xref: /dragonfly/sys/kern/kern_descrip.c (revision ef3ac1d1)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
68  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
69  */
70 
71 #include "opt_compat.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/sysproto.h>
76 #include <sys/conf.h>
77 #include <sys/device.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/vnode.h>
83 #include <sys/proc.h>
84 #include <sys/nlookup.h>
85 #include <sys/stat.h>
86 #include <sys/filio.h>
87 #include <sys/fcntl.h>
88 #include <sys/unistd.h>
89 #include <sys/resourcevar.h>
90 #include <sys/event.h>
91 #include <sys/kern_syscall.h>
92 #include <sys/kcore.h>
93 #include <sys/kinfo.h>
94 #include <sys/un.h>
95 
96 #include <vm/vm.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <sys/file2.h>
101 #include <sys/spinlock2.h>
102 
103 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
104 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
105 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
106 static void ffree(struct file *fp);
107 
108 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
109 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
110 		     "file desc to leader structures");
111 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
112 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
113 
114 static struct krate krate_uidinfo = { .freq = 1 };
115 
116 static	 d_open_t  fdopen;
117 #define NUMFDESC 64
118 
119 #define CDEV_MAJOR 22
120 static struct dev_ops fildesc_ops = {
121 	{ "FD", 0, 0 },
122 	.d_open =	fdopen,
123 };
124 
125 /*
126  * Descriptor management.
127  */
128 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
129 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin, "filehead_spin");
130 static int nfiles;		/* actual number of open files */
131 extern int cmask;
132 
133 /*
134  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
135  *
136  * MPSAFE - must be called with fdp->fd_spin exclusively held
137  */
138 static __inline
139 void
140 fdfixup_locked(struct filedesc *fdp, int fd)
141 {
142 	if (fd < fdp->fd_freefile) {
143 	       fdp->fd_freefile = fd;
144 	}
145 	while (fdp->fd_lastfile >= 0 &&
146 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
147 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
148 	) {
149 		--fdp->fd_lastfile;
150 	}
151 }
152 
153 /*
154  * System calls on descriptors.
155  *
156  * MPSAFE
157  */
158 int
159 sys_getdtablesize(struct getdtablesize_args *uap)
160 {
161 	struct proc *p = curproc;
162 	struct plimit *limit = p->p_limit;
163 	int dtsize;
164 
165 	spin_lock(&limit->p_spin);
166 	if (limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
167 		dtsize = INT_MAX;
168 	else
169 		dtsize = (int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur;
170 	spin_unlock(&limit->p_spin);
171 
172 	if (dtsize > maxfilesperproc)
173 		dtsize = maxfilesperproc;
174 	if (dtsize < minfilesperproc)
175 		dtsize = minfilesperproc;
176 	if (p->p_ucred->cr_uid && dtsize > maxfilesperuser)
177 		dtsize = maxfilesperuser;
178 	uap->sysmsg_result = dtsize;
179 	return (0);
180 }
181 
182 /*
183  * Duplicate a file descriptor to a particular value.
184  *
185  * note: keep in mind that a potential race condition exists when closing
186  * descriptors from a shared descriptor table (via rfork).
187  *
188  * MPSAFE
189  */
190 int
191 sys_dup2(struct dup2_args *uap)
192 {
193 	int error;
194 	int fd = 0;
195 
196 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
197 	uap->sysmsg_fds[0] = fd;
198 
199 	return (error);
200 }
201 
202 /*
203  * Duplicate a file descriptor.
204  *
205  * MPSAFE
206  */
207 int
208 sys_dup(struct dup_args *uap)
209 {
210 	int error;
211 	int fd = 0;
212 
213 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
214 	uap->sysmsg_fds[0] = fd;
215 
216 	return (error);
217 }
218 
219 /*
220  * MPALMOSTSAFE - acquires mplock for fp operations
221  */
222 int
223 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
224 {
225 	struct thread *td = curthread;
226 	struct proc *p = td->td_proc;
227 	struct file *fp;
228 	struct vnode *vp;
229 	u_int newmin;
230 	u_int oflags;
231 	u_int nflags;
232 	int tmp, error, flg = F_POSIX;
233 
234 	KKASSERT(p);
235 
236 	/*
237 	 * Operations on file descriptors that do not require a file pointer.
238 	 */
239 	switch (cmd) {
240 	case F_GETFD:
241 		error = fgetfdflags(p->p_fd, fd, &tmp);
242 		if (error == 0)
243 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
244 		return (error);
245 
246 	case F_SETFD:
247 		if (dat->fc_cloexec & FD_CLOEXEC)
248 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
249 		else
250 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
251 		return (error);
252 	case F_DUPFD:
253 		newmin = dat->fc_fd;
254 		error = kern_dup(DUP_VARIABLE | DUP_FCNTL, fd, newmin,
255 		    &dat->fc_fd);
256 		return (error);
257 	case F_DUPFD_CLOEXEC:
258 		newmin = dat->fc_fd;
259 		error = kern_dup(DUP_VARIABLE | DUP_CLOEXEC | DUP_FCNTL,
260 		    fd, newmin, &dat->fc_fd);
261 		return (error);
262 	case F_DUP2FD:
263 		newmin = dat->fc_fd;
264 		error = kern_dup(DUP_FIXED, fd, newmin, &dat->fc_fd);
265 		return (error);
266 	case F_DUP2FD_CLOEXEC:
267 		newmin = dat->fc_fd;
268 		error = kern_dup(DUP_FIXED | DUP_CLOEXEC, fd, newmin,
269 				 &dat->fc_fd);
270 		return (error);
271 	default:
272 		break;
273 	}
274 
275 	/*
276 	 * Operations on file pointers
277 	 */
278 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
279 		return (EBADF);
280 
281 	switch (cmd) {
282 	case F_GETFL:
283 		dat->fc_flags = OFLAGS(fp->f_flag);
284 		error = 0;
285 		break;
286 
287 	case F_SETFL:
288 		oflags = fp->f_flag;
289 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
290 		nflags |= oflags & ~FCNTLFLAGS;
291 
292 		error = 0;
293 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
294 			error = EINVAL;
295 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
296 			tmp = nflags & FASYNC;
297 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
298 					 cred, NULL);
299 		}
300 		if (error == 0)
301 			fp->f_flag = nflags;
302 		break;
303 
304 	case F_GETOWN:
305 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
306 				 cred, NULL);
307 		break;
308 
309 	case F_SETOWN:
310 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
311 				 cred, NULL);
312 		break;
313 
314 	case F_SETLKW:
315 		flg |= F_WAIT;
316 		/* Fall into F_SETLK */
317 
318 	case F_SETLK:
319 		if (fp->f_type != DTYPE_VNODE) {
320 			error = EBADF;
321 			break;
322 		}
323 		vp = (struct vnode *)fp->f_data;
324 
325 		/*
326 		 * copyin/lockop may block
327 		 */
328 		if (dat->fc_flock.l_whence == SEEK_CUR)
329 			dat->fc_flock.l_start += fp->f_offset;
330 
331 		switch (dat->fc_flock.l_type) {
332 		case F_RDLCK:
333 			if ((fp->f_flag & FREAD) == 0) {
334 				error = EBADF;
335 				break;
336 			}
337 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
338 				lwkt_gettoken(&p->p_leader->p_token);
339 				p->p_leader->p_flags |= P_ADVLOCK;
340 				lwkt_reltoken(&p->p_leader->p_token);
341 			}
342 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
343 			    &dat->fc_flock, flg);
344 			break;
345 		case F_WRLCK:
346 			if ((fp->f_flag & FWRITE) == 0) {
347 				error = EBADF;
348 				break;
349 			}
350 			if ((p->p_leader->p_flags & P_ADVLOCK) == 0) {
351 				lwkt_gettoken(&p->p_leader->p_token);
352 				p->p_leader->p_flags |= P_ADVLOCK;
353 				lwkt_reltoken(&p->p_leader->p_token);
354 			}
355 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
356 			    &dat->fc_flock, flg);
357 			break;
358 		case F_UNLCK:
359 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
360 				&dat->fc_flock, F_POSIX);
361 			break;
362 		default:
363 			error = EINVAL;
364 			break;
365 		}
366 
367 		/*
368 		 * It is possible to race a close() on the descriptor while
369 		 * we were blocked getting the lock.  If this occurs the
370 		 * close might not have caught the lock.
371 		 */
372 		if (checkfdclosed(p->p_fd, fd, fp)) {
373 			dat->fc_flock.l_whence = SEEK_SET;
374 			dat->fc_flock.l_start = 0;
375 			dat->fc_flock.l_len = 0;
376 			dat->fc_flock.l_type = F_UNLCK;
377 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
378 					   F_UNLCK, &dat->fc_flock, F_POSIX);
379 		}
380 		break;
381 
382 	case F_GETLK:
383 		if (fp->f_type != DTYPE_VNODE) {
384 			error = EBADF;
385 			break;
386 		}
387 		vp = (struct vnode *)fp->f_data;
388 		/*
389 		 * copyin/lockop may block
390 		 */
391 		if (dat->fc_flock.l_type != F_RDLCK &&
392 		    dat->fc_flock.l_type != F_WRLCK &&
393 		    dat->fc_flock.l_type != F_UNLCK) {
394 			error = EINVAL;
395 			break;
396 		}
397 		if (dat->fc_flock.l_whence == SEEK_CUR)
398 			dat->fc_flock.l_start += fp->f_offset;
399 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
400 			    &dat->fc_flock, F_POSIX);
401 		break;
402 	default:
403 		error = EINVAL;
404 		break;
405 	}
406 
407 	fdrop(fp);
408 	return (error);
409 }
410 
411 /*
412  * The file control system call.
413  *
414  * MPSAFE
415  */
416 int
417 sys_fcntl(struct fcntl_args *uap)
418 {
419 	union fcntl_dat dat;
420 	int error;
421 
422 	switch (uap->cmd) {
423 	case F_DUPFD:
424 	case F_DUP2FD:
425 	case F_DUPFD_CLOEXEC:
426 	case F_DUP2FD_CLOEXEC:
427 		dat.fc_fd = uap->arg;
428 		break;
429 	case F_SETFD:
430 		dat.fc_cloexec = uap->arg;
431 		break;
432 	case F_SETFL:
433 		dat.fc_flags = uap->arg;
434 		break;
435 	case F_SETOWN:
436 		dat.fc_owner = uap->arg;
437 		break;
438 	case F_SETLKW:
439 	case F_SETLK:
440 	case F_GETLK:
441 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
442 			       sizeof(struct flock));
443 		if (error)
444 			return (error);
445 		break;
446 	}
447 
448 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curthread->td_ucred);
449 
450 	if (error == 0) {
451 		switch (uap->cmd) {
452 		case F_DUPFD:
453 		case F_DUP2FD:
454 		case F_DUPFD_CLOEXEC:
455 		case F_DUP2FD_CLOEXEC:
456 			uap->sysmsg_result = dat.fc_fd;
457 			break;
458 		case F_GETFD:
459 			uap->sysmsg_result = dat.fc_cloexec;
460 			break;
461 		case F_GETFL:
462 			uap->sysmsg_result = dat.fc_flags;
463 			break;
464 		case F_GETOWN:
465 			uap->sysmsg_result = dat.fc_owner;
466 			break;
467 		case F_GETLK:
468 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
469 			    sizeof(struct flock));
470 			break;
471 		}
472 	}
473 
474 	return (error);
475 }
476 
477 /*
478  * Common code for dup, dup2, and fcntl(F_DUPFD).
