xref: /dragonfly/sys/kern/kern_event.c (revision 279dd846)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/malloc.h>
34 #include <sys/unistd.h>
35 #include <sys/file.h>
36 #include <sys/lock.h>
37 #include <sys/fcntl.h>
38 #include <sys/queue.h>
39 #include <sys/event.h>
40 #include <sys/eventvar.h>
41 #include <sys/protosw.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/sysproto.h>
47 #include <sys/thread.h>
48 #include <sys/uio.h>
49 #include <sys/signalvar.h>
50 #include <sys/filio.h>
51 #include <sys/ktr.h>
52 
53 #include <sys/thread2.h>
54 #include <sys/file2.h>
55 #include <sys/mplock2.h>
56 
57 #define EVENT_REGISTER	1
58 #define EVENT_PROCESS	2
59 
60 /*
61  * Global token for kqueue subsystem
62  */
63 #if 0
64 struct lwkt_token kq_token = LWKT_TOKEN_INITIALIZER(kq_token);
65 SYSCTL_LONG(_lwkt, OID_AUTO, kq_collisions,
66     CTLFLAG_RW, &kq_token.t_collisions, 0,
67     "Collision counter of kq_token");
68 #endif
69 
70 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
71 
72 struct kevent_copyin_args {
73 	struct kevent_args	*ka;
74 	int			pchanges;
75 };
76 
77 static int	kqueue_sleep(struct kqueue *kq, struct timespec *tsp);
78 static int	kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
79 		    struct knote *marker);
80 static int 	kqueue_read(struct file *fp, struct uio *uio,
81 		    struct ucred *cred, int flags);
82 static int	kqueue_write(struct file *fp, struct uio *uio,
83 		    struct ucred *cred, int flags);
84 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
85 		    struct ucred *cred, struct sysmsg *msg);
86 static int 	kqueue_kqfilter(struct file *fp, struct knote *kn);
87 static int 	kqueue_stat(struct file *fp, struct stat *st,
88 		    struct ucred *cred);
89 static int 	kqueue_close(struct file *fp);
90 static void	kqueue_wakeup(struct kqueue *kq);
91 static int	filter_attach(struct knote *kn);
92 static int	filter_event(struct knote *kn, long hint);
93 
94 /*
95  * MPSAFE
96  */
97 static struct fileops kqueueops = {
98 	.fo_read = kqueue_read,
99 	.fo_write = kqueue_write,
100 	.fo_ioctl = kqueue_ioctl,
101 	.fo_kqfilter = kqueue_kqfilter,
102 	.fo_stat = kqueue_stat,
103 	.fo_close = kqueue_close,
104 	.fo_shutdown = nofo_shutdown
105 };
106 
107 static void 	knote_attach(struct knote *kn);
108 static void 	knote_drop(struct knote *kn);
109 static void	knote_detach_and_drop(struct knote *kn);
110 static void 	knote_enqueue(struct knote *kn);
111 static void 	knote_dequeue(struct knote *kn);
112 static struct 	knote *knote_alloc(void);
113 static void 	knote_free(struct knote *kn);
114 
115 static void	filt_kqdetach(struct knote *kn);
116 static int	filt_kqueue(struct knote *kn, long hint);
117 static int	filt_procattach(struct knote *kn);
118 static void	filt_procdetach(struct knote *kn);
119 static int	filt_proc(struct knote *kn, long hint);
120 static int	filt_fileattach(struct knote *kn);
121 static void	filt_timerexpire(void *knx);
122 static int	filt_timerattach(struct knote *kn);
123 static void	filt_timerdetach(struct knote *kn);
124 static int	filt_timer(struct knote *kn, long hint);
125 static int	filt_userattach(struct knote *kn);
126 static void	filt_userdetach(struct knote *kn);
127 static int	filt_user(struct knote *kn, long hint);
128 static void	filt_usertouch(struct knote *kn, struct kevent *kev,
129 				u_long type);
130 
131 static struct filterops file_filtops =
132 	{ FILTEROP_ISFD, filt_fileattach, NULL, NULL };
133 static struct filterops kqread_filtops =
134 	{ FILTEROP_ISFD, NULL, filt_kqdetach, filt_kqueue };
135 static struct filterops proc_filtops =
136 	{ 0, filt_procattach, filt_procdetach, filt_proc };
137 static struct filterops timer_filtops =
138 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
139 static struct filterops user_filtops =
140 	{ 0, filt_userattach, filt_userdetach, filt_user };
141 
142 static int 		kq_ncallouts = 0;
143 static int 		kq_calloutmax = (4 * 1024);
144 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
145     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
146 static int		kq_checkloop = 1000000;
147 SYSCTL_INT(_kern, OID_AUTO, kq_checkloop, CTLFLAG_RW,
148     &kq_checkloop, 0, "Maximum number of callouts allocated for kqueue");
149 
150 #define KNOTE_ACTIVATE(kn) do { 					\
151 	kn->kn_status |= KN_ACTIVE;					\
152 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
153 		knote_enqueue(kn);					\
154 } while(0)
155 
156 #define	KN_HASHSIZE		64		/* XXX should be tunable */
157 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
158 
159 extern struct filterops aio_filtops;
160 extern struct filterops sig_filtops;
161 
162 /*
163  * Table for for all system-defined filters.
164  */
165 static struct filterops *sysfilt_ops[] = {
166 	&file_filtops,			/* EVFILT_READ */
167 	&file_filtops,			/* EVFILT_WRITE */
168 	&aio_filtops,			/* EVFILT_AIO */
169 	&file_filtops,			/* EVFILT_VNODE */
170 	&proc_filtops,			/* EVFILT_PROC */
171 	&sig_filtops,			/* EVFILT_SIGNAL */
172 	&timer_filtops,			/* EVFILT_TIMER */
173 	&file_filtops,			/* EVFILT_EXCEPT */
174 	&user_filtops,			/* EVFILT_USER */
175 };
176 
177 static int
178 filt_fileattach(struct knote *kn)
179 {
180 	return (fo_kqfilter(kn->kn_fp, kn));
181 }
182 
183 /*
184  * MPSAFE
185  */
186 static int
187 kqueue_kqfilter(struct file *fp, struct knote *kn)
188 {
189 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
190 
191 	if (kn->kn_filter != EVFILT_READ)
192 		return (EOPNOTSUPP);
193 
194 	kn->kn_fop = &kqread_filtops;
195 	knote_insert(&kq->kq_kqinfo.ki_note, kn);
196 	return (0);
197 }
198 
199 static void
200 filt_kqdetach(struct knote *kn)
201 {
202 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
203 
204 	knote_remove(&kq->kq_kqinfo.ki_note, kn);
205 }
206 
207 /*ARGSUSED*/
208 static int
209 filt_kqueue(struct knote *kn, long hint)
210 {
211 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
212 
213 	kn->kn_data = kq->kq_count;
214 	return (kn->kn_data > 0);
215 }
216 
217 static int
218 filt_procattach(struct knote *kn)
219 {
220 	struct proc *p;
221 	int immediate;
222 
223 	immediate = 0;
224 	p = pfind(kn->kn_id);
225 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
226 		p = zpfind(kn->kn_id);
227 		immediate = 1;
228 	}
229 	if (p == NULL) {
230 		return (ESRCH);
231 	}
232 	if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
233 		if (p)
234 			PRELE(p);
235 		return (EACCES);
236 	}
237 
238 	lwkt_gettoken(&p->p_token);
239 	kn->kn_ptr.p_proc = p;
240 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
241 
242 	/*
243 	 * internal flag indicating registration done by kernel
244 	 */
245 	if (kn->kn_flags & EV_FLAG1) {
246 		kn->kn_data = kn->kn_sdata;		/* ppid */
247 		kn->kn_fflags = NOTE_CHILD;
248 		kn->kn_flags &= ~EV_FLAG1;
249 	}
250 
251 	knote_insert(&p->p_klist, kn);
252 
253 	/*
254 	 * Immediately activate any exit notes if the target process is a
255 	 * zombie.  This is necessary to handle the case where the target
256 	 * process, e.g. a child, dies before the kevent is negistered.
