xref: /dragonfly/sys/kern/kern_event.c (revision 36a3d1d6)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27  * $DragonFly: src/sys/kern/kern_event.c,v 1.33 2007/02/03 17:05:57 corecode Exp $
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/lock.h>
38 #include <sys/fcntl.h>
39 #include <sys/queue.h>
40 #include <sys/event.h>
41 #include <sys/eventvar.h>
42 #include <sys/protosw.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/sysproto.h>
48 #include <sys/thread.h>
49 #include <sys/uio.h>
50 #include <sys/signalvar.h>
51 #include <sys/filio.h>
52 #include <sys/ktr.h>
53 
54 #include <sys/thread2.h>
55 #include <sys/file2.h>
56 #include <sys/mplock2.h>
57 
58 #include <vm/vm_zone.h>
59 
60 /*
61  * Global token for kqueue subsystem
62  */
63 struct lwkt_token kq_token = LWKT_TOKEN_UP_INITIALIZER(kq_token);
64 SYSCTL_INT(_lwkt, OID_AUTO, kq_mpsafe,
65 	   CTLFLAG_RW, &kq_token.t_flags, 0, "");
66 SYSCTL_LONG(_lwkt, OID_AUTO, kq_collisions,
67 	    CTLFLAG_RW, &kq_token.t_collisions, 0, "");
68 
69 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
70 
71 struct kevent_copyin_args {
72 	struct kevent_args	*ka;
73 	int			pchanges;
74 };
75 
76 static int	kqueue_sleep(struct kqueue *kq, struct timespec *tsp);
77 static int	kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
78 		    struct knote *marker);
79 static int 	kqueue_read(struct file *fp, struct uio *uio,
80 		    struct ucred *cred, int flags);
81 static int	kqueue_write(struct file *fp, struct uio *uio,
82 		    struct ucred *cred, int flags);
83 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
84 		    struct ucred *cred, struct sysmsg *msg);
85 static int 	kqueue_kqfilter(struct file *fp, struct knote *kn);
86 static int 	kqueue_stat(struct file *fp, struct stat *st,
87 		    struct ucred *cred);
88 static int 	kqueue_close(struct file *fp);
89 static void	kqueue_wakeup(struct kqueue *kq);
90 static int	filter_attach(struct knote *kn);
91 static int	filter_event(struct knote *kn, long hint);
92 
93 /*
94  * MPSAFE
95  */
96 static struct fileops kqueueops = {
97 	.fo_read = kqueue_read,
98 	.fo_write = kqueue_write,
99 	.fo_ioctl = kqueue_ioctl,
100 	.fo_kqfilter = kqueue_kqfilter,
101 	.fo_stat = kqueue_stat,
102 	.fo_close = kqueue_close,
103 	.fo_shutdown = nofo_shutdown
104 };
105 
106 static void 	knote_attach(struct knote *kn);
107 static void 	knote_drop(struct knote *kn);
108 static void	knote_detach_and_drop(struct knote *kn);
109 static void	knote_detach_and_drop_locked(struct knote *kn);
110 static void 	knote_enqueue(struct knote *kn);
111 static void 	knote_dequeue(struct knote *kn);
112 static void 	knote_init(void);
113 static struct 	knote *knote_alloc(void);
114 static void 	knote_free(struct knote *kn);
115 
116 static void	filt_kqdetach(struct knote *kn);
117 static int	filt_kqueue(struct knote *kn, long hint);
118 static int	filt_procattach(struct knote *kn);
119 static void	filt_procdetach(struct knote *kn);
120 static int	filt_proc(struct knote *kn, long hint);
121 static int	filt_fileattach(struct knote *kn);
122 static void	filt_timerexpire(void *knx);
123 static int	filt_timerattach(struct knote *kn);
124 static void	filt_timerdetach(struct knote *kn);
125 static int	filt_timer(struct knote *kn, long hint);
126 
127 static struct filterops file_filtops =
128 	{ FILTEROP_ISFD, filt_fileattach, NULL, NULL };
129 static struct filterops kqread_filtops =
130 	{ FILTEROP_ISFD, NULL, filt_kqdetach, filt_kqueue };
131 static struct filterops proc_filtops =
132 	{ 0, filt_procattach, filt_procdetach, filt_proc };
133 static struct filterops timer_filtops =
134 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
135 
136 static vm_zone_t	knote_zone;
137 static int 		kq_ncallouts = 0;
138 static int 		kq_calloutmax = (4 * 1024);
139 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
140     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
141 static int		kq_checkloop = 1000000;
142 SYSCTL_INT(_kern, OID_AUTO, kq_checkloop, CTLFLAG_RW,
143     &kq_checkloop, 0, "Maximum number of callouts allocated for kqueue");
144 
145 #define KNOTE_ACTIVATE(kn) do { 					\
146 	kn->kn_status |= KN_ACTIVE;					\
147 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
148 		knote_enqueue(kn);					\
149 } while(0)
150 
151 #define	KN_HASHSIZE		64		/* XXX should be tunable */
152 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
153 
154 extern struct filterops aio_filtops;
155 extern struct filterops sig_filtops;
156 
157 /*
158  * Table for for all system-defined filters.