479  *
480  * There are four type flags: DUP_FCNTL, DUP_FIXED, DUP_VARIABLE, and
481  * DUP_CLOEXEC.
482  *
483  * DUP_FCNTL is for handling EINVAL vs. EBADF differences between
484  * fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC and dup2() (per POSIX).
485  * The next two flags are mutually exclusive, and the fourth is optional.
486  * DUP_FIXED tells kern_dup() to destructively dup over an existing file
487  * descriptor if "new" is already open.  DUP_VARIABLE tells kern_dup()
488  * to find the lowest unused file descriptor that is greater than or
489  * equal to "new".  DUP_CLOEXEC, which works with either of the first
490  * two flags, sets the close-on-exec flag on the "new" file descriptor.
491  *
492  * MPSAFE
493  */
494 int
495 kern_dup(int flags, int old, int new, int *res)
496 {
497 	struct thread *td = curthread;
498 	struct proc *p = td->td_proc;
499 	struct filedesc *fdp = p->p_fd;
500 	struct file *fp;
501 	struct file *delfp;
502 	int oldflags;
503 	int holdleaders;
504 	int dtsize;
505 	int error, newfd;
506 
507 	/*
508 	 * Verify that we have a valid descriptor to dup from and
509 	 * possibly to dup to. When the new descriptor is out of
510 	 * bounds, fcntl()'s F_DUPFD and F_DUPFD_CLOEXEC must
511 	 * return EINVAL, while dup2() returns EBADF in
512 	 * this case.
513 	 *
514 	 * NOTE: maxfilesperuser is not applicable to dup()
515 	 */
516 retry:
517 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
518 		dtsize = INT_MAX;
519 	else
520 		dtsize = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
521 	if (dtsize > maxfilesperproc)
522 		dtsize = maxfilesperproc;
523 	if (dtsize < minfilesperproc)
524 		dtsize = minfilesperproc;
525 
526 	if (new < 0 || new > dtsize)
527 		return (flags & DUP_FCNTL ? EINVAL : EBADF);
528 
529 	spin_lock(&fdp->fd_spin);
530 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
531 		spin_unlock(&fdp->fd_spin);
532 		return (EBADF);
533 	}
534 	if ((flags & DUP_FIXED) && old == new) {
535 		*res = new;
536 		if (flags & DUP_CLOEXEC)
537 			fdp->fd_files[new].fileflags |= UF_EXCLOSE;
538 		spin_unlock(&fdp->fd_spin);
539 		return (0);
540 	}
541 	fp = fdp->fd_files[old].fp;
542 	oldflags = fdp->fd_files[old].fileflags;
543 	fhold(fp);	/* MPSAFE - can be called with a spinlock held */
544 
545 	/*
546 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
547 	 * if the requested descriptor is beyond the current table size.
548 	 *
549 	 * This can block.  Retry if the source descriptor no longer matches
550 	 * or if our expectation in the expansion case races.
551 	 *
552 	 * If we are not expanding or allocating a new decriptor, then reset
553 	 * the target descriptor to a reserved state so we have a uniform
554 	 * setup for the next code block.
555 	 */
556 	if ((flags & DUP_VARIABLE) || new >= fdp->fd_nfiles) {
557 		spin_unlock(&fdp->fd_spin);
558 		error = fdalloc(p, new, &newfd);
559 		spin_lock(&fdp->fd_spin);
560 		if (error) {
561 			spin_unlock(&fdp->fd_spin);
562 			fdrop(fp);
563 			return (error);
564 		}
565 		/*
566 		 * Check for ripout
567 		 */
568 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
569 			fsetfd_locked(fdp, NULL, newfd);
570 			spin_unlock(&fdp->fd_spin);
571 			fdrop(fp);
572 			goto retry;
573 		}
574 		/*
575 		 * Check for expansion race
576 		 */
577 		if ((flags & DUP_VARIABLE) == 0 && new != newfd) {
578 			fsetfd_locked(fdp, NULL, newfd);
579 			spin_unlock(&fdp->fd_spin);
580 			fdrop(fp);
581 			goto retry;
582 		}
583 		/*
584 		 * Check for ripout, newfd reused old (this case probably
585 		 * can't occur).
586 		 */
587 		if (old == newfd) {
588 			fsetfd_locked(fdp, NULL, newfd);
589 			spin_unlock(&fdp->fd_spin);
590 			fdrop(fp);
591 			goto retry;
592 		}
593 		new = newfd;
594 		delfp = NULL;
595 	} else {
596 		if (fdp->fd_files[new].reserved) {
597 			spin_unlock(&fdp->fd_spin);
598 			fdrop(fp);
599 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
600 			tsleep(fdp, 0, "fdres", hz);
601 			goto retry;
602 		}
603 
604 		/*
605 		 * If the target descriptor was never allocated we have
606 		 * to allocate it.  If it was we have to clean out the
607 		 * old descriptor.  delfp inherits the ref from the
608 		 * descriptor table.
609 		 */
610 		delfp = fdp->fd_files[new].fp;
611 		fdp->fd_files[new].fp = NULL;
612 		fdp->fd_files[new].reserved = 1;
613 		if (delfp == NULL) {
614 			fdreserve_locked(fdp, new, 1);
615 			if (new > fdp->fd_lastfile)
616 				fdp->fd_lastfile = new;
617 		}
618 
619 	}
620 
621 	/*
622 	 * NOTE: still holding an exclusive spinlock
623 	 */
624 
625 	/*
626 	 * If a descriptor is being overwritten we may hve to tell
627 	 * fdfree() to sleep to ensure that all relevant process
628 	 * leaders can be traversed in closef().
629 	 */
630 	if (delfp != NULL && p->p_fdtol != NULL) {
631 		fdp->fd_holdleaderscount++;
632 		holdleaders = 1;
633 	} else {
634 		holdleaders = 0;
635 	}
636 	KASSERT(delfp == NULL || (flags & DUP_FIXED),
637 		("dup() picked an open file"));
638 
639 	/*
640 	 * Duplicate the source descriptor, update lastfile.  If the new
641 	 * descriptor was not allocated and we aren't replacing an existing
642 	 * descriptor we have to mark the descriptor as being in use.
643 	 *
644 	 * The fd_files[] array inherits fp's hold reference.
645 	 */
646 	fsetfd_locked(fdp, fp, new);
647 	if ((flags & DUP_CLOEXEC) != 0)
648 		fdp->fd_files[new].fileflags = oldflags | UF_EXCLOSE;
649 	else
650 		fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
651 	spin_unlock(&fdp->fd_spin);
652 	fdrop(fp);
653 	*res = new;
654 
655 	/*
656 	 * If we dup'd over a valid file, we now own the reference to it
657 	 * and must dispose of it using closef() semantics (as if a
658 	 * close() were performed on it).
659 	 */
660 	if (delfp) {
661 		if (SLIST_FIRST(&delfp->f_klist))
662 			knote_fdclose(delfp, fdp, new);
663 		closef(delfp, p);
664 		if (holdleaders) {
665 			spin_lock(&fdp->fd_spin);
666 			fdp->fd_holdleaderscount--;
667 			if (fdp->fd_holdleaderscount == 0 &&
668 			    fdp->fd_holdleaderswakeup != 0) {
669 				fdp->fd_holdleaderswakeup = 0;
670 				spin_unlock(&fdp->fd_spin);
671 				wakeup(&fdp->fd_holdleaderscount);
672 			} else {
673 				spin_unlock(&fdp->fd_spin);
674 			}
675 		}
676 	}
677 	return (0);
678 }
679 
680 /*
681  * If sigio is on the list associated with a process or process group,
682  * disable signalling from the device, remove sigio from the list and
683  * free sigio.
684  *
685  * MPSAFE
686  */
687 void
688 funsetown(struct sigio **sigiop)
689 {
690 	struct pgrp *pgrp;
691 	struct proc *p;
692 	struct sigio *sigio;
693 
694 	if ((sigio = *sigiop) != NULL) {
695 		lwkt_gettoken(&sigio_token);	/* protect sigio */
696 		KKASSERT(sigiop == sigio->sio_myref);
697 		sigio = *sigiop;
698 		*sigiop = NULL;
699 		lwkt_reltoken(&sigio_token);
700 	}
701 	if (sigio == NULL)
702 		return;
703 
704 	if (sigio->sio_pgid < 0) {
705 		pgrp = sigio->sio_pgrp;
706 		sigio->sio_pgrp = NULL;
707 		lwkt_gettoken(&pgrp->pg_token);
708 		SLIST_REMOVE(&pgrp->pg_sigiolst, sigio, sigio, sio_pgsigio);
709 		lwkt_reltoken(&pgrp->pg_token);
710 		pgrel(pgrp);
711 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
712 		p = sigio->sio_proc;
713 		sigio->sio_proc = NULL;
714 		PHOLD(p);
715 		lwkt_gettoken(&p->p_token);
716 		SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
717 		lwkt_reltoken(&p->p_token);
718 		PRELE(p);
719 	}
720 	crfree(sigio->sio_ucred);
721 	sigio->sio_ucred = NULL;
722 	kfree(sigio, M_SIGIO);
723 }
724 
725 /*
726  * Free a list of sigio structures.  Caller is responsible for ensuring
727  * that the list is MPSAFE.
728  *
729  * MPSAFE
730  */
731 void
732 funsetownlst(struct sigiolst *sigiolst)
733 {
734 	struct sigio *sigio;
735 
736 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
737 		funsetown(sigio->sio_myref);
738 }
739 
740 /*
741  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
742  *
743  * After permission checking, add a sigio structure to the sigio list for
744  * the process or process group.
745  *
746  * MPSAFE
747  */
748 int
749 fsetown(pid_t pgid, struct sigio **sigiop)
750 {
751 	struct proc *proc = NULL;
752 	struct pgrp *pgrp = NULL;
753 	struct sigio *sigio;
754 	int error;
755 
756 	if (pgid == 0) {
757 		funsetown(sigiop);
758 		return (0);
759 	}
760 
761 	if (pgid > 0) {
762 		proc = pfind(pgid);
763 		if (proc == NULL) {
764 			error = ESRCH;
765 			goto done;
766 		}
767 
768 		/*
769 		 * Policy - Don't allow a process to FSETOWN a process
770 		 * in another session.
771 		 *
772 		 * Remove this test to allow maximum flexibility or
773 		 * restrict FSETOWN to the current process or process
774 		 * group for maximum safety.
775 		 */
776 		if (proc->p_session != curproc->p_session) {
777 			error = EPERM;
778 			goto done;
779 		}
780 	} else /* if (pgid < 0) */ {
781 		pgrp = pgfind(-pgid);
782 		if (pgrp == NULL) {
783 			error = ESRCH;
784 			goto done;
785 		}
786 
787 		/*
788 		 * Policy - Don't allow a process to FSETOWN a process
789 		 * in another session.
790 		 *
791 		 * Remove this test to allow maximum flexibility or
792 		 * restrict FSETOWN to the current process or process
793 		 * group for maximum safety.