257 	 */
258 	if (immediate && filt_proc(kn, NOTE_EXIT))
259 		KNOTE_ACTIVATE(kn);
260 	lwkt_reltoken(&p->p_token);
261 	PRELE(p);
262 
263 	return (0);
264 }
265 
266 /*
267  * The knote may be attached to a different process, which may exit,
268  * leaving nothing for the knote to be attached to.  So when the process
269  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
270  * it will be deleted when read out.  However, as part of the knote deletion,
271  * this routine is called, so a check is needed to avoid actually performing
272  * a detach, because the original process does not exist any more.
273  */
274 static void
275 filt_procdetach(struct knote *kn)
276 {
277 	struct proc *p;
278 
279 	if (kn->kn_status & KN_DETACHED)
280 		return;
281 	p = kn->kn_ptr.p_proc;
282 	knote_remove(&p->p_klist, kn);
283 }
284 
285 static int
286 filt_proc(struct knote *kn, long hint)
287 {
288 	u_int event;
289 
290 	/*
291 	 * mask off extra data
292 	 */
293 	event = (u_int)hint & NOTE_PCTRLMASK;
294 
295 	/*
296 	 * if the user is interested in this event, record it.
297 	 */
298 	if (kn->kn_sfflags & event)
299 		kn->kn_fflags |= event;
300 
301 	/*
302 	 * Process is gone, so flag the event as finished.  Detach the
303 	 * knote from the process now because the process will be poof,
304 	 * gone later on.
305 	 */
306 	if (event == NOTE_EXIT) {
307 		struct proc *p = kn->kn_ptr.p_proc;
308 		if ((kn->kn_status & KN_DETACHED) == 0) {
309 			PHOLD(p);
310 			knote_remove(&p->p_klist, kn);
311 			kn->kn_status |= KN_DETACHED;
312 			kn->kn_data = p->p_xstat;
313 			kn->kn_ptr.p_proc = NULL;
314 			PRELE(p);
315 		}
316 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
317 		return (1);
318 	}
319 
320 	/*
321 	 * process forked, and user wants to track the new process,
322 	 * so attach a new knote to it, and immediately report an
323 	 * event with the parent's pid.
324 	 */
325 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
326 		struct kevent kev;
327 		int error;
328 
329 		/*
330 		 * register knote with new process.
331 		 */
332 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
333 		kev.filter = kn->kn_filter;
334 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
335 		kev.fflags = kn->kn_sfflags;
336 		kev.data = kn->kn_id;			/* parent */
337 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
338 		error = kqueue_register(kn->kn_kq, &kev);
339 		if (error)
340 			kn->kn_fflags |= NOTE_TRACKERR;
341 	}
342 
343 	return (kn->kn_fflags != 0);
344 }
345 
346 /*
347  * The callout interlocks with callout_terminate() but can still
348  * race a deletion so if KN_DELETING is set we just don't touch
349  * the knote.
350  */
351 static void
352 filt_timerexpire(void *knx)
353 {
354 	struct lwkt_token *tok;
355 	struct knote *kn = knx;
356 	struct callout *calloutp;
357 	struct timeval tv;
358 	int tticks;
359 
360 	tok = lwkt_token_pool_lookup(kn->kn_kq);
361 	lwkt_gettoken(tok);
362 	if ((kn->kn_status & KN_DELETING) == 0) {
363 		kn->kn_data++;
364 		KNOTE_ACTIVATE(kn);
365 
366 		if ((kn->kn_flags & EV_ONESHOT) == 0) {
367 			tv.tv_sec = kn->kn_sdata / 1000;
368 			tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
369 			tticks = tvtohz_high(&tv);
370 			calloutp = (struct callout *)kn->kn_hook;
371 			callout_reset(calloutp, tticks, filt_timerexpire, kn);
372 		}
373 	}
374 	lwkt_reltoken(tok);
375 }
376 
377 /*
378  * data contains amount of time to sleep, in milliseconds
379  */
380 static int
381 filt_timerattach(struct knote *kn)
382 {
383 	struct callout *calloutp;
384 	struct timeval tv;
385 	int tticks;
386 
387 	if (kq_ncallouts >= kq_calloutmax) {
388 		kn->kn_hook = NULL;
389 		return (ENOMEM);
390 	}
391 	kq_ncallouts++;
392 
393 	tv.tv_sec = kn->kn_sdata / 1000;
394 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
395 	tticks = tvtohz_high(&tv);
396 
397 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
398 	calloutp = kmalloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
399 	callout_init(calloutp);
400 	kn->kn_hook = (caddr_t)calloutp;
401 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
402 
403 	return (0);
404 }
405 
406 /*
407  * This function is called with the knote flagged locked but it is
408  * still possible to race a callout event due to the callback blocking.
409  * We must call callout_terminate() instead of callout_stop() to deal
410  * with the race.
411  */
412 static void
413 filt_timerdetach(struct knote *kn)
414 {
415 	struct callout *calloutp;
416 
417 	calloutp = (struct callout *)kn->kn_hook;
418 	callout_terminate(calloutp);
419 	kfree(calloutp, M_KQUEUE);
420 	kq_ncallouts--;
421 }
422 
423 static int
424 filt_timer(struct knote *kn, long hint)
425 {
426 
427 	return (kn->kn_data != 0);
428 }
429 
430 /*
431  * EVFILT_USER
432  */
433 static int
434 filt_userattach(struct knote *kn)
435 {
436 	kn->kn_hook = NULL;
437 	if (kn->kn_fflags & NOTE_TRIGGER)
438 		kn->kn_ptr.hookid = 1;
439 	else
440 		kn->kn_ptr.hookid = 0;
441 	return 0;
442 }
443 
444 /*
445  * This function is called with the knote flagged locked but it is
446  * still possible to race a callout event due to the callback blocking.
447  * We must call callout_terminate() instead of callout_stop() to deal
448  * with the race.