159  */
160 static struct filterops *sysfilt_ops[] = {
161 	&file_filtops,			/* EVFILT_READ */
162 	&file_filtops,			/* EVFILT_WRITE */
163 	&aio_filtops,			/* EVFILT_AIO */
164 	&file_filtops,			/* EVFILT_VNODE */
165 	&proc_filtops,			/* EVFILT_PROC */
166 	&sig_filtops,			/* EVFILT_SIGNAL */
167 	&timer_filtops,			/* EVFILT_TIMER */
168 	&file_filtops,			/* EVFILT_EXCEPT */
169 };
170 
171 static int
172 filt_fileattach(struct knote *kn)
173 {
174 	return (fo_kqfilter(kn->kn_fp, kn));
175 }
176 
177 /*
178  * MPSAFE
179  */
180 static int
181 kqueue_kqfilter(struct file *fp, struct knote *kn)
182 {
183 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
184 
185 	if (kn->kn_filter != EVFILT_READ)
186 		return (EOPNOTSUPP);
187 
188 	kn->kn_fop = &kqread_filtops;
189 	knote_insert(&kq->kq_kqinfo.ki_note, kn);
190 	return (0);
191 }
192 
193 static void
194 filt_kqdetach(struct knote *kn)
195 {
196 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
197 
198 	knote_remove(&kq->kq_kqinfo.ki_note, kn);
199 }
200 
201 /*ARGSUSED*/
202 static int
203 filt_kqueue(struct knote *kn, long hint)
204 {
205 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
206 
207 	kn->kn_data = kq->kq_count;
208 	return (kn->kn_data > 0);
209 }
210 
211 static int
212 filt_procattach(struct knote *kn)
213 {
214 	struct proc *p;
215 	int immediate;
216 
217 	immediate = 0;
218 	lwkt_gettoken(&proc_token);
219 	p = pfind(kn->kn_id);
220 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
221 		p = zpfind(kn->kn_id);
222 		immediate = 1;
223 	}
224 	if (p == NULL) {
225 		lwkt_reltoken(&proc_token);
226 		return (ESRCH);
227 	}
228 	if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
229 		lwkt_reltoken(&proc_token);
230 		return (EACCES);
231 	}
232 
233 	kn->kn_ptr.p_proc = p;
234 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
235 
236 	/*
237 	 * internal flag indicating registration done by kernel
238 	 */
239 	if (kn->kn_flags & EV_FLAG1) {
240 		kn->kn_data = kn->kn_sdata;		/* ppid */
241 		kn->kn_fflags = NOTE_CHILD;
242 		kn->kn_flags &= ~EV_FLAG1;
243 	}
244 
245 	knote_insert(&p->p_klist, kn);
246 
247 	/*
248 	 * Immediately activate any exit notes if the target process is a
249 	 * zombie.  This is necessary to handle the case where the target
250 	 * process, e.g. a child, dies before the kevent is negistered.