794 		 */
795 		if (pgrp->pg_session != curproc->p_session) {
796 			error = EPERM;
797 			goto done;
798 		}
799 	}
800 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK | M_ZERO);
801 	if (pgid > 0) {
802 		KKASSERT(pgrp == NULL);
803 		lwkt_gettoken(&proc->p_token);
804 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
805 		sigio->sio_proc = proc;
806 		lwkt_reltoken(&proc->p_token);
807 	} else {
808 		KKASSERT(proc == NULL);
809 		lwkt_gettoken(&pgrp->pg_token);
810 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
811 		sigio->sio_pgrp = pgrp;
812 		lwkt_reltoken(&pgrp->pg_token);
813 		pgrp = NULL;
814 	}
815 	sigio->sio_pgid = pgid;
816 	sigio->sio_ucred = crhold(curthread->td_ucred);
817 	/* It would be convenient if p_ruid was in ucred. */
818 	sigio->sio_ruid = sigio->sio_ucred->cr_ruid;
819 	sigio->sio_myref = sigiop;
820 
821 	lwkt_gettoken(&sigio_token);
822 	while (*sigiop)
823 		funsetown(sigiop);
824 	*sigiop = sigio;
825 	lwkt_reltoken(&sigio_token);
826 	error = 0;
827 done:
828 	if (pgrp)
829 		pgrel(pgrp);
830 	if (proc)
831 		PRELE(proc);
832 	return (error);
833 }
834 
835 /*
836  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
837  *
838  * MPSAFE
839  */
840 pid_t
841 fgetown(struct sigio **sigiop)
842 {
843 	struct sigio *sigio;
844 	pid_t own;
845 
846 	lwkt_gettoken_shared(&sigio_token);
847 	sigio = *sigiop;
848 	own = (sigio != NULL ? sigio->sio_pgid : 0);
849 	lwkt_reltoken(&sigio_token);
850 
851 	return (own);
852 }
853 
854 /*
855  * Close many file descriptors.
856  *
857  * MPSAFE
858  */
859 int
860 sys_closefrom(struct closefrom_args *uap)
861 {
862 	return(kern_closefrom(uap->fd));
863 }
864 
865 /*
866  * Close all file descriptors greater then or equal to fd
867  *
868  * MPSAFE
869  */
870 int
871 kern_closefrom(int fd)
872 {
873 	struct thread *td = curthread;
874 	struct proc *p = td->td_proc;
875 	struct filedesc *fdp;
876 
877 	KKASSERT(p);
878 	fdp = p->p_fd;
879 
880 	if (fd < 0)
881 		return (EINVAL);
882 
883 	/*
884 	 * NOTE: This function will skip unassociated descriptors and
885 	 * reserved descriptors that have not yet been assigned.
886 	 * fd_lastfile can change as a side effect of kern_close().
887 	 */
888 	spin_lock(&fdp->fd_spin);
889 	while (fd <= fdp->fd_lastfile) {
890 		if (fdp->fd_files[fd].fp != NULL) {
891 			spin_unlock(&fdp->fd_spin);
892 			/* ok if this races another close */
893 			if (kern_close(fd) == EINTR)
894 				return (EINTR);
895 			spin_lock(&fdp->fd_spin);
896 		}
897 		++fd;
898 	}
899 	spin_unlock(&fdp->fd_spin);
900 	return (0);
901 }
902 
903 /*
904  * Close a file descriptor.
905  *
906  * MPSAFE
907  */
908 int
909 sys_close(struct close_args *uap)
910 {
911 	return(kern_close(uap->fd));
912 }
913 
914 /*
915  * MPSAFE
916  */
917 int
918 kern_close(int fd)
919 {
920 	struct thread *td = curthread;
921 	struct proc *p = td->td_proc;
922 	struct filedesc *fdp;
923 	struct file *fp;
924 	int error;
925 	int holdleaders;
926 
927 	KKASSERT(p);
928 	fdp = p->p_fd;
929 
930 	spin_lock(&fdp->fd_spin);
931 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
932 		spin_unlock(&fdp->fd_spin);
933 		return (EBADF);
934 	}
935 	holdleaders = 0;
936 	if (p->p_fdtol != NULL) {
937 		/*
938 		 * Ask fdfree() to sleep to ensure that all relevant
939 		 * process leaders can be traversed in closef().
940 		 */
941 		fdp->fd_holdleaderscount++;
942 		holdleaders = 1;
943 	}
944 
945 	/*
946 	 * we now hold the fp reference that used to be owned by the descriptor
947 	 * array.
948 	 */
949 	spin_unlock(&fdp->fd_spin);
950 	if (SLIST_FIRST(&fp->f_klist))
951 		knote_fdclose(fp, fdp, fd);
952 	error = closef(fp, p);
953 	if (holdleaders) {
954 		spin_lock(&fdp->fd_spin);
955 		fdp->fd_holdleaderscount--;
956 		if (fdp->fd_holdleaderscount == 0 &&
957 		    fdp->fd_holdleaderswakeup != 0) {
958 			fdp->fd_holdleaderswakeup = 0;
959 			spin_unlock(&fdp->fd_spin);
960 			wakeup(&fdp->fd_holdleaderscount);
961 		} else {
962 			spin_unlock(&fdp->fd_spin);
963 		}
964 	}
965 	return (error);
966 }
967 
968 /*
969  * shutdown_args(int fd, int how)
970  */
971 int
972 kern_shutdown(int fd, int how)
973 {
974 	struct thread *td = curthread;
975 	struct proc *p = td->td_proc;
976 	struct file *fp;
977 	int error;
978 
979 	KKASSERT(p);
980 
981 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
982 		return (EBADF);
983 	error = fo_shutdown(fp, how);
984 	fdrop(fp);
985 
986 	return (error);
987 }
988 
989 /*
990  * MPALMOSTSAFE
991  */
992 int
993 sys_shutdown(struct shutdown_args *uap)
994 {
995 	int error;
996 
997 	error = kern_shutdown(uap->s, uap->how);
998 
999 	return (error);
1000 }
1001 
1002 /*
1003  * MPSAFE
1004  */
1005 int
1006 kern_fstat(int fd, struct stat *ub)
1007 {
1008 	struct thread *td = curthread;
1009 	struct proc *p = td->td_proc;
1010 	struct file *fp;
1011 	int error;
1012 
1013 	KKASSERT(p);
1014 
1015 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
1016 		return (EBADF);
1017 	error = fo_stat(fp, ub, td->td_ucred);
1018 	fdrop(fp);
1019 
1020 	return (error);
1021 }
1022 
1023 /*
1024  * Return status information about a file descriptor.
1025  *
1026  * MPSAFE
1027  */
1028 int
1029 sys_fstat(struct fstat_args *uap)
1030 {
1031 	struct stat st;
1032 	int error;
1033 
1034 	error = kern_fstat(uap->fd, &st);
1035 
1036 	if (error == 0)
1037 		error = copyout(&st, uap->sb, sizeof(st));
1038 	return (error);
1039 }
1040 
1041 /*
1042  * Return pathconf information about a file descriptor.
1043  *
1044  * MPALMOSTSAFE
1045  */
1046 int
1047 sys_fpathconf(struct fpathconf_args *uap)
1048 {
1049 	struct thread *td = curthread;
1050 	struct proc *p = td->td_proc;
1051 	struct file *fp;
1052 	struct vnode *vp;
1053 	int error = 0;
1054 
1055 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
1056 		return (EBADF);
1057 
1058 	switch (fp->f_type) {
1059 	case DTYPE_PIPE:
1060 	case DTYPE_SOCKET:
1061 		if (uap->name != _PC_PIPE_BUF) {
1062 			error = EINVAL;
1063 		} else {
1064 			uap->sysmsg_result = PIPE_BUF;
1065 			error = 0;
1066 		}
1067 		break;
1068 	case DTYPE_FIFO:
1069 	case DTYPE_VNODE:
1070 		vp = (struct vnode *)fp->f_data;
1071 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
1072 		break;
1073 	default:
1074 		error = EOPNOTSUPP;
1075 		break;
1076 	}
1077 	fdrop(fp);
1078 	return(error);
1079 }
1080 
1081 static int fdexpand;
1082 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0,
1083     "Number of times a file table has been expanded");
1084 
1085 /*
1086  * Grow the file table so it can hold through descriptor (want).
1087  *
1088  * The fdp's spinlock must be held exclusively on entry and may be held
1089  * exclusively on return.  The spinlock may be cycled by the routine.
1090  *
1091  * MPSAFE
1092  */
1093 static void
1094 fdgrow_locked(struct filedesc *fdp, int want)
1095 {
1096 	struct fdnode *newfiles;
1097 	struct fdnode *oldfiles;
1098 	int nf, extra;
1099 
1100 	nf = fdp->fd_nfiles;
1101 	do {
1102 		/* nf has to be of the form 2^n - 1 */
1103 		nf = 2 * nf + 1;
1104 	} while (nf <= want);
1105 
1106 	spin_unlock(&fdp->fd_spin);
1107 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
1108 	spin_lock(&fdp->fd_spin);
1109 
1110 	/*
1111 	 * We could have raced another extend while we were not holding
1112 	 * the spinlock.
1113 	 */
1114 	if (fdp->fd_nfiles >= nf) {
1115 		spin_unlock(&fdp->fd_spin);
1116 		kfree(newfiles, M_FILEDESC);
1117 		spin_lock(&fdp->fd_spin);
1118 		return;
1119 	}
1120 	/*
1121 	 * Copy the existing ofile and ofileflags arrays
1122 	 * and zero the new portion of each array.
1123 	 */
1124 	extra = nf - fdp->fd_nfiles;
1125 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1126 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1127 
1128 	oldfiles = fdp->fd_files;
1129 	fdp->fd_files = newfiles;
1130 	fdp->fd_nfiles = nf;
1131 
1132 	if (oldfiles != fdp->fd_builtin_files) {
1133 		spin_unlock(&fdp->fd_spin);
1134 		kfree(oldfiles, M_FILEDESC);
1135 		spin_lock(&fdp->fd_spin);
1136 	}
1137 	fdexpand++;
1138 }
1139 
1140 /*
1141  * Number of nodes in right subtree, including the root.
1142  */
1143 static __inline int
1144 right_subtree_size(int n)
1145 {
1146 	return (n ^ (n | (n + 1)));
1147 }
1148 
1149 /*
1150  * Bigger ancestor.
1151  */
1152 static __inline int
1153 right_ancestor(int n)
1154 {
1155 	return (n | (n + 1));
1156 }
1157 
1158 /*
1159  * Smaller ancestor.
1160  */
1161 static __inline int
1162 left_ancestor(int n)
1163 {
1164 	return ((n & (n + 1)) - 1);
1165 }
1166 
1167 /*
1168  * Traverse the in-place binary tree buttom-up adjusting the allocation
1169  * count so scans can determine where free descriptors are located.
1170  *
1171  * MPSAFE - caller must be holding an exclusive spinlock on fdp
1172  */
1173 static
1174 void
1175 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1176 {
1177 	while (fd >= 0) {
1178 		fdp->fd_files[fd].allocated += incr;
1179 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1180 		fd = left_ancestor(fd);
1181 	}
1182 }
1183 
1184 /*
1185  * Reserve a file descriptor for the process.  If no error occurs, the
1186  * caller MUST at some point call fsetfd() or assign a file pointer
1187  * or dispose of the reservation.