449  */
450 static void
451 filt_userdetach(struct knote *kn)
452 {
453 	/* nothing to do */
454 }
455 
456 static int
457 filt_user(struct knote *kn, long hint)
458 {
459 	return (kn->kn_ptr.hookid);
460 }
461 
462 static void
463 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
464 {
465 	u_int ffctrl;
466 
467 	switch (type) {
468 	case EVENT_REGISTER:
469 		if (kev->fflags & NOTE_TRIGGER)
470 			kn->kn_ptr.hookid = 1;
471 
472 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
473 		kev->fflags &= NOTE_FFLAGSMASK;
474 		switch (ffctrl) {
475 		case NOTE_FFNOP:
476 			break;
477 
478 		case NOTE_FFAND:
479 			kn->kn_sfflags &= kev->fflags;
480 			break;
481 
482 		case NOTE_FFOR:
483 			kn->kn_sfflags |= kev->fflags;
484 			break;
485 
486 		case NOTE_FFCOPY:
487 			kn->kn_sfflags = kev->fflags;
488 			break;
489 
490 		default:
491 			/* XXX Return error? */
492 			break;
493 		}
494 		kn->kn_sdata = kev->data;
495 
496 		/*
497 		 * This is not the correct use of EV_CLEAR in an event
498 		 * modification, it should have been passed as a NOTE instead.
499 		 * But we need to maintain compatibility with Apple & FreeBSD.
500 		 *
501 		 * Note however that EV_CLEAR can still be used when doing
502 		 * the initial registration of the event and works as expected
503 		 * (clears the event on reception).
504 		 */
505 		if (kev->flags & EV_CLEAR) {
506 			kn->kn_ptr.hookid = 0;
507 			kn->kn_data = 0;
508 			kn->kn_fflags = 0;
509 		}
510 		break;
511 
512         case EVENT_PROCESS:
513 		*kev = kn->kn_kevent;
514 		kev->fflags = kn->kn_sfflags;
515 		kev->data = kn->kn_sdata;
516 		if (kn->kn_flags & EV_CLEAR) {
517 			kn->kn_ptr.hookid = 0;
518 			/* kn_data, kn_fflags handled by parent */
519 		}
520 		break;
521 
522 	default:
523 		panic("filt_usertouch() - invalid type (%ld)", type);
524 		break;
525 	}
526 }
527 
528 /*
529  * Acquire a knote, return non-zero on success, 0 on failure.
530  *
531  * If we cannot acquire the knote we sleep and return 0.  The knote
532  * may be stale on return in this case and the caller must restart
533  * whatever loop they are in.
534  *
535  * Related kq token must be held.
536  */
537 static __inline
538 int
539 knote_acquire(struct knote *kn)
540 {
541 	if (kn->kn_status & KN_PROCESSING) {
542 		kn->kn_status |= KN_WAITING | KN_REPROCESS;
543 		tsleep(kn, 0, "kqepts", hz);
544 		/* knote may be stale now */
545 		return(0);
546 	}
547 	kn->kn_status |= KN_PROCESSING;
548 	return(1);
549 }
550 
551 /*
552  * Release an acquired knote, clearing KN_PROCESSING and handling any
553  * KN_REPROCESS events.
554  *
555  * Caller must be holding the related kq token
556  *
557  * Non-zero is returned if the knote is destroyed or detached.
558  */
559 static __inline
560 int
561 knote_release(struct knote *kn)
562 {
563 	while (kn->kn_status & KN_REPROCESS) {
564 		kn->kn_status &= ~KN_REPROCESS;
565 		if (kn->kn_status & KN_WAITING) {
566 			kn->kn_status &= ~KN_WAITING;
567 			wakeup(kn);
568 		}
569 		if (kn->kn_status & KN_DELETING) {
570 			knote_detach_and_drop(kn);
571 			return(1);
572 			/* NOT REACHED */
573 		}
574 		if (filter_event(kn, 0))
575 			KNOTE_ACTIVATE(kn);
576 	}
577 	if (kn->kn_status & KN_DETACHED) {
578 		kn->kn_status &= ~KN_PROCESSING;
579 		return(1);
580 	} else {
581 		kn->kn_status &= ~KN_PROCESSING;
582 		return(0);
583 	}
584 }
585 
586 /*
587  * Initialize a kqueue.
588  *
589  * NOTE: The lwp/proc code initializes a kqueue for select/poll ops.
590  *
591  * MPSAFE
592  */
593 void
594 kqueue_init(struct kqueue *kq, struct filedesc *fdp)
595 {
596 	TAILQ_INIT(&kq->kq_knpend);
597 	TAILQ_INIT(&kq->kq_knlist);
598 	kq->kq_count = 0;
599 	kq->kq_fdp = fdp;
600 	SLIST_INIT(&kq->kq_kqinfo.ki_note);
601 }
602 
603 /*
604  * Terminate a kqueue.  Freeing the actual kq itself is left up to the
605  * caller (it might be embedded in a lwp so we don't do it here).
606  *
607  * The kq's knlist must be completely eradicated so block on any
608  * processing races.
609  */
610 void
611 kqueue_terminate(struct kqueue *kq)
612 {
613 	struct lwkt_token *tok;
614 	struct knote *kn;
615 
616 	tok = lwkt_token_pool_lookup(kq);
617 	lwkt_gettoken(tok);
618 	while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) {
619 		if (knote_acquire(kn))
620 			knote_detach_and_drop(kn);
621 	}
622 	if (kq->kq_knhash) {
623 		hashdestroy(kq->kq_knhash, M_KQUEUE, kq->kq_knhashmask);
624 		kq->kq_knhash = NULL;
625 		kq->kq_knhashmask = 0;
626 	}
627 	lwkt_reltoken(tok);
628 }
629 
630 /*
631  * MPSAFE
632  */
633 int
634 sys_kqueue(struct kqueue_args *uap)
635 {
636 	struct thread *td = curthread;
637 	struct kqueue *kq;
638 	struct file *fp;
639 	int fd, error;
640 
641 	error = falloc(td->td_lwp, &fp, &fd);
642 	if (error)
643 		return (error);
644 	fp->f_flag = FREAD | FWRITE;
645 	fp->f_type = DTYPE_KQUEUE;
646 	fp->f_ops = &kqueueops;
647 
648 	kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
649 	kqueue_init(kq, td->td_proc->p_fd);
650 	fp->f_data = kq;
651 
652 	fsetfd(kq->kq_fdp, fp, fd);
653 	uap->sysmsg_result = fd;
654 	fdrop(fp);
655 	return (error);
656 }
657 
658 /*
659  * Copy 'count' items into the destination list pointed to by uap->eventlist.
660  */
661 static int
662 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res)
663 {
664 	struct kevent_copyin_args *kap;
665 	int error;
666 
667 	kap = (struct kevent_copyin_args *)arg;
668 
669 	error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp));
670 	if (error == 0) {
671 		kap->ka->eventlist += count;
672 		*res += count;
673 	} else {
674 		*res = -1;
675 	}
676 
677 	return (error);
678 }
679 
680 /*
681  * Copy at most 'max' items from the list pointed to by kap->changelist,
682  * return number of items in 'events'.
