2835 /*
2836  * MPSAFE
2837  */
2838 struct fileops badfileops = {
2839 	.fo_read = badfo_readwrite,
2840 	.fo_write = badfo_readwrite,
2841 	.fo_ioctl = badfo_ioctl,
2842 	.fo_kqfilter = badfo_kqfilter,
2843 	.fo_stat = badfo_stat,
2844 	.fo_close = badfo_close,
2845 	.fo_shutdown = badfo_shutdown
2846 };
2847 
2848 int
2849 badfo_readwrite(
2850 	struct file *fp,
2851 	struct uio *uio,
2852 	struct ucred *cred,
2853 	int flags
2854 ) {
2855 	return (EBADF);
2856 }
2857 
2858 int
2859 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2860 	    struct ucred *cred, struct sysmsg *msgv)
2861 {
2862 	return (EBADF);
2863 }
2864 
2865 /*
2866  * Must return an error to prevent registration, typically
2867  * due to a revoked descriptor (file_filtops assigned).
2868  */
2869 int
2870 badfo_kqfilter(struct file *fp, struct knote *kn)
2871 {
2872 	return (EOPNOTSUPP);
2873 }
2874 
2875 /*
2876  * MPSAFE
2877  */
2878 int
2879 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2880 {
2881 	return (EBADF);
2882 }
2883 
2884 /*
2885  * MPSAFE
2886  */
2887 int
2888 badfo_close(struct file *fp)
2889 {
2890 	return (EBADF);
2891 }
2892 
2893 /*
2894  * MPSAFE
2895  */
2896 int
2897 badfo_shutdown(struct file *fp, int how)
2898 {
2899 	return (EBADF);
2900 }
2901 
2902 /*
2903  * MPSAFE
2904  */
2905 int
2906 nofo_shutdown(struct file *fp, int how)
2907 {
2908 	return (EOPNOTSUPP);
2909 }
2910 
2911 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2912 					fildesc_drvinit,NULL)
2913