1188  *
1189  * MPSAFE
1190  */
1191 int
1192 fdalloc(struct proc *p, int want, int *result)
1193 {
1194 	struct filedesc *fdp = p->p_fd;
1195 	struct uidinfo *uip;
1196 	int fd, rsize, rsum, node, lim;
1197 
1198 	/*
1199 	 * Check dtable size limit
1200 	 */
1201 	spin_lock(&p->p_limit->p_spin);
1202 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1203 		lim = INT_MAX;
1204 	else
1205 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1206 	spin_unlock(&p->p_limit->p_spin);
1207 
1208 	if (lim > maxfilesperproc)
1209 		lim = maxfilesperproc;
1210 	if (lim < minfilesperproc)
1211 		lim = minfilesperproc;
1212 	if (want >= lim)
1213 		return (EMFILE);
1214 
1215 	/*
1216 	 * Check that the user has not run out of descriptors (non-root only).
1217 	 * As a safety measure the dtable is allowed to have at least
1218 	 * minfilesperproc open fds regardless of the maxfilesperuser limit.
1219 	 */
1220 	if (p->p_ucred->cr_uid && fdp->fd_nfiles >= minfilesperproc) {
1221 		uip = p->p_ucred->cr_uidinfo;
1222 		if (uip->ui_openfiles > maxfilesperuser) {
1223 			krateprintf(&krate_uidinfo,
1224 				    "Warning: user %d pid %d (%s) ran out of "
1225 				    "file descriptors (%d/%d)\n",
1226 				    p->p_ucred->cr_uid, (int)p->p_pid,
1227 				    p->p_comm,
1228 				    uip->ui_openfiles, maxfilesperuser);
1229 			return(ENFILE);
1230 		}
1231 	}
1232 
1233 	/*
1234 	 * Grow the dtable if necessary
1235 	 */
1236 	spin_lock(&fdp->fd_spin);
1237 	if (want >= fdp->fd_nfiles)
1238 		fdgrow_locked(fdp, want);
1239 
1240 	/*
1241 	 * Search for a free descriptor starting at the higher
1242 	 * of want or fd_freefile.  If that fails, consider
1243 	 * expanding the ofile array.
1244 	 *
1245 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1246 	 * count.  If we happen to see a value of 0 then we can shortcut
1247 	 * our search.  Otherwise we run through through the tree going
1248 	 * down branches we know have free descriptor(s) until we hit a
1249 	 * leaf node.  The leaf node will be free but will not necessarily
1250 	 * have an allocated field of 0.
1251 	 */
1252 retry:
1253 	/* move up the tree looking for a subtree with a free node */
1254 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1255 	     fd = right_ancestor(fd)) {
1256 		if (fdp->fd_files[fd].allocated == 0)
1257 			goto found;
1258 
1259 		rsize = right_subtree_size(fd);
1260 		if (fdp->fd_files[fd].allocated == rsize)
1261 			continue;	/* right subtree full */
1262 
1263 		/*
1264 		 * Free fd is in the right subtree of the tree rooted at fd.
1265 		 * Call that subtree R.  Look for the smallest (leftmost)
1266 		 * subtree of R with an unallocated fd: continue moving
1267 		 * down the left branch until encountering a full left
1268 		 * subtree, then move to the right.
1269 		 */
1270 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1271 			node = fd + rsize;
1272 			rsum += fdp->fd_files[node].allocated;
1273 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1274 				fd = node;	/* move to the right */
1275 				if (fdp->fd_files[node].allocated == 0)
1276 					goto found;
1277 				rsum = 0;
1278 			}
1279 		}
1280 		goto found;
1281 	}
1282 
1283 	/*
1284 	 * No space in current array.  Expand?
1285 	 */
1286 	if (fdp->fd_nfiles >= lim) {
1287 		spin_unlock(&fdp->fd_spin);
1288 		return (EMFILE);
1289 	}
1290 	fdgrow_locked(fdp, want);
1291 	goto retry;
1292 
1293 found:
1294 	KKASSERT(fd < fdp->fd_nfiles);
1295 	if (fd > fdp->fd_lastfile)
1296 		fdp->fd_lastfile = fd;
1297 	if (want <= fdp->fd_freefile)
1298 		fdp->fd_freefile = fd;
1299 	*result = fd;
1300 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1301 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1302 	fdp->fd_files[fd].fileflags = 0;
1303 	fdp->fd_files[fd].reserved = 1;
1304 	fdreserve_locked(fdp, fd, 1);
1305 	spin_unlock(&fdp->fd_spin);
1306 	return (0);
1307 }
1308 
1309 /*
1310  * Check to see whether n user file descriptors
1311  * are available to the process p.
1312  *
1313  * MPSAFE
1314  */
1315 int
1316 fdavail(struct proc *p, int n)
1317 {
1318 	struct filedesc *fdp = p->p_fd;
1319 	struct fdnode *fdnode;
1320 	int i, lim, last;
1321 
1322 	spin_lock(&p->p_limit->p_spin);
1323 	if (p->p_rlimit[RLIMIT_NOFILE].rlim_cur > INT_MAX)
1324 		lim = INT_MAX;
1325 	else
1326 		lim = (int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur;
1327 	spin_unlock(&p->p_limit->p_spin);
1328 
1329 	if (lim > maxfilesperproc)
1330 		lim = maxfilesperproc;
1331 	if (lim < minfilesperproc)
1332 		lim = minfilesperproc;
1333 
1334 	spin_lock(&fdp->fd_spin);
1335 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1336 		spin_unlock(&fdp->fd_spin);
1337 		return (1);
1338 	}
1339 	last = min(fdp->fd_nfiles, lim);
1340 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1341 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1342 		if (fdnode->fp == NULL && --n <= 0) {
1343 			spin_unlock(&fdp->fd_spin);
1344 			return (1);
1345 		}
1346 	}
1347 	spin_unlock(&fdp->fd_spin);
1348 	return (0);
1349 }
1350 
1351 /*
1352  * Revoke open descriptors referencing (f_data, f_type)
1353  *
1354  * Any revoke executed within a prison is only able to
1355  * revoke descriptors for processes within that prison.
1356  *
1357  * Returns 0 on success or an error code.
1358  */
1359 struct fdrevoke_info {
1360 	void *data;
1361 	short type;
1362 	short unused;
1363 	int count;
1364 	int intransit;
1365 	struct ucred *cred;
1366 	struct file *nfp;
1367 };
1368 
1369 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1370 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1371 
1372 int
1373 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1374 {
1375 	struct fdrevoke_info info;
1376 	int error;
1377 
1378 	bzero(&info, sizeof(info));
1379 	info.data = f_data;
1380 	info.type = f_type;
1381 	info.cred = cred;
1382 	error = falloc(NULL, &info.nfp, NULL);
1383 	if (error)
1384 		return (error);
1385 
1386 	/*
1387 	 * Scan the file pointer table once.  dups do not dup file pointers,
1388 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1389 	 * being revoked.
1390 	 */
1391 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1392 
1393 	/*
1394 	 * If any fps were marked track down the related descriptors
1395 	 * and close them.  Any dup()s at this point will notice
1396 	 * the FREVOKED already set in the fp and do the right thing.
1397 	 *
1398 	 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1399 	 * socket) bumped the intransit counter and will require a
1400 	 * scan.  Races against fps leaving the socket are closed by
1401 	 * the socket code checking for FREVOKED.
1402 	 */
1403 	if (info.count)
1404 		allproc_scan(fdrevoke_proc_callback, &info);
1405 	if (info.intransit)
1406 		unp_revoke_gc(info.nfp);
1407 	fdrop(info.nfp);
1408 	return(0);
1409 }
1410 
1411 /*
1412  * Locate matching file pointers directly.
1413  *
1414  * WARNING: allfiles_scan_exclusive() holds a spinlock through these calls!
1415  */
1416 static int
1417 fdrevoke_check_callback(struct file *fp, void *vinfo)
1418 {
1419 	struct fdrevoke_info *info = vinfo;
1420 
1421 	/*
1422 	 * File pointers already flagged for revokation are skipped.
1423 	 */
1424 	if (fp->f_flag & FREVOKED)
1425 		return(0);
1426 
1427 	/*
1428 	 * If revoking from a prison file pointers created outside of
1429 	 * that prison, or file pointers without creds, cannot be revoked.
1430 	 */
1431 	if (info->cred->cr_prison &&
1432 	    (fp->f_cred == NULL ||
1433 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1434 		return(0);
1435 	}
1436 
1437 	/*
1438 	 * If the file pointer matches then mark it for revocation.  The
1439 	 * flag is currently only used by unp_revoke_gc().
1440 	 *
1441 	 * info->count is a heuristic and can race in a SMP environment.
1442 	 */
1443 	if (info->data == fp->f_data && info->type == fp->f_type) {
1444 		atomic_set_int(&fp->f_flag, FREVOKED);
1445 		info->count += fp->f_count;
1446 		if (fp->f_msgcount)
1447 			++info->intransit;
1448 	}
1449 	return(0);
1450 }
1451 
1452 /*
1453  * Locate matching file pointers via process descriptor tables.
1454  */
1455 static int
1456 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1457 {
1458 	struct fdrevoke_info *info = vinfo;
1459 	struct filedesc *fdp;
1460 	struct file *fp;
1461 	int n;
1462 
1463 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1464 		return(0);
1465 	if (info->cred->cr_prison &&
1466 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1467 		return(0);
1468 	}
1469 
1470 	/*
1471 	 * If the controlling terminal of the process matches the
1472 	 * vnode being revoked we clear the controlling terminal.
1473 	 *
1474 	 * The normal spec_close() may not catch this because it
1475 	 * uses curproc instead of p.
1476 	 */
1477 	if (p->p_session && info->type == DTYPE_VNODE &&
1478 	    info->data == p->p_session->s_ttyvp) {
1479 		p->p_session->s_ttyvp = NULL;
1480 		vrele(info->data);
1481 	}
1482 
1483 	/*
1484 	 * Softref the fdp to prevent it from being destroyed
1485 	 */
1486 	spin_lock(&p->p_spin);
1487 	if ((fdp = p->p_fd) == NULL) {
1488 		spin_unlock(&p->p_spin);
1489 		return(0);
1490 	}
1491 	atomic_add_int(&fdp->fd_softrefs, 1);
1492 	spin_unlock(&p->p_spin);
1493 
1494 	/*
1495 	 * Locate and close any matching file descriptors.
1496 	 */
1497 	spin_lock(&fdp->fd_spin);
1498 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1499 		if ((fp = fdp->fd_files[n].fp) == NULL)
1500 			continue;
1501 		if (fp->f_flag & FREVOKED) {
1502 			fhold(info->nfp);
1503 			fdp->fd_files[n].fp = info->nfp;
1504 			spin_unlock(&fdp->fd_spin);
1505 			knote_fdclose(fp, fdp, n);	/* XXX */
1506 			closef(fp, p);
1507 			spin_lock(&fdp->fd_spin);
1508 			--info->count;
1509 		}
1510 	}
1511 	spin_unlock(&fdp->fd_spin);
1512 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1513 	return(0);
1514 }
1515 
1516 /*
1517  * falloc:
1518  *	Create a new open file structure and reserve a file decriptor
1519  *	for the process that refers to it.
1520  *
1521  *	Root creds are checked using lp, or assumed if lp is NULL.  If
1522  *	resultfd is non-NULL then lp must also be non-NULL.  No file
1523  *	descriptor is reserved (and no process context is needed) if
1524  *	resultfd is NULL.
1525  *
1526  *	A file pointer with a refcount of 1 is returned.  Note that the
1527  *	file pointer is NOT associated with the descriptor.  If falloc
1528  *	returns success, fsetfd() MUST be called to either associate the
1529  *	file pointer or clear the reservation.