683  */
684 static int
685 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events)
686 {
687 	struct kevent_copyin_args *kap;
688 	int error, count;
689 
690 	kap = (struct kevent_copyin_args *)arg;
691 
692 	count = min(kap->ka->nchanges - kap->pchanges, max);
693 	error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp);
694 	if (error == 0) {
695 		kap->ka->changelist += count;
696 		kap->pchanges += count;
697 		*events = count;
698 	}
699 
700 	return (error);
701 }
702 
703 /*
704  * MPSAFE
705  */
706 int
707 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap,
708 	    k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn,
709 	    struct timespec *tsp_in)
710 {
711 	struct kevent *kevp;
712 	struct timespec *tsp;
713 	int i, n, total, error, nerrors = 0;
714 	int lres;
715 	int limit = kq_checkloop;
716 	struct kevent kev[KQ_NEVENTS];
717 	struct knote marker;
718 	struct lwkt_token *tok;
719 
720 	if (tsp_in == NULL || tsp_in->tv_sec || tsp_in->tv_nsec)
721 		atomic_set_int(&curthread->td_mpflags, TDF_MP_BATCH_DEMARC);
722 
723 
724 	tsp = tsp_in;
725 	*res = 0;
726 
727 	tok = lwkt_token_pool_lookup(kq);
728 	lwkt_gettoken(tok);
729 	for ( ;; ) {
730 		n = 0;
731 		error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n);
732 		if (error)
733 			goto done;
734 		if (n == 0)
735 			break;
736 		for (i = 0; i < n; i++) {
737 			kevp = &kev[i];
738 			kevp->flags &= ~EV_SYSFLAGS;
739 			error = kqueue_register(kq, kevp);
740 
741 			/*
742 			 * If a registration returns an error we
743 			 * immediately post the error.  The kevent()
744 			 * call itself will fail with the error if
745 			 * no space is available for posting.
746 			 *
747 			 * Such errors normally bypass the timeout/blocking
748 			 * code.  However, if the copyoutfn function refuses
749 			 * to post the error (see sys_poll()), then we
750 			 * ignore it too.
751 			 */
752 			if (error) {
753 				kevp->flags = EV_ERROR;
754 				kevp->data = error;
755 				lres = *res;
756 				kevent_copyoutfn(uap, kevp, 1, res);
757 				if (*res < 0) {
758 					goto done;
759 				} else if (lres != *res) {
760 					nevents--;
761 					nerrors++;
762 				}
763 			}
764 		}
765 	}
766 	if (nerrors) {
767 		error = 0;
768 		goto done;
769 	}
770 
771 	/*
772 	 * Acquire/wait for events - setup timeout
773 	 */
774 	if (tsp != NULL) {
775 		struct timespec ats;
776 
777 		if (tsp->tv_sec || tsp->tv_nsec) {
778 			getnanouptime(&ats);
779 			timespecadd(tsp, &ats);		/* tsp = target time */
780 		}
781 	}
782 
783 	/*
784 	 * Loop as required.
785 	 *
786 	 * Collect as many events as we can. Sleeping on successive
787 	 * loops is disabled if copyoutfn has incremented (*res).
788 	 *
789 	 * The loop stops if an error occurs, all events have been
790 	 * scanned (the marker has been reached), or fewer than the
791 	 * maximum number of events is found.
792 	 *
793 	 * The copyoutfn function does not have to increment (*res) in
794 	 * order for the loop to continue.
795 	 *
796 	 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents.
797 	 */
798 	total = 0;
799 	error = 0;
800 	marker.kn_filter = EVFILT_MARKER;
801 	marker.kn_status = KN_PROCESSING;
802 	TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
803 	while ((n = nevents - total) > 0) {
804 		if (n > KQ_NEVENTS)
805 			n = KQ_NEVENTS;
806 
807 		/*
808 		 * If no events are pending sleep until timeout (if any)
809 		 * or an event occurs.
810 		 *
811 		 * After the sleep completes the marker is moved to the
812 		 * end of the list, making any received events available
813 		 * to our scan.
814 		 */
815 		if (kq->kq_count == 0 && *res == 0) {
816 			error = kqueue_sleep(kq, tsp);
817 			if (error)
818 				break;
819 
820 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
821 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
822 		}
823 
824 		/*
825 		 * Process all received events
826 		 * Account for all non-spurious events in our total
827 		 */
828 		i = kqueue_scan(kq, kev, n, &marker);
829 		if (i) {
830 			lres = *res;
831 			error = kevent_copyoutfn(uap, kev, i, res);
832 			total += *res - lres;
833 			if (error)
834 				break;
835 		}
836 		if (limit && --limit == 0)
837 			panic("kqueue: checkloop failed i=%d", i);
838 
839 		/*
840 		 * Normally when fewer events are returned than requested
841 		 * we can stop.  However, if only spurious events were
842 		 * collected the copyout will not bump (*res) and we have
843 		 * to continue.
844 		 */
845 		if (i < n && *res)
846 			break;
847 
848 		/*
849 		 * Deal with an edge case where spurious events can cause
850 		 * a loop to occur without moving the marker.  This can
851 		 * prevent kqueue_scan() from picking up new events which
852 		 * race us.  We must be sure to move the marker for this
853 		 * case.
854 		 *
855 		 * NOTE: We do not want to move the marker if events
856 		 *	 were scanned because normal kqueue operations
857 		 *	 may reactivate events.  Moving the marker in
858 		 *	 that case could result in duplicates for the
859 		 *	 same event.
860 		 */
861 		if (i == 0) {
862 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
863 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
864 		}
865 	}
866 	TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
867 
868 	/* Timeouts do not return EWOULDBLOCK. */
869 	if (error == EWOULDBLOCK)
870 		error = 0;
871 
872 done:
873 	lwkt_reltoken(tok);
874 	return (error);
875 }
876 
877 /*
878  * MPALMOSTSAFE
879  */
880 int
881 sys_kevent(struct kevent_args *uap)
882 {
883 	struct thread *td = curthread;
884 	struct proc *p = td->td_proc;
885 	struct timespec ts, *tsp;
886 	struct kqueue *kq;
887 	struct file *fp = NULL;
888 	struct kevent_copyin_args *kap, ka;
889 	int error;
890 
891 	if (uap->timeout) {
892 		error = copyin(uap->timeout, &ts, sizeof(ts));
893 		if (error)
894 			return (error);
895 		tsp = &ts;
896 	} else {
897 		tsp = NULL;
898 	}
899 	fp = holdfp(p->p_fd, uap->fd, -1);
900 	if (fp == NULL)
901 		return (EBADF);
902 	if (fp->f_type != DTYPE_KQUEUE) {
903 		fdrop(fp);
904 		return (EBADF);
905 	}
906 
907 	kq = (struct kqueue *)fp->f_data;
908 
909 	kap = &ka;
910 	kap->ka = uap;
911 	kap->pchanges = 0;
912 
913 	error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap,
914 			    kevent_copyin, kevent_copyout, tsp);
915 
916 	fdrop(fp);
917 
918 	return (error);
919 }
920 
921 /*
922  * Caller must be holding the kq token
923  */
924 int
925 kqueue_register(struct kqueue *kq, struct kevent *kev)
926 {
927 	struct lwkt_token *tok;
928 	struct filedesc *fdp = kq->kq_fdp;
929 	struct filterops *fops;
930 	struct file *fp = NULL;
931 	struct knote *kn = NULL;
932 	int error = 0;
933 
934 	if (kev->filter < 0) {
935 		if (kev->filter + EVFILT_SYSCOUNT < 0)
936 			return (EINVAL);
937 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
938 	} else {
939 		/*
940 		 * XXX
941 		 * filter attach routine is responsible for insuring that
942 		 * the identifier can be attached to it.