1530  *
1531  * MPSAFE
1532  */
1533 int
1534 falloc(struct lwp *lp, struct file **resultfp, int *resultfd)
1535 {
1536 	static struct timeval lastfail;
1537 	static int curfail;
1538 	struct file *fp;
1539 	struct ucred *cred = lp ? lp->lwp_thread->td_ucred : proc0.p_ucred;
1540 	int error;
1541 
1542 	fp = NULL;
1543 
1544 	/*
1545 	 * Handle filetable full issues and root overfill.
1546 	 */
1547 	if (nfiles >= maxfiles - maxfilesrootres &&
1548 	    (cred->cr_ruid != 0 || nfiles >= maxfiles)) {
1549 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1550 			kprintf("kern.maxfiles limit exceeded by uid %d, "
1551 				"please see tuning(7).\n",
1552 				cred->cr_ruid);
1553 		}
1554 		error = ENFILE;
1555 		goto done;
1556 	}
1557 
1558 	/*
1559 	 * Allocate a new file descriptor.
1560 	 */
1561 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1562 	spin_init(&fp->f_spin, "falloc");
1563 	SLIST_INIT(&fp->f_klist);
1564 	fp->f_count = 1;
1565 	fp->f_ops = &badfileops;
1566 	fp->f_seqcount = 1;
1567 	fsetcred(fp, cred);
1568 	spin_lock(&filehead_spin);
1569 	nfiles++;
1570 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1571 	spin_unlock(&filehead_spin);
1572 	if (resultfd) {
1573 		if ((error = fdalloc(lp->lwp_proc, 0, resultfd)) != 0) {
1574 			fdrop(fp);
1575 			fp = NULL;
1576 		}
1577 	} else {
1578 		error = 0;
1579 	}
1580 done:
1581 	*resultfp = fp;
1582 	return (error);
1583 }
1584 
1585 /*
1586  * Check for races against a file descriptor by determining that the
1587  * file pointer is still associated with the specified file descriptor,
1588  * and a close is not currently in progress.
1589  *
1590  * MPSAFE
1591  */
1592 int
1593 checkfdclosed(struct filedesc *fdp, int fd, struct file *fp)
1594 {
1595 	int error;
1596 
1597 	spin_lock_shared(&fdp->fd_spin);
1598 	if ((unsigned)fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1599 		error = EBADF;
1600 	else
1601 		error = 0;
1602 	spin_unlock_shared(&fdp->fd_spin);
1603 	return (error);
1604 }
1605 
1606 /*
1607  * Associate a file pointer with a previously reserved file descriptor.
1608  * This function always succeeds.
1609  *
1610  * If fp is NULL, the file descriptor is returned to the pool.
1611  */
1612 
1613 /*
1614  * MPSAFE (exclusive spinlock must be held on call)
1615  */
1616 static void
1617 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1618 {
1619 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1620 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1621 	if (fp) {
1622 		fhold(fp);
1623 		fdp->fd_files[fd].fp = fp;
1624 		fdp->fd_files[fd].reserved = 0;
1625 	} else {
1626 		fdp->fd_files[fd].reserved = 0;
1627 		fdreserve_locked(fdp, fd, -1);
1628 		fdfixup_locked(fdp, fd);
1629 	}
1630 }
1631 
1632 /*
1633  * MPSAFE
1634  */
1635 void
1636 fsetfd(struct filedesc *fdp, struct file *fp, int fd)
1637 {
1638 	spin_lock(&fdp->fd_spin);
1639 	fsetfd_locked(fdp, fp, fd);
1640 	spin_unlock(&fdp->fd_spin);
1641 }
1642 
1643 /*
1644  * MPSAFE (exclusive spinlock must be held on call)
1645  */
1646 static
1647 struct file *
1648 funsetfd_locked(struct filedesc *fdp, int fd)
1649 {
1650 	struct file *fp;
1651 
1652 	if ((unsigned)fd >= fdp->fd_nfiles)
1653 		return (NULL);
1654 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1655 		return (NULL);
1656 	fdp->fd_files[fd].fp = NULL;
1657 	fdp->fd_files[fd].fileflags = 0;
1658 
1659 	fdreserve_locked(fdp, fd, -1);
1660 	fdfixup_locked(fdp, fd);
1661 	return(fp);
1662 }
1663 
1664 /*
1665  * MPSAFE
1666  */
1667 int
1668 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1669 {
1670 	int error;
1671 
1672 	spin_lock(&fdp->fd_spin);
1673 	if (((u_int)fd) >= fdp->fd_nfiles) {
1674 		error = EBADF;
1675 	} else if (fdp->fd_files[fd].fp == NULL) {
1676 		error = EBADF;
1677 	} else {
1678 		*flagsp = fdp->fd_files[fd].fileflags;
1679 		error = 0;
1680 	}
1681 	spin_unlock(&fdp->fd_spin);
1682 	return (error);
1683 }
1684 
1685 /*
1686  * MPSAFE
1687  */
1688 int
1689 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1690 {
1691 	int error;
1692 
1693 	spin_lock(&fdp->fd_spin);
1694 	if (((u_int)fd) >= fdp->fd_nfiles) {
1695 		error = EBADF;
1696 	} else if (fdp->fd_files[fd].fp == NULL) {
1697 		error = EBADF;
1698 	} else {
1699 		fdp->fd_files[fd].fileflags |= add_flags;
1700 		error = 0;
1701 	}
1702 	spin_unlock(&fdp->fd_spin);
1703 	return (error);
1704 }
1705 
1706 /*
1707  * MPSAFE
1708  */
1709 int
1710 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1711 {
1712 	int error;
1713 
1714 	spin_lock(&fdp->fd_spin);
1715 	if (((u_int)fd) >= fdp->fd_nfiles) {
1716 		error = EBADF;
1717 	} else if (fdp->fd_files[fd].fp == NULL) {
1718 		error = EBADF;
1719 	} else {
1720 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1721 		error = 0;
1722 	}
1723 	spin_unlock(&fdp->fd_spin);
1724 	return (error);
1725 }
1726 
1727 /*
1728  * Set/Change/Clear the creds for a fp and synchronize the uidinfo.
1729  */
1730 void
1731 fsetcred(struct file *fp, struct ucred *ncr)
1732 {
1733 	struct ucred *ocr;
1734 	struct uidinfo *uip;
1735 
1736 	ocr = fp->f_cred;
1737 	if (ocr == NULL || ncr == NULL || ocr->cr_uidinfo != ncr->cr_uidinfo) {
1738 		if (ocr) {
1739 			uip = ocr->cr_uidinfo;
1740 			atomic_add_int(&uip->ui_openfiles, -1);
1741 		}
1742 		if (ncr) {
1743 			uip = ncr->cr_uidinfo;
1744 			atomic_add_int(&uip->ui_openfiles, 1);
1745 		}
1746 	}
1747 	if (ncr)
1748 		crhold(ncr);
1749 	fp->f_cred = ncr;
1750 	if (ocr)
1751 		crfree(ocr);
1752 }
1753 
1754 /*
1755  * Free a file descriptor.
1756  */
1757 static
1758 void
1759 ffree(struct file *fp)
1760 {
1761 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1762 	spin_lock(&filehead_spin);
1763 	LIST_REMOVE(fp, f_list);
1764 	nfiles--;
1765 	spin_unlock(&filehead_spin);
1766 	fsetcred(fp, NULL);
1767 	if (fp->f_nchandle.ncp)
1768 	    cache_drop(&fp->f_nchandle);
1769 	kfree(fp, M_FILE);
1770 }
1771 
1772 /*
1773  * called from init_main, initialize filedesc0 for proc0.
1774  */
1775 void
1776 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1777 {
1778 	p0->p_fd = fdp0;
1779 	p0->p_fdtol = NULL;
1780 	fdp0->fd_refcnt = 1;
1781 	fdp0->fd_cmask = cmask;
1782 	fdp0->fd_files = fdp0->fd_builtin_files;
1783 	fdp0->fd_nfiles = NDFILE;
1784 	fdp0->fd_lastfile = -1;
1785 	spin_init(&fdp0->fd_spin, "fdinitbootstrap");
1786 }
1787 
1788 /*
1789  * Build a new filedesc structure.
1790  *
1791  * NOT MPSAFE (vref)
1792  */
1793 struct filedesc *
1794 fdinit(struct proc *p)
1795 {
1796 	struct filedesc *newfdp;
1797 	struct filedesc *fdp = p->p_fd;
1798 
1799 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1800 	spin_lock(&fdp->fd_spin);
1801 	if (fdp->fd_cdir) {
1802 		newfdp->fd_cdir = fdp->fd_cdir;
1803 		vref(newfdp->fd_cdir);
1804 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1805 	}
1806 
1807 	/*
1808 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1809 	 * proc0, but should unconditionally exist in other processes.
1810 	 */
1811 	if (fdp->fd_rdir) {
1812 		newfdp->fd_rdir = fdp->fd_rdir;
1813 		vref(newfdp->fd_rdir);
1814 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1815 	}
1816 	if (fdp->fd_jdir) {
1817 		newfdp->fd_jdir = fdp->fd_jdir;
1818 		vref(newfdp->fd_jdir);
1819 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1820 	}
1821 	spin_unlock(&fdp->fd_spin);
1822 
1823 	/* Create the file descriptor table. */
1824 	newfdp->fd_refcnt = 1;
1825 	newfdp->fd_cmask = cmask;
1826 	newfdp->fd_files = newfdp->fd_builtin_files;
1827 	newfdp->fd_nfiles = NDFILE;
1828 	newfdp->fd_lastfile = -1;
1829 	spin_init(&newfdp->fd_spin, "fdinit");
1830 
1831 	return (newfdp);
1832 }
1833 
1834 /*
1835  * Share a filedesc structure.
1836  *
1837  * MPSAFE
1838  */
1839 struct filedesc *
1840 fdshare(struct proc *p)
1841 {
1842 	struct filedesc *fdp;
1843 
1844 	fdp = p->p_fd;
1845 	spin_lock(&fdp->fd_spin);
1846 	fdp->fd_refcnt++;
1847 	spin_unlock(&fdp->fd_spin);
1848 	return (fdp);
1849 }
1850 
1851 /*
1852  * Copy a filedesc structure.
1853  *
1854  * MPSAFE
1855  */
1856 int
1857 fdcopy(struct proc *p, struct filedesc **fpp)
1858 {
1859 	struct filedesc *fdp = p->p_fd;
1860 	struct filedesc *newfdp;
1861 	struct fdnode *fdnode;
1862 	int i;
1863 	int ni;
1864 
1865 	/*
1866 	 * Certain daemons might not have file descriptors.
1867 	 */
1868 	if (fdp == NULL)
1869 		return (0);
1870 
1871 	/*
1872 	 * Allocate the new filedesc and fd_files[] array.  This can race
1873 	 * with operations by other threads on the fdp so we have to be
1874 	 * careful.
1875 	 */
1876 	newfdp = kmalloc(sizeof(struct filedesc),
1877 			 M_FILEDESC, M_WAITOK | M_ZERO | M_NULLOK);
1878 	if (newfdp == NULL) {
1879 		*fpp = NULL;
1880 		return (-1);
1881 	}
1882 again:
1883 	spin_lock(&fdp->fd_spin);
1884 	if (fdp->fd_lastfile < NDFILE) {
1885 		newfdp->fd_files = newfdp->fd_builtin_files;
1886 		i = NDFILE;
1887 	} else {
1888 		/*
1889 		 * We have to allocate (N^2-1) entries for our in-place
1890 		 * binary tree.  Allow the table to shrink.