943 		 */
944 		return (EINVAL);
945 	}
946 
947 	tok = lwkt_token_pool_lookup(kq);
948 	lwkt_gettoken(tok);
949 	if (fops->f_flags & FILTEROP_ISFD) {
950 		/* validate descriptor */
951 		fp = holdfp(fdp, kev->ident, -1);
952 		if (fp == NULL) {
953 			lwkt_reltoken(tok);
954 			return (EBADF);
955 		}
956 		lwkt_getpooltoken(&fp->f_klist);
957 again1:
958 		SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
959 			if (kn->kn_kq == kq &&
960 			    kn->kn_filter == kev->filter &&
961 			    kn->kn_id == kev->ident) {
962 				if (knote_acquire(kn) == 0)
963 					goto again1;
964 				break;
965 			}
966 		}
967 		lwkt_relpooltoken(&fp->f_klist);
968 	} else {
969 		if (kq->kq_knhashmask) {
970 			struct klist *list;
971 
972 			list = &kq->kq_knhash[
973 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
974 			lwkt_getpooltoken(list);
975 again2:
976 			SLIST_FOREACH(kn, list, kn_link) {
977 				if (kn->kn_id == kev->ident &&
978 				    kn->kn_filter == kev->filter) {
979 					if (knote_acquire(kn) == 0)
980 						goto again2;
981 					break;
982 				}
983 			}
984 			lwkt_relpooltoken(list);
985 		}
986 	}
987 
988 	/*
989 	 * NOTE: At this point if kn is non-NULL we will have acquired
990 	 *	 it and set KN_PROCESSING.
991 	 */
992 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
993 		error = ENOENT;
994 		goto done;
995 	}
996 
997 	/*
998 	 * kn now contains the matching knote, or NULL if no match
999 	 */
1000 	if (kev->flags & EV_ADD) {
1001 		if (kn == NULL) {
1002 			kn = knote_alloc();
1003 			if (kn == NULL) {
1004 				error = ENOMEM;
1005 				goto done;
1006 			}
1007 			kn->kn_fp = fp;
1008 			kn->kn_kq = kq;
1009 			kn->kn_fop = fops;
1010 
1011 			/*
1012 			 * apply reference count to knote structure, and
1013 			 * do not release it at the end of this routine.
1014 			 */
1015 			fp = NULL;
1016 
1017 			kn->kn_sfflags = kev->fflags;
1018 			kn->kn_sdata = kev->data;
1019 			kev->fflags = 0;
1020 			kev->data = 0;
1021 			kn->kn_kevent = *kev;
1022 
1023 			/*
1024 			 * KN_PROCESSING prevents the knote from getting
1025 			 * ripped out from under us while we are trying
1026 			 * to attach it, in case the attach blocks.
1027 			 */
1028 			kn->kn_status = KN_PROCESSING;
1029 			knote_attach(kn);
1030 			if ((error = filter_attach(kn)) != 0) {
1031 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1032 				knote_drop(kn);
1033 				goto done;
1034 			}
1035 
1036 			/*
1037 			 * Interlock against close races which either tried
1038 			 * to remove our knote while we were blocked or missed
1039 			 * it entirely prior to our attachment.  We do not
1040 			 * want to end up with a knote on a closed descriptor.
1041 			 */
1042 			if ((fops->f_flags & FILTEROP_ISFD) &&
1043 			    checkfdclosed(fdp, kev->ident, kn->kn_fp)) {
1044 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1045 			}
1046 		} else {
1047 			/*
1048 			 * The user may change some filter values after the
1049 			 * initial EV_ADD, but doing so will not reset any
1050 			 * filter which have already been triggered.
1051 			 */
1052 			KKASSERT(kn->kn_status & KN_PROCESSING);
1053 			if (fops == &user_filtops) {
1054 				filt_usertouch(kn, kev, EVENT_REGISTER);
1055 			} else {
1056 				kn->kn_sfflags = kev->fflags;
1057 				kn->kn_sdata = kev->data;
1058 				kn->kn_kevent.udata = kev->udata;
1059 			}
1060 		}
1061 
1062 		/*
1063 		 * Execute the filter event to immediately activate the
1064 		 * knote if necessary.  If reprocessing events are pending
1065 		 * due to blocking above we do not run the filter here
1066 		 * but instead let knote_release() do it.  Otherwise we
1067 		 * might run the filter on a deleted event.
1068 		 */
1069 		if ((kn->kn_status & KN_REPROCESS) == 0) {
1070 			if (filter_event(kn, 0))
1071 				KNOTE_ACTIVATE(kn);
1072 		}
1073 	} else if (kev->flags & EV_DELETE) {
1074 		/*
1075 		 * Delete the existing knote
1076 		 */
1077 		knote_detach_and_drop(kn);
1078 		goto done;
1079 	} else {
1080 		/*
1081 		 * Modify an existing event.
1082 		 *
1083 		 * The user may change some filter values after the
1084 		 * initial EV_ADD, but doing so will not reset any
1085 		 * filter which have already been triggered.
1086 		 */
1087 		KKASSERT(kn->kn_status & KN_PROCESSING);
1088 		if (fops == &user_filtops) {
1089 			filt_usertouch(kn, kev, EVENT_REGISTER);
1090 		} else {
1091 			kn->kn_sfflags = kev->fflags;
1092 			kn->kn_sdata = kev->data;
1093 			kn->kn_kevent.udata = kev->udata;
1094 		}
1095 
1096 		/*
1097 		 * Execute the filter event to immediately activate the
1098 		 * knote if necessary.  If reprocessing events are pending
1099 		 * due to blocking above we do not run the filter here
1100 		 * but instead let knote_release() do it.  Otherwise we
1101 		 * might run the filter on a deleted event.
1102 		 */
1103 		if ((kn->kn_status & KN_REPROCESS) == 0) {
1104 			if (filter_event(kn, 0))
1105 				KNOTE_ACTIVATE(kn);
1106 		}
1107 	}
1108 
1109 	/*
1110 	 * Disablement does not deactivate a knote here.
1111 	 */
1112 	if ((kev->flags & EV_DISABLE) &&
1113 	    ((kn->kn_status & KN_DISABLED) == 0)) {
1114 		kn->kn_status |= KN_DISABLED;
1115 	}
1116 
1117 	/*
1118 	 * Re-enablement may have to immediately enqueue an active knote.