1891 		 */
1892 		i = fdp->fd_nfiles;
1893 		ni = (i - 1) / 2;
1894 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1895 			i = ni;
1896 			ni = (i - 1) / 2;
1897 		}
1898 		spin_unlock(&fdp->fd_spin);
1899 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1900 					  M_FILEDESC, M_WAITOK | M_ZERO);
1901 
1902 		/*
1903 		 * Check for race, retry
1904 		 */
1905 		spin_lock(&fdp->fd_spin);
1906 		if (i <= fdp->fd_lastfile) {
1907 			spin_unlock(&fdp->fd_spin);
1908 			kfree(newfdp->fd_files, M_FILEDESC);
1909 			goto again;
1910 		}
1911 	}
1912 
1913 	/*
1914 	 * Dup the remaining fields. vref() and cache_hold() can be
1915 	 * safely called while holding the read spinlock on fdp.
1916 	 *
1917 	 * The read spinlock on fdp is still being held.
1918 	 *
1919 	 * NOTE: vref and cache_hold calls for the case where the vnode
1920 	 * or cache entry already has at least one ref may be called
1921 	 * while holding spin locks.
1922 	 */
1923 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1924 		vref(newfdp->fd_cdir);
1925 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1926 	}
1927 	/*
1928 	 * We must check for fd_rdir here, at least for now because
1929 	 * the init process is created before we have access to the
1930 	 * rootvode to take a reference to it.
1931 	 */
1932 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1933 		vref(newfdp->fd_rdir);
1934 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1935 	}
1936 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1937 		vref(newfdp->fd_jdir);
1938 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1939 	}
1940 	newfdp->fd_refcnt = 1;
1941 	newfdp->fd_nfiles = i;
1942 	newfdp->fd_lastfile = fdp->fd_lastfile;
1943 	newfdp->fd_freefile = fdp->fd_freefile;
1944 	newfdp->fd_cmask = fdp->fd_cmask;
1945 	spin_init(&newfdp->fd_spin, "fdcopy");
1946 
1947 	/*
1948 	 * Copy the descriptor table through (i).  This also copies the
1949 	 * allocation state.   Then go through and ref the file pointers
1950 	 * and clean up any KQ descriptors.
1951 	 *
1952 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1953 	 * copied files yet we can ignore the return value from funsetfd().
1954 	 *
1955 	 * The read spinlock on fdp is still being held.
1956 	 */
1957 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1958 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1959 		fdnode = &newfdp->fd_files[i];
1960 		if (fdnode->reserved) {
1961 			fdreserve_locked(newfdp, i, -1);
1962 			fdnode->reserved = 0;
1963 			fdfixup_locked(newfdp, i);
1964 		} else if (fdnode->fp) {
1965 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1966 				(void)funsetfd_locked(newfdp, i);
1967 			} else {
1968 				fhold(fdnode->fp);
1969 			}
1970 		}
1971 	}
1972 	spin_unlock(&fdp->fd_spin);
1973 	*fpp = newfdp;
1974 	return (0);
1975 }
1976 
1977 /*
1978  * Release a filedesc structure.
1979  *
1980  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1981  */
1982 void
1983 fdfree(struct proc *p, struct filedesc *repl)
1984 {
1985 	struct filedesc *fdp;
1986 	struct fdnode *fdnode;
1987 	int i;
1988 	struct filedesc_to_leader *fdtol;
1989 	struct file *fp;
1990 	struct vnode *vp;
1991 	struct flock lf;
1992 
1993 	/*
1994 	 * Certain daemons might not have file descriptors.
1995 	 */
1996 	fdp = p->p_fd;
1997 	if (fdp == NULL) {
1998 		p->p_fd = repl;
1999 		return;
2000 	}
2001 
2002 	/*
2003 	 * Severe messing around to follow.
2004 	 */
2005 	spin_lock(&fdp->fd_spin);
2006 
2007 	/* Check for special need to clear POSIX style locks */
2008 	fdtol = p->p_fdtol;
2009 	if (fdtol != NULL) {
2010 		KASSERT(fdtol->fdl_refcount > 0,
2011 			("filedesc_to_refcount botch: fdl_refcount=%d",
2012 			 fdtol->fdl_refcount));
2013 		if (fdtol->fdl_refcount == 1 &&
2014 		    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
2015 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
2016 				fdnode = &fdp->fd_files[i];
2017 				if (fdnode->fp == NULL ||
2018 				    fdnode->fp->f_type != DTYPE_VNODE) {
2019 					continue;
2020 				}
2021 				fp = fdnode->fp;
2022 				fhold(fp);
2023 				spin_unlock(&fdp->fd_spin);
2024 
2025 				lf.l_whence = SEEK_SET;
2026 				lf.l_start = 0;
2027 				lf.l_len = 0;
2028 				lf.l_type = F_UNLCK;
2029 				vp = (struct vnode *)fp->f_data;
2030 				(void) VOP_ADVLOCK(vp,
2031 						   (caddr_t)p->p_leader,
2032 						   F_UNLCK,
2033 						   &lf,
2034 						   F_POSIX);
2035 				fdrop(fp);
2036 				spin_lock(&fdp->fd_spin);
2037 			}
2038 		}
2039 	retry:
2040 		if (fdtol->fdl_refcount == 1) {
2041 			if (fdp->fd_holdleaderscount > 0 &&
2042 			    (p->p_leader->p_flags & P_ADVLOCK) != 0) {
2043 				/*
2044 				 * close() or do_dup() has cleared a reference
2045 				 * in a shared file descriptor table.
2046 				 */
2047 				fdp->fd_holdleaderswakeup = 1;
2048 				ssleep(&fdp->fd_holdleaderscount,
2049 				       &fdp->fd_spin, 0, "fdlhold", 0);
2050 				goto retry;
2051 			}
2052 			if (fdtol->fdl_holdcount > 0) {
2053 				/*
2054 				 * Ensure that fdtol->fdl_leader
2055 				 * remains valid in closef().
2056 				 */
2057 				fdtol->fdl_wakeup = 1;
2058 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
2059 				goto retry;
2060 			}
2061 		}
2062 		fdtol->fdl_refcount--;
2063 		if (fdtol->fdl_refcount == 0 &&
2064 		    fdtol->fdl_holdcount == 0) {
2065 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2066 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2067 		} else {
2068 			fdtol = NULL;
2069 		}
2070 		p->p_fdtol = NULL;
2071 		if (fdtol != NULL) {
2072 			spin_unlock(&fdp->fd_spin);
2073 			kfree(fdtol, M_FILEDESC_TO_LEADER);
2074 			spin_lock(&fdp->fd_spin);
2075 		}
2076 	}
2077 	if (--fdp->fd_refcnt > 0) {
2078 		spin_unlock(&fdp->fd_spin);
2079 		spin_lock(&p->p_spin);
2080 		p->p_fd = repl;
2081 		spin_unlock(&p->p_spin);
2082 		return;
2083 	}
2084 
2085 	/*
2086 	 * Even though we are the last reference to the structure allproc
2087 	 * scans may still reference the structure.  Maintain proper
2088 	 * locks until we can replace p->p_fd.
2089 	 *
2090 	 * Also note that kqueue's closef still needs to reference the
2091 	 * fdp via p->p_fd, so we have to close the descriptors before
2092 	 * we replace p->p_fd.
2093 	 */
2094 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
2095 		if (fdp->fd_files[i].fp) {
2096 			fp = funsetfd_locked(fdp, i);
2097 			if (fp) {
2098 				spin_unlock(&fdp->fd_spin);
2099 				if (SLIST_FIRST(&fp->f_klist))
2100 					knote_fdclose(fp, fdp, i);
2101 				closef(fp, p);
2102 				spin_lock(&fdp->fd_spin);
2103 			}
2104 		}
2105 	}
2106 	spin_unlock(&fdp->fd_spin);
2107 
2108 	/*
2109 	 * Interlock against an allproc scan operations (typically frevoke).
2110 	 */
2111 	spin_lock(&p->p_spin);
2112 	p->p_fd = repl;
2113 	spin_unlock(&p->p_spin);
2114 
2115 	/*
2116 	 * Wait for any softrefs to go away.  This race rarely occurs so
2117 	 * we can use a non-critical-path style poll/sleep loop.  The
2118 	 * race only occurs against allproc scans.
2119 	 *
2120 	 * No new softrefs can occur with the fdp disconnected from the
2121 	 * process.
2122 	 */
2123 	if (fdp->fd_softrefs) {
2124 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
2125 		while (fdp->fd_softrefs)
2126 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
2127 	}
2128 
2129 	if (fdp->fd_files != fdp->fd_builtin_files)
2130 		kfree(fdp->fd_files, M_FILEDESC);
2131 	if (fdp->fd_cdir) {
2132 		cache_drop(&fdp->fd_ncdir);
2133 		vrele(fdp->fd_cdir);
2134 	}
2135 	if (fdp->fd_rdir) {
2136 		cache_drop(&fdp->fd_nrdir);
2137 		vrele(fdp->fd_rdir);
2138 	}
2139 	if (fdp->fd_jdir) {
2140 		cache_drop(&fdp->fd_njdir);
2141 		vrele(fdp->fd_jdir);
2142 	}
2143 	kfree(fdp, M_FILEDESC);
2144 }
2145 
2146 /*
2147  * Retrieve and reference the file pointer associated with a descriptor.
2148  *
2149  * MPSAFE
2150  */
2151 struct file *
2152 holdfp(struct filedesc *fdp, int fd, int flag)
2153 {
2154 	struct file* fp;
2155 
2156 	spin_lock_shared(&fdp->fd_spin);
2157 	if (((u_int)fd) >= fdp->fd_nfiles) {
2158 		fp = NULL;
2159 		goto done;
2160 	}
2161 	if ((fp = fdp->fd_files[fd].fp) == NULL)
2162 		goto done;
2163 	if ((fp->f_flag & flag) == 0 && flag != -1) {
2164 		fp = NULL;
2165 		goto done;
2166 	}
2167 	fhold(fp);
2168 done:
2169 	spin_unlock_shared(&fdp->fd_spin);
2170 	return (fp);
2171 }
2172 
2173 /*
2174  * holdsock() - load the struct file pointer associated
2175  * with a socket into *fpp.  If an error occurs, non-zero
2176  * will be returned and *fpp will be set to NULL.
2177  *
2178  * MPSAFE
2179  */
2180 int
2181 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2182 {
2183 	struct file *fp;
2184 	int error;
2185 
2186 	spin_lock_shared(&fdp->fd_spin);
2187 	if ((unsigned)fd >= fdp->fd_nfiles) {
2188 		error = EBADF;
2189 		fp = NULL;
2190 		goto done;
2191 	}
2192 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2193 		error = EBADF;
2194 		goto done;
2195 	}
2196 	if (fp->f_type != DTYPE_SOCKET) {
2197 		error = ENOTSOCK;
2198 		goto done;
2199 	}
2200 	fhold(fp);
2201 	error = 0;
2202 done:
2203 	spin_unlock_shared(&fdp->fd_spin);
2204 	*fpp = fp;
2205 	return (error);
2206 }
2207 
2208 /*
2209  * Convert a user file descriptor to a held file pointer.