1119 	 */
1120 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
1121 		kn->kn_status &= ~KN_DISABLED;
1122 		if ((kn->kn_status & KN_ACTIVE) &&
1123 		    ((kn->kn_status & KN_QUEUED) == 0)) {
1124 			knote_enqueue(kn);
1125 		}
1126 	}
1127 
1128 	/*
1129 	 * Handle any required reprocessing
1130 	 */
1131 	knote_release(kn);
1132 	/* kn may be invalid now */
1133 
1134 done:
1135 	lwkt_reltoken(tok);
1136 	if (fp != NULL)
1137 		fdrop(fp);
1138 	return (error);
1139 }
1140 
1141 /*
1142  * Block as necessary until the target time is reached.
1143  * If tsp is NULL we block indefinitely.  If tsp->ts_secs/nsecs are both
1144  * 0 we do not block at all.
1145  *
1146  * Caller must be holding the kq token.
1147  */
1148 static int
1149 kqueue_sleep(struct kqueue *kq, struct timespec *tsp)
1150 {
1151 	int error = 0;
1152 
1153 	if (tsp == NULL) {
1154 		kq->kq_state |= KQ_SLEEP;
1155 		error = tsleep(kq, PCATCH, "kqread", 0);
1156 	} else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
1157 		error = EWOULDBLOCK;
1158 	} else {
1159 		struct timespec ats;
1160 		struct timespec atx = *tsp;
1161 		int timeout;
1162 
1163 		getnanouptime(&ats);
1164 		timespecsub(&atx, &ats);
1165 		if (ats.tv_sec < 0) {
1166 			error = EWOULDBLOCK;
1167 		} else {
1168 			timeout = atx.tv_sec > 24 * 60 * 60 ?
1169 				24 * 60 * 60 * hz : tstohz_high(&atx);
1170 			kq->kq_state |= KQ_SLEEP;
1171 			error = tsleep(kq, PCATCH, "kqread", timeout);
1172 		}
1173 	}
1174 
1175 	/* don't restart after signals... */
1176 	if (error == ERESTART)
1177 		return (EINTR);
1178 
1179 	return (error);
1180 }
1181 
1182 /*
1183  * Scan the kqueue, return the number of active events placed in kevp up
1184  * to count.
1185  *
1186  * Continuous mode events may get recycled, do not continue scanning past
1187  * marker unless no events have been collected.
1188  *
1189  * Caller must be holding the kq token
1190  */
1191 static int
1192 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
1193             struct knote *marker)
1194 {
1195         struct knote *kn, local_marker;
1196         int total;
1197 
1198         total = 0;
1199 	local_marker.kn_filter = EVFILT_MARKER;
1200 	local_marker.kn_status = KN_PROCESSING;
1201 
1202 	/*
1203 	 * Collect events.
1204 	 */
1205 	TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe);
1206 	while (count) {
1207 		kn = TAILQ_NEXT(&local_marker, kn_tqe);
1208 		if (kn->kn_filter == EVFILT_MARKER) {
1209 			/* Marker reached, we are done */
1210 			if (kn == marker)
1211 				break;
1212 
1213 			/* Move local marker past some other threads marker */
1214 			kn = TAILQ_NEXT(kn, kn_tqe);
1215 			TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1216 			TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe);
1217 			continue;
1218 		}
1219 
1220 		/*
1221 		 * We can't skip a knote undergoing processing, otherwise
1222 		 * we risk not returning it when the user process expects
1223 		 * it should be returned.  Sleep and retry.
1224 		 */
1225 		if (knote_acquire(kn) == 0)
1226 			continue;
1227 
1228 		/*
1229 		 * Remove the event for processing.
1230 		 *
1231 		 * WARNING!  We must leave KN_QUEUED set to prevent the
1232 		 *	     event from being KNOTE_ACTIVATE()d while
1233 		 *	     the queue state is in limbo, in case we
1234 		 *	     block.
1235 		 *
1236 		 * WARNING!  We must set KN_PROCESSING to avoid races
1237 		 *	     against deletion or another thread's
1238 		 *	     processing.
1239 		 */
1240 		TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1241 		kq->kq_count--;
1242 
1243 		/*
1244 		 * We have to deal with an extremely important race against
1245 		 * file descriptor close()s here.  The file descriptor can
1246 		 * disappear MPSAFE, and there is a small window of
1247 		 * opportunity between that and the call to knote_fdclose().
1248 		 *
1249 		 * If we hit that window here while doselect or dopoll is
1250 		 * trying to delete a spurious event they will not be able
1251 		 * to match up the event against a knote and will go haywire.
1252 		 */
1253 		if ((kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1254 		    checkfdclosed(kq->kq_fdp, kn->kn_kevent.ident, kn->kn_fp)) {
1255 			kn->kn_status |= KN_DELETING | KN_REPROCESS;
1256 		}
1257 
1258 		if (kn->kn_status & KN_DISABLED) {
1259 			/*
1260 			 * If disabled we ensure the event is not queued
1261 			 * but leave its active bit set.  On re-enablement
1262 			 * the event may be immediately triggered.
1263 			 */
1264 			kn->kn_status &= ~KN_QUEUED;
1265 		} else if ((kn->kn_flags & EV_ONESHOT) == 0 &&
1266 			   (kn->kn_status & KN_DELETING) == 0 &&
1267 			   filter_event(kn, 0) == 0) {
1268 			/*
1269 			 * If not running in one-shot mode and the event
1270 			 * is no longer present we ensure it is removed
1271 			 * from the queue and ignore it.
1272 			 */
1273 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1274 		} else {
1275 			/*
1276 			 * Post the event
1277 			 */
1278 			if (kn->kn_fop == &user_filtops)
1279 				filt_usertouch(kn, kevp, EVENT_PROCESS);
1280 			else
1281 				*kevp = kn->kn_kevent;
1282 			++kevp;
1283 			++total;
1284 			--count;
1285 
1286 			if (kn->kn_flags & EV_ONESHOT) {
1287 				kn->kn_status &= ~KN_QUEUED;
1288 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1289 			} else {
1290 				if (kn->kn_flags & EV_CLEAR) {
1291 					kn->kn_data = 0;
1292 					kn->kn_fflags = 0;
1293 					kn->kn_status &= ~(KN_QUEUED |
1294 							   KN_ACTIVE);
1295 				} else {
1296 					TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1297 					kq->kq_count++;
1298 				}
1299 			}
1300 		}
1301 
1302 		/*
1303 		 * Handle any post-processing states
1304 		 */
1305 		knote_release(kn);
1306 	}
1307 	TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1308 
1309 	return (total);
1310 }
1311 
1312 /*
1313  * XXX
1314  * This could be expanded to call kqueue_scan, if desired.
1315  *
1316  * MPSAFE
1317  */
1318 static int
1319 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1320 {
1321 	return (ENXIO);
1322 }
1323 
1324 /*
1325  * MPSAFE
1326  */
1327 static int
1328 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1329 {
1330 	return (ENXIO);
1331 }
1332 
1333 /*
1334  * MPALMOSTSAFE
1335  */
1336 static int
1337 kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
1338 	     struct ucred *cred, struct sysmsg *msg)
1339 {
1340 	struct lwkt_token *tok;
1341 	struct kqueue *kq;
1342 	int error;
1343 
1344 	kq = (struct kqueue *)fp->f_data;
1345 	tok = lwkt_token_pool_lookup(kq);
1346 	lwkt_gettoken(tok);
1347 
1348 	switch(com) {
1349 	case FIOASYNC:
1350 		if (*(int *)data)
1351 			kq->kq_state |= KQ_ASYNC;
1352 		else
1353 			kq->kq_state &= ~KQ_ASYNC;
1354 		error = 0;
1355 		break;
1356 	case FIOSETOWN:
1357 		error = fsetown(*(int *)data, &kq->kq_sigio);
1358 		break;
1359 	default:
1360 		error = ENOTTY;
1361 		break;
1362 	}
1363 	lwkt_reltoken(tok);
1364 	return (error);
1365 }
1366 
1367 /*
1368  * MPSAFE
1369  */
1370 static int
1371 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred)
1372 {
1373 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1374 
1375 	bzero((void *)st, sizeof(*st));
1376 	st->st_size = kq->kq_count;
1377 	st->st_blksize = sizeof(struct kevent);
1378 	st->st_mode = S_IFIFO;
1379 	return (0);
1380 }
1381 
1382 /*
1383  * MPSAFE
1384  */
1385 static int
1386 kqueue_close(struct file *fp)
1387 {
1388 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1389 
1390 	kqueue_terminate(kq);
1391 
1392 	fp->f_data = NULL;
1393 	funsetown(&kq->kq_sigio);
1394 
1395 	kfree(kq, M_KQUEUE);
1396 	return (0);
1397 }
1398 
1399 static void
1400 kqueue_wakeup(struct kqueue *kq)
1401 {
1402 	if (kq->kq_state & KQ_SLEEP) {
1403 		kq->kq_state &= ~KQ_SLEEP;
1404 		wakeup(kq);
1405 	}
1406 	KNOTE(&kq->kq_kqinfo.ki_note, 0);
1407 }
1408 
1409 /*
1410  * Calls filterops f_attach function, acquiring mplock if filter is not
1411  * marked as FILTEROP_MPSAFE.
1412  *
1413  * Caller must be holding the related kq token
1414  */
1415 static int
1416 filter_attach(struct knote *kn)
1417 {
1418 	int ret;
1419 
1420 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1421 		ret = kn->kn_fop->f_attach(kn);
1422 	} else {
1423 		get_mplock();
1424 		ret = kn->kn_fop->f_attach(kn);
1425 		rel_mplock();
1426 	}
1427 	return (ret);
1428 }
1429 
1430 /*
1431  * Detach the knote and drop it, destroying the knote.
1432  *
1433  * Calls filterops f_detach function, acquiring mplock if filter is not
1434  * marked as FILTEROP_MPSAFE.
1435  *
1436  * Caller must be holding the related kq token
1437  */
1438 static void
1439 knote_detach_and_drop(struct knote *kn)
1440 {
1441 	kn->kn_status |= KN_DELETING | KN_REPROCESS;
1442 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1443 		kn->kn_fop->f_detach(kn);
1444 	} else {
1445 		get_mplock();
1446 		kn->kn_fop->f_detach(kn);
1447 		rel_mplock();
1448 	}
1449 	knote_drop(kn);
1450 }
1451 
1452 /*
1453  * Calls filterops f_event function, acquiring mplock if filter is not
1454  * marked as FILTEROP_MPSAFE.
1455  *
1456  * If the knote is in the middle of being created or deleted we cannot
1457  * safely call the filter op.
1458  *
1459  * Caller must be holding the related kq token
1460  */
1461 static int
1462 filter_event(struct knote *kn, long hint)
1463 {
1464 	int ret;
1465 
1466 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1467 		ret = kn->kn_fop->f_event(kn, hint);
1468 	} else {
1469 		get_mplock();
1470 		ret = kn->kn_fop->f_event(kn, hint);
1471 		rel_mplock();
1472 	}
1473 	return (ret);
1474 }
1475 
1476 /*
1477  * Walk down a list of knotes, activating them if their event has triggered.
1478  *
1479  * If we encounter any knotes which are undergoing processing we just mark
1480  * them for reprocessing and do not try to [re]activate the knote.  However,
1481  * if a hint is being passed we have to wait and that makes things a bit
1482  * sticky.
1483  */
1484 void
1485 knote(struct klist *list, long hint)
1486 {
1487 	struct kqueue *kq;
1488 	struct knote *kn;
1489 	struct knote *kntmp;
1490 
1491 	lwkt_getpooltoken(list);
1492 restart:
1493 	SLIST_FOREACH(kn, list, kn_next) {
1494 		kq = kn->kn_kq;
1495 		lwkt_getpooltoken(kq);
1496 
1497 		/* temporary verification hack */
1498 		SLIST_FOREACH(kntmp, list, kn_next) {
1499 			if (kn == kntmp)
1500 				break;
1501 		}
1502 		if (kn != kntmp || kn->kn_kq != kq) {
1503 			lwkt_relpooltoken(kq);
1504 			goto restart;
1505 		}
1506 
1507 		if (kn->kn_status & KN_PROCESSING) {
1508 			/*
1509 			 * Someone else is processing the knote, ask the
1510 			 * other thread to reprocess it and don't mess
1511 			 * with it otherwise.
1512 			 */
1513 			if (hint == 0) {
1514 				kn->kn_status |= KN_REPROCESS;
1515 				lwkt_relpooltoken(kq);
1516 				continue;
1517 			}
1518 
1519 			/*
1520 			 * If the hint is non-zero we have to wait or risk
1521 			 * losing the state the caller is trying to update.
1522 			 *
1523 			 * XXX This is a real problem, certain process
1524 			 *     and signal filters will bump kn_data for
1525 			 *     already-processed notes more than once if
1526 			 *     we restart the list scan.  FIXME.
1527 			 */
1528 			kn->kn_status |= KN_WAITING | KN_REPROCESS;
1529 			tsleep(kn, 0, "knotec", hz);
1530 			lwkt_relpooltoken(kq);
1531 			goto restart;
1532 		}
1533 
1534 		/*
1535 		 * Become the reprocessing master ourselves.
1536 		 *
1537 		 * If hint is non-zer running the event is mandatory
1538 		 * when not deleting so do it whether reprocessing is
1539 		 * set or not.
1540 		 */
1541 		kn->kn_status |= KN_PROCESSING;
1542 		if ((kn->kn_status & KN_DELETING) == 0) {
1543 			if (filter_event(kn, hint))
1544 				KNOTE_ACTIVATE(kn);
1545 		}
1546 		if (knote_release(kn)) {
1547 			lwkt_relpooltoken(kq);
1548 			goto restart;
1549 		}
1550 		lwkt_relpooltoken(kq);
1551 	}
1552 	lwkt_relpooltoken(list);
1553 }
1554 
1555 /*
1556  * Insert knote at head of klist.
1557  *
1558  * This function may only be called via a filter function and thus
1559  * kq_token should already be held and marked for processing.