2210  *
2211  * MPSAFE
2212  */
2213 int
2214 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2215 {
2216 	struct file *fp;
2217 	int error;
2218 
2219 	spin_lock_shared(&fdp->fd_spin);
2220 	if ((unsigned)fd >= fdp->fd_nfiles) {
2221 		error = EBADF;
2222 		fp = NULL;
2223 		goto done;
2224 	}
2225 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2226 		error = EBADF;
2227 		goto done;
2228 	}
2229 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2230 		fp = NULL;
2231 		error = EINVAL;
2232 		goto done;
2233 	}
2234 	fhold(fp);
2235 	error = 0;
2236 done:
2237 	spin_unlock_shared(&fdp->fd_spin);
2238 	*fpp = fp;
2239 	return (error);
2240 }
2241 
2242 /*
2243  * For setugid programs, we don't want to people to use that setugidness
2244  * to generate error messages which write to a file which otherwise would
2245  * otherwise be off-limits to the process.
2246  *
2247  * This is a gross hack to plug the hole.  A better solution would involve
2248  * a special vop or other form of generalized access control mechanism.  We
2249  * go ahead and just reject all procfs file systems accesses as dangerous.
2250  *
2251  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2252  * sufficient.  We also don't for check setugidness since we know we are.
2253  */
2254 static int
2255 is_unsafe(struct file *fp)
2256 {
2257 	if (fp->f_type == DTYPE_VNODE &&
2258 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2259 		return (1);
2260 	return (0);
2261 }
2262 
2263 /*
2264  * Make this setguid thing safe, if at all possible.
2265  *
2266  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2267  */
2268 void
2269 setugidsafety(struct proc *p)
2270 {
2271 	struct filedesc *fdp = p->p_fd;
2272 	int i;
2273 
2274 	/* Certain daemons might not have file descriptors. */
2275 	if (fdp == NULL)
2276 		return;
2277 
2278 	/*
2279 	 * note: fdp->fd_files may be reallocated out from under us while
2280 	 * we are blocked in a close.  Be careful!
2281 	 */
2282 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2283 		if (i > 2)
2284 			break;
2285 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2286 			struct file *fp;
2287 
2288 			/*
2289 			 * NULL-out descriptor prior to close to avoid
2290 			 * a race while close blocks.
2291 			 */
2292 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2293 				knote_fdclose(fp, fdp, i);
2294 				closef(fp, p);
2295 			}
2296 		}
2297 	}
2298 }
2299 
2300 /*
2301  * Close any files on exec?
2302  *
2303  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2304  */
2305 void
2306 fdcloseexec(struct proc *p)
2307 {
2308 	struct filedesc *fdp = p->p_fd;
2309 	int i;
2310 
2311 	/* Certain daemons might not have file descriptors. */
2312 	if (fdp == NULL)
2313 		return;
2314 
2315 	/*
2316 	 * We cannot cache fd_files since operations may block and rip
2317 	 * them out from under us.
2318 	 */
2319 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2320 		if (fdp->fd_files[i].fp != NULL &&
2321 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2322 			struct file *fp;
2323 
2324 			/*
2325 			 * NULL-out descriptor prior to close to avoid
2326 			 * a race while close blocks.
2327 			 */
2328 			if ((fp = funsetfd_locked(fdp, i)) != NULL) {
2329 				knote_fdclose(fp, fdp, i);
2330 				closef(fp, p);
2331 			}
2332 		}
2333 	}
2334 }
2335 
2336 /*
2337  * It is unsafe for set[ug]id processes to be started with file
2338  * descriptors 0..2 closed, as these descriptors are given implicit
2339  * significance in the Standard C library.  fdcheckstd() will create a
2340  * descriptor referencing /dev/null for each of stdin, stdout, and
2341  * stderr that is not already open.
2342  *
2343  * NOT MPSAFE - calls falloc, vn_open, etc
2344  */
2345 int
2346 fdcheckstd(struct lwp *lp)
2347 {
2348 	struct nlookupdata nd;
2349 	struct filedesc *fdp;
2350 	struct file *fp;
2351 	int retval;
2352 	int i, error, flags, devnull;
2353 
2354 	fdp = lp->lwp_proc->p_fd;
2355 	if (fdp == NULL)
2356 		return (0);
2357 	devnull = -1;
2358 	error = 0;
2359 	for (i = 0; i < 3; i++) {
2360 		if (fdp->fd_files[i].fp != NULL)
2361 			continue;
2362 		if (devnull < 0) {
2363 			if ((error = falloc(lp, &fp, &devnull)) != 0)
2364 				break;
2365 
2366 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2367 						NLC_FOLLOW|NLC_LOCKVP);
2368 			flags = FREAD | FWRITE;
2369 			if (error == 0)
2370 				error = vn_open(&nd, fp, flags, 0);
2371 			if (error == 0)
2372 				fsetfd(fdp, fp, devnull);
2373 			else
2374 				fsetfd(fdp, NULL, devnull);
2375 			fdrop(fp);
2376 			nlookup_done(&nd);
2377 			if (error)
2378 				break;
2379 			KKASSERT(i == devnull);
2380 		} else {
2381 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2382 			if (error != 0)
2383 				break;
2384 		}
2385 	}
2386 	return (error);
2387 }
2388 
2389 /*
2390  * Internal form of close.
2391  * Decrement reference count on file structure.
2392  * Note: td and/or p may be NULL when closing a file
2393  * that was being passed in a message.
2394  *
2395  * MPALMOSTSAFE - acquires mplock for VOP operations
2396  */
2397 int
2398 closef(struct file *fp, struct proc *p)
2399 {
2400 	struct vnode *vp;
2401 	struct flock lf;
2402 	struct filedesc_to_leader *fdtol;
2403 
2404 	if (fp == NULL)
2405 		return (0);
2406 
2407 	/*
2408 	 * POSIX record locking dictates that any close releases ALL
2409 	 * locks owned by this process.  This is handled by setting
2410 	 * a flag in the unlock to free ONLY locks obeying POSIX
2411 	 * semantics, and not to free BSD-style file locks.
2412 	 * If the descriptor was in a message, POSIX-style locks
2413 	 * aren't passed with the descriptor.
2414 	 */
2415 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2416 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2417 	) {
2418 		if ((p->p_leader->p_flags & P_ADVLOCK) != 0) {
2419 			lf.l_whence = SEEK_SET;
2420 			lf.l_start = 0;
2421 			lf.l_len = 0;
2422 			lf.l_type = F_UNLCK;
2423 			vp = (struct vnode *)fp->f_data;
2424 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2425 					   &lf, F_POSIX);
2426 		}
2427 		fdtol = p->p_fdtol;
2428 		if (fdtol != NULL) {
2429 			lwkt_gettoken(&p->p_token);
2430 			/*
2431 			 * Handle special case where file descriptor table
2432 			 * is shared between multiple process leaders.
2433 			 */
2434 			for (fdtol = fdtol->fdl_next;
2435 			     fdtol != p->p_fdtol;
2436 			     fdtol = fdtol->fdl_next) {
2437 				if ((fdtol->fdl_leader->p_flags &
2438 				     P_ADVLOCK) == 0)
2439 					continue;
2440 				fdtol->fdl_holdcount++;
2441 				lf.l_whence = SEEK_SET;
2442 				lf.l_start = 0;
2443 				lf.l_len = 0;
2444 				lf.l_type = F_UNLCK;
2445 				vp = (struct vnode *)fp->f_data;
2446 				(void) VOP_ADVLOCK(vp,
2447 						   (caddr_t)fdtol->fdl_leader,
2448 						   F_UNLCK, &lf, F_POSIX);
2449 				fdtol->fdl_holdcount--;
2450 				if (fdtol->fdl_holdcount == 0 &&
2451 				    fdtol->fdl_wakeup != 0) {
2452 					fdtol->fdl_wakeup = 0;
2453 					wakeup(fdtol);
2454 				}
2455 			}
2456 			lwkt_reltoken(&p->p_token);
2457 		}
2458 	}
2459 	return (fdrop(fp));
2460 }
2461 
2462 /*
2463  * MPSAFE
2464  *
2465  * fhold() can only be called if f_count is already at least 1 (i.e. the
2466  * caller of fhold() already has a reference to the file pointer in some
2467  * manner or other).
2468  *
2469  * f_count is not spin-locked.  Instead, atomic ops are used for
2470  * incrementing, decrementing, and handling the 1->0 transition.
2471  */
2472 void
2473 fhold(struct file *fp)
2474 {
2475 	atomic_add_int(&fp->f_count, 1);
2476 }
2477 
2478 /*
2479  * fdrop() - drop a reference to a descriptor
2480  *
2481  * MPALMOSTSAFE - acquires mplock for final close sequence
2482  */
2483 int
2484 fdrop(struct file *fp)
2485 {
2486 	struct flock lf;
2487 	struct vnode *vp;
2488 	int error;
2489 
2490 	/*
2491 	 * A combined fetch and subtract is needed to properly detect
2492 	 * 1->0 transitions, otherwise two cpus dropping from a ref
2493 	 * count of 2 might both try to run the 1->0 code.
2494 	 */
2495 	if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2496 		return (0);
2497 
2498 	KKASSERT(SLIST_FIRST(&fp->f_klist) == NULL);
2499 
2500 	/*
2501 	 * The last reference has gone away, we own the fp structure free
2502 	 * and clear.
2503 	 */
2504 	if (fp->f_count < 0)
2505 		panic("fdrop: count < 0");
2506 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2507 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2508 	) {
2509 		lf.l_whence = SEEK_SET;
2510 		lf.l_start = 0;
2511 		lf.l_len = 0;
2512 		lf.l_type = F_UNLCK;
2513 		vp = (struct vnode *)fp->f_data;
2514 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2515 	}
2516 	if (fp->f_ops != &badfileops)
2517 		error = fo_close(fp);
2518 	else
2519 		error = 0;
2520 	ffree(fp);
2521 	return (error);
2522 }
2523 
2524 /*
2525  * Apply an advisory lock on a file descriptor.
2526  *
2527  * Just attempt to get a record lock of the requested type on
2528  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2529  *
2530  * MPALMOSTSAFE
2531  */
2532 int
2533 sys_flock(struct flock_args *uap)
2534 {
2535 	struct proc *p = curproc;
2536 	struct file *fp;
2537 	struct vnode *vp;
2538 	struct flock lf;
2539 	int error;
2540 
2541 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2542 		return (EBADF);
2543 	if (fp->f_type != DTYPE_VNODE) {
2544 		error = EOPNOTSUPP;
2545 		goto done;
2546 	}
2547 	vp = (struct vnode *)fp->f_data;
2548 	lf.l_whence = SEEK_SET;
2549 	lf.l_start = 0;
2550 	lf.l_len = 0;
2551 	if (uap->how & LOCK_UN) {
2552 		lf.l_type = F_UNLCK;
2553 		fp->f_flag &= ~FHASLOCK;
2554 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2555 		goto done;
2556 	}
2557 	if (uap->how & LOCK_EX)
2558 		lf.l_type = F_WRLCK;
2559 	else if (uap->how & LOCK_SH)
2560 		lf.l_type = F_RDLCK;
2561 	else {
2562 		error = EBADF;
2563 		goto done;
2564 	}
2565 	fp->f_flag |= FHASLOCK;
2566 	if (uap->how & LOCK_NB)
2567 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2568 	else
2569 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2570 done:
2571 	fdrop(fp);
2572 	return (error);
2573 }
2574 
2575 /*
2576  * File Descriptor pseudo-device driver (/dev/fd/).