1560  */
1561 void
1562 knote_insert(struct klist *klist, struct knote *kn)
1563 {
1564 	lwkt_getpooltoken(klist);
1565 	KKASSERT(kn->kn_status & KN_PROCESSING);
1566 	SLIST_INSERT_HEAD(klist, kn, kn_next);
1567 	lwkt_relpooltoken(klist);
1568 }
1569 
1570 /*
1571  * Remove knote from a klist
1572  *
1573  * This function may only be called via a filter function and thus
1574  * kq_token should already be held and marked for processing.
1575  */
1576 void
1577 knote_remove(struct klist *klist, struct knote *kn)
1578 {
1579 	lwkt_getpooltoken(klist);
1580 	KKASSERT(kn->kn_status & KN_PROCESSING);
1581 	SLIST_REMOVE(klist, kn, knote, kn_next);
1582 	lwkt_relpooltoken(klist);
1583 }
1584 
1585 #if 0
1586 /*
1587  * Remove all knotes from a specified klist
1588  *
1589  * Only called from aio.
1590  */
1591 void
1592 knote_empty(struct klist *list)
1593 {
1594 	struct knote *kn;
1595 
1596 	lwkt_gettoken(&kq_token);
1597 	while ((kn = SLIST_FIRST(list)) != NULL) {
1598 		if (knote_acquire(kn))
1599 			knote_detach_and_drop(kn);
1600 	}
1601 	lwkt_reltoken(&kq_token);
1602 }
1603 #endif
1604 
1605 void
1606 knote_assume_knotes(struct kqinfo *src, struct kqinfo *dst,
1607 		    struct filterops *ops, void *hook)
1608 {
1609 	struct kqueue *kq;
1610 	struct knote *kn;
1611 
1612 	lwkt_getpooltoken(&src->ki_note);
1613 	lwkt_getpooltoken(&dst->ki_note);
1614 	while ((kn = SLIST_FIRST(&src->ki_note)) != NULL) {
1615 		kq = kn->kn_kq;
1616 		lwkt_getpooltoken(kq);
1617 		if (SLIST_FIRST(&src->ki_note) != kn || kn->kn_kq != kq) {
1618 			lwkt_relpooltoken(kq);
1619 			continue;
1620 		}
1621 		if (knote_acquire(kn)) {
1622 			knote_remove(&src->ki_note, kn);
1623 			kn->kn_fop = ops;
1624 			kn->kn_hook = hook;
1625 			knote_insert(&dst->ki_note, kn);
1626 			knote_release(kn);
1627 			/* kn may be invalid now */
1628 		}
1629 		lwkt_relpooltoken(kq);
1630 	}
1631 	lwkt_relpooltoken(&dst->ki_note);
1632 	lwkt_relpooltoken(&src->ki_note);
1633 }
1634 
1635 /*
1636  * Remove all knotes referencing a specified fd
1637  */
1638 void
1639 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd)
1640 {
1641 	struct kqueue *kq;
1642 	struct knote *kn;
1643 	struct knote *kntmp;
1644 
1645 	lwkt_getpooltoken(&fp->f_klist);
1646 restart:
1647 	SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
1648 		if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) {
1649 			kq = kn->kn_kq;
1650 			lwkt_getpooltoken(kq);
1651 
1652 			/* temporary verification hack */
1653 			SLIST_FOREACH(kntmp, &fp->f_klist, kn_link) {
1654 				if (kn == kntmp)
1655 					break;
1656 			}
1657 			if (kn != kntmp || kn->kn_kq->kq_fdp != fdp ||
1658 			    kn->kn_id != fd || kn->kn_kq != kq) {
1659 				lwkt_relpooltoken(kq);
1660 				goto restart;
1661 			}
1662 			if (knote_acquire(kn))
1663 				knote_detach_and_drop(kn);
1664 			lwkt_relpooltoken(kq);
1665 			goto restart;
1666 		}
1667 	}
1668 	lwkt_relpooltoken(&fp->f_klist);
1669 }
1670 
1671 /*
1672  * Low level attach function.
1673  *
1674  * The knote should already be marked for processing.
1675  * Caller must hold the related kq token.
1676  */
1677 static void
1678 knote_attach(struct knote *kn)
1679 {
1680 	struct klist *list;
1681 	struct kqueue *kq = kn->kn_kq;
1682 
1683 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1684 		KKASSERT(kn->kn_fp);
1685 		list = &kn->kn_fp->f_klist;
1686 	} else {
1687 		if (kq->kq_knhashmask == 0)
1688 			kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1689 						 &kq->kq_knhashmask);
1690 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1691 	}
1692 	lwkt_getpooltoken(list);
1693 	SLIST_INSERT_HEAD(list, kn, kn_link);
1694 	TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink);
1695 	lwkt_relpooltoken(list);
1696 }
1697 
1698 /*
1699  * Low level drop function.
1700  *
1701  * The knote should already be marked for processing.
1702  * Caller must hold the related kq token.
1703  */
1704 static void
1705 knote_drop(struct knote *kn)
1706 {
1707 	struct kqueue *kq;
1708 	struct klist *list;
1709 
1710 	kq = kn->kn_kq;
1711 
1712 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1713 		list = &kn->kn_fp->f_klist;
1714 	else
1715 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1716 
1717 	lwkt_getpooltoken(list);
1718 	SLIST_REMOVE(list, kn, knote, kn_link);
1719 	TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
1720 	if (kn->kn_status & KN_QUEUED)
1721 		knote_dequeue(kn);
1722 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1723 		fdrop(kn->kn_fp);
1724 		kn->kn_fp = NULL;
1725 	}
1726 	knote_free(kn);
1727 	lwkt_relpooltoken(list);
1728 }
1729 
1730 /*
1731  * Low level enqueue function.
1732  *
1733  * The knote should already be marked for processing.
1734  * Caller must be holding the kq token
1735  */
1736 static void
1737 knote_enqueue(struct knote *kn)
1738 {
1739 	struct kqueue *kq = kn->kn_kq;
1740 
1741 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1742 	TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1743 	kn->kn_status |= KN_QUEUED;
1744 	++kq->kq_count;
1745 
1746 	/*
1747 	 * Send SIGIO on request (typically set up as a mailbox signal)
1748 	 */
1749 	if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1)
1750 		pgsigio(kq->kq_sigio, SIGIO, 0);
1751 
1752 	kqueue_wakeup(kq);
1753 }
1754 
1755 /*
1756  * Low level dequeue function.
1757  *
1758  * The knote should already be marked for processing.
1759  * Caller must be holding the kq token
1760  */
1761 static void
1762 knote_dequeue(struct knote *kn)
1763 {
1764 	struct kqueue *kq = kn->kn_kq;
1765 
1766 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1767 	TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1768 	kn->kn_status &= ~KN_QUEUED;
1769 	kq->kq_count--;
1770 }
1771 
1772 static struct knote *
1773 knote_alloc(void)
1774 {
1775 	return kmalloc(sizeof(struct knote), M_KQUEUE, M_WAITOK);
1776 }
1777 
1778 static void
1779 knote_free(struct knote *kn)
1780 {
1781 	kfree(kn, M_KQUEUE);
1782 }
1783