2577  *
2578  * Opening minor device N dup()s the file (if any) connected to file
2579  * descriptor N belonging to the calling process.  Note that this driver
2580  * consists of only the ``open()'' routine, because all subsequent
2581  * references to this file will be direct to the other driver.
2582  */
2583 static int
2584 fdopen(struct dev_open_args *ap)
2585 {
2586 	thread_t td = curthread;
2587 
2588 	KKASSERT(td->td_lwp != NULL);
2589 
2590 	/*
2591 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2592 	 * the file descriptor being sought for duplication. The error
2593 	 * return ensures that the vnode for this device will be released
2594 	 * by vn_open. Open will detect this special error and take the
2595 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2596 	 * will simply report the error.
2597 	 */
2598 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2599 	return (ENODEV);
2600 }
2601 
2602 /*
2603  * The caller has reserved the file descriptor dfd for us.  On success we
2604  * must fsetfd() it.  On failure the caller will clean it up.
2605  *
2606  * MPSAFE
2607  */
2608 int
2609 dupfdopen(struct filedesc *fdp, int dfd, int sfd, int mode, int error)
2610 {
2611 	struct file *wfp;
2612 	struct file *xfp;
2613 	int werror;
2614 
2615 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2616 		return (EBADF);
2617 
2618 	/*
2619 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2620 	 * will dup a dummy descriptor instead of the real one.
2621 	 */
2622 	if (wfp->f_flag & FREVOKED) {
2623 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2624 		fdrop(wfp);
2625 		wfp = NULL;
2626 		werror = falloc(NULL, &wfp, NULL);
2627 		if (werror)
2628 			return (werror);
2629 	}
2630 
2631 	/*
2632 	 * There are two cases of interest here.
2633 	 *
2634 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2635 	 *
2636 	 * For ENXIO steal away the file structure from sfd and store it
2637 	 * dfd.  sfd is effectively closed by this operation.
2638 	 *
2639 	 * Any other error code is just returned.
2640 	 */
2641 	switch (error) {
2642 	case ENODEV:
2643 		/*
2644 		 * Check that the mode the file is being opened for is a
2645 		 * subset of the mode of the existing descriptor.
2646 		 */
2647 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2648 			error = EACCES;
2649 			break;
2650 		}
2651 		spin_lock(&fdp->fd_spin);
2652 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2653 		fsetfd_locked(fdp, wfp, dfd);
2654 		spin_unlock(&fdp->fd_spin);
2655 		error = 0;
2656 		break;
2657 	case ENXIO:
2658 		/*
2659 		 * Steal away the file pointer from dfd, and stuff it into indx.
2660 		 */
2661 		spin_lock(&fdp->fd_spin);
2662 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2663 		fsetfd(fdp, wfp, dfd);
2664 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL) {
2665 			spin_unlock(&fdp->fd_spin);
2666 			fdrop(xfp);
2667 		} else {
2668 			spin_unlock(&fdp->fd_spin);
2669 		}
2670 		error = 0;
2671 		break;
2672 	default:
2673 		break;
2674 	}
2675 	fdrop(wfp);
2676 	return (error);
2677 }
2678 
2679 /*
2680  * NOT MPSAFE - I think these refer to a common file descriptor table
2681  * and we need to spinlock that to link fdtol in.
2682  */
2683 struct filedesc_to_leader *
2684 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2685 			 struct proc *leader)
2686 {
2687 	struct filedesc_to_leader *fdtol;
2688 
2689 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2690 			M_FILEDESC_TO_LEADER, M_WAITOK | M_ZERO);
2691 	fdtol->fdl_refcount = 1;
2692 	fdtol->fdl_holdcount = 0;
2693 	fdtol->fdl_wakeup = 0;
2694 	fdtol->fdl_leader = leader;
2695 	if (old != NULL) {
2696 		fdtol->fdl_next = old->fdl_next;
2697 		fdtol->fdl_prev = old;
2698 		old->fdl_next = fdtol;
2699 		fdtol->fdl_next->fdl_prev = fdtol;
2700 	} else {
2701 		fdtol->fdl_next = fdtol;
2702 		fdtol->fdl_prev = fdtol;
2703 	}
2704 	return fdtol;
2705 }
2706 
2707 /*
2708  * Scan all file pointers in the system.  The callback is made with
2709  * the master list spinlock held exclusively.
2710  *
2711  * MPSAFE
2712  */
2713 void
2714 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2715 {
2716 	struct file *fp;
2717 	int res;
2718 
2719 	spin_lock(&filehead_spin);
2720 	LIST_FOREACH(fp, &filehead, f_list) {
2721 		res = callback(fp, data);
2722 		if (res < 0)
2723 			break;
2724 	}
2725 	spin_unlock(&filehead_spin);
2726 }
2727 
2728 /*
2729  * Get file structures.
2730  *
2731  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2732  */
2733 
2734 struct sysctl_kern_file_info {
2735 	int count;
2736 	int error;
2737 	struct sysctl_req *req;
2738 };
2739 
2740 static int sysctl_kern_file_callback(struct proc *p, void *data);
2741 
2742 static int
2743 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2744 {
2745 	struct sysctl_kern_file_info info;
2746 
2747 	/*
2748 	 * Note: because the number of file descriptors is calculated
2749 	 * in different ways for sizing vs returning the data,
2750 	 * there is information leakage from the first loop.  However,
2751 	 * it is of a similar order of magnitude to the leakage from
2752 	 * global system statistics such as kern.openfiles.
2753 	 *
2754 	 * When just doing a count, note that we cannot just count
2755 	 * the elements and add f_count via the filehead list because
2756 	 * threaded processes share their descriptor table and f_count might
2757 	 * still be '1' in that case.
2758 	 *
2759 	 * Since the SYSCTL op can block, we must hold the process to
2760 	 * prevent it being ripped out from under us either in the
2761 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2762 	 * process may be in varying states of disrepair.  If the process
2763 	 * is in SZOMB we may have caught it just as it is being removed
2764 	 * from the allproc list, we must skip it in that case to maintain
2765 	 * an unbroken chain through the allproc list.
2766 	 */
2767 	info.count = 0;
2768 	info.error = 0;
2769 	info.req = req;
2770 	allproc_scan(sysctl_kern_file_callback, &info);
2771 
2772 	/*
2773 	 * When just calculating the size, overestimate a bit to try to
2774 	 * prevent system activity from causing the buffer-fill call
2775 	 * to fail later on.
2776 	 */
2777 	if (req->oldptr == NULL) {
2778 		info.count = (info.count + 16) + (info.count / 10);
2779 		info.error = SYSCTL_OUT(req, NULL,
2780 					info.count * sizeof(struct kinfo_file));
2781 	}
2782 	return (info.error);
2783 }
2784 
2785 static int
2786 sysctl_kern_file_callback(struct proc *p, void *data)
2787 {
2788 	struct sysctl_kern_file_info *info = data;
2789 	struct kinfo_file kf;
2790 	struct filedesc *fdp;
2791 	struct file *fp;
2792 	uid_t uid;
2793 	int n;
2794 
2795 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2796 		return(0);
2797 	if (!PRISON_CHECK(info->req->td->td_ucred, p->p_ucred) != 0)
2798 		return(0);
2799 
2800 	/*
2801 	 * Softref the fdp to prevent it from being destroyed
2802 	 */
2803 	spin_lock(&p->p_spin);
2804 	if ((fdp = p->p_fd) == NULL) {
2805 		spin_unlock(&p->p_spin);
2806 		return(0);
2807 	}
2808 	atomic_add_int(&fdp->fd_softrefs, 1);
2809 	spin_unlock(&p->p_spin);
2810 
2811 	/*
2812 	 * The fdp's own spinlock prevents the contents from being
2813 	 * modified.
2814 	 */
2815 	spin_lock_shared(&fdp->fd_spin);
2816 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2817 		if ((fp = fdp->fd_files[n].fp) == NULL)
2818 			continue;
2819 		if (info->req->oldptr == NULL) {
2820 			++info->count;
2821 		} else {
2822 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2823 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2824 			spin_unlock_shared(&fdp->fd_spin);
2825 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2826 			spin_lock_shared(&fdp->fd_spin);
2827 			if (info->error)
2828 				break;
2829 		}
2830 	}
2831 	spin_unlock_shared(&fdp->fd_spin);
2832 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2833 	if (info->error)
2834 		return(-1);
2835 	return(0);
2836 }
2837 
2838 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2839     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2840 
2841 SYSCTL_INT(_kern, OID_AUTO, minfilesperproc, CTLFLAG_RW,
2842     &minfilesperproc, 0, "Minimum files allowed open per process");
2843 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2844     &maxfilesperproc, 0, "Maximum files allowed open per process");
2845 SYSCTL_INT(_kern, OID_AUTO, maxfilesperuser, CTLFLAG_RW,
2846     &maxfilesperuser, 0, "Maximum files allowed open per user");
2847 
2848 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2849     &maxfiles, 0, "Maximum number of files");
2850 
2851 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2852     &maxfilesrootres, 0, "Descriptors reserved for root use");
2853 
2854 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2855 	&nfiles, 0, "System-wide number of open files");
2856 
2857 static void
2858 fildesc_drvinit(void *unused)
2859 {
2860 	int fd;
2861 
2862 	for (fd = 0; fd < NUMFDESC; fd++) {
2863 		make_dev(&fildesc_ops, fd,
2864 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2865 	}
2866 
2867 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2868 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2869 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2870 }
2871 
2872 /*
2873  * MPSAFE
2874  */
2875 struct fileops badfileops = {
2876 	.fo_read = badfo_readwrite,
2877 	.fo_write = badfo_readwrite,
2878 	.fo_ioctl = badfo_ioctl,
2879 	.fo_kqfilter = badfo_kqfilter,
2880 	.fo_stat = badfo_stat,
2881 	.fo_close = badfo_close,
2882 	.fo_shutdown = badfo_shutdown
2883 };
2884 
2885 int
2886 badfo_readwrite(
2887 	struct file *fp,
2888 	struct uio *uio,
2889 	struct ucred *cred,
2890 	int flags
2891 ) {
2892 	return (EBADF);
2893 }
2894 
2895 int
2896 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2897 	    struct ucred *cred, struct sysmsg *msgv)
2898 {
2899 	return (EBADF);
2900 }
2901 
2902 /*
2903  * Must return an error to prevent registration, typically
2904  * due to a revoked descriptor (file_filtops assigned).
2905  */
2906 int
2907 badfo_kqfilter(struct file *fp, struct knote *kn)
2908 {
2909 	return (EOPNOTSUPP);
2910 }
2911 
2912 /*
2913  * MPSAFE
2914  */
2915 int
2916 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2917 {
2918 	return (EBADF);
2919 }
2920 
2921 /*
2922  * MPSAFE
2923  */
2924 int
2925 badfo_close(struct file *fp)
2926 {
2927 	return (EBADF);
2928 }
2929 
2930 /*
2931  * MPSAFE
2932  */
2933 int
2934 badfo_shutdown(struct file *fp, int how)
2935 {
2936 	return (EBADF);
2937 }
2938 
2939 /*
2940  * MPSAFE
2941  */
2942 int
2943 nofo_shutdown(struct file *fp, int how)
2944 {
2945 	return (EOPNOTSUPP);
2946 }
2947 
2948 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2949 					fildesc_drvinit,NULL)
2950