251 	 */
252 	if (immediate && filt_proc(kn, NOTE_EXIT))
253 		KNOTE_ACTIVATE(kn);
254 	lwkt_reltoken(&proc_token);
255 
256 	return (0);
257 }
258 
259 /*
260  * The knote may be attached to a different process, which may exit,
261  * leaving nothing for the knote to be attached to.  So when the process
262  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
263  * it will be deleted when read out.  However, as part of the knote deletion,
264  * this routine is called, so a check is needed to avoid actually performing
265  * a detach, because the original process does not exist any more.
266  */
267 static void
268 filt_procdetach(struct knote *kn)
269 {
270 	struct proc *p;
271 
272 	if (kn->kn_status & KN_DETACHED)
273 		return;
274 	/* XXX locking? take proc_token here? */
275 	p = kn->kn_ptr.p_proc;
276 	knote_remove(&p->p_klist, kn);
277 }
278 
279 static int
280 filt_proc(struct knote *kn, long hint)
281 {
282 	u_int event;
283 
284 	/*
285 	 * mask off extra data
286 	 */
287 	event = (u_int)hint & NOTE_PCTRLMASK;
288 
289 	/*
290 	 * if the user is interested in this event, record it.
291 	 */
292 	if (kn->kn_sfflags & event)
293 		kn->kn_fflags |= event;
294 
295 	/*
296 	 * Process is gone, so flag the event as finished.  Detach the
297 	 * knote from the process now because the process will be poof,
298 	 * gone later on.
299 	 */
300 	if (event == NOTE_EXIT) {
301 		struct proc *p = kn->kn_ptr.p_proc;
302 		if ((kn->kn_status & KN_DETACHED) == 0) {
303 			knote_remove(&p->p_klist, kn);
304 			kn->kn_status |= KN_DETACHED;
305 			kn->kn_data = p->p_xstat;
306 			kn->kn_ptr.p_proc = NULL;
307 		}
308 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
309 		return (1);
310 	}
311 
312 	/*
313 	 * process forked, and user wants to track the new process,
314 	 * so attach a new knote to it, and immediately report an
315 	 * event with the parent's pid.
316 	 */
317 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
318 		struct kevent kev;
319 		int error;
320 
321 		/*
322 		 * register knote with new process.
323 		 */
324 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
325 		kev.filter = kn->kn_filter;
326 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
327 		kev.fflags = kn->kn_sfflags;
328 		kev.data = kn->kn_id;			/* parent */
329 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
330 		error = kqueue_register(kn->kn_kq, &kev);
331 		if (error)
332 			kn->kn_fflags |= NOTE_TRACKERR;
333 	}
334 
335 	return (kn->kn_fflags != 0);
336 }
337 
338 static void
339 filt_timerexpire(void *knx)
340 {
341 	struct knote *kn = knx;
342 	struct callout *calloutp;
343 	struct timeval tv;
344 	int tticks;
345 
346 	lwkt_gettoken(&kq_token);
347 
348 	kn->kn_data++;
349 	KNOTE_ACTIVATE(kn);
350 
351 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
352 		tv.tv_sec = kn->kn_sdata / 1000;
353 		tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
354 		tticks = tvtohz_high(&tv);
355 		calloutp = (struct callout *)kn->kn_hook;
356 		callout_reset(calloutp, tticks, filt_timerexpire, kn);
357 	}
358 
359 	lwkt_reltoken(&kq_token);
360 }
361 
362 /*
363  * data contains amount of time to sleep, in milliseconds
364  */
365 static int
366 filt_timerattach(struct knote *kn)
367 {
368 	struct callout *calloutp;
369 	struct timeval tv;
370 	int tticks;
371 
372 	if (kq_ncallouts >= kq_calloutmax)
373 		return (ENOMEM);
374 	kq_ncallouts++;
375 
376 	tv.tv_sec = kn->kn_sdata / 1000;
377 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
378 	tticks = tvtohz_high(&tv);
379 
380 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
381 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
382 	    M_KQUEUE, M_WAITOK);
383 	callout_init(calloutp);
384 	kn->kn_hook = (caddr_t)calloutp;
385 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
386 
387 	return (0);
388 }
389 
390 static void
391 filt_timerdetach(struct knote *kn)
392 {
393 	struct callout *calloutp;
394 
395 	calloutp = (struct callout *)kn->kn_hook;
396 	callout_stop(calloutp);
397 	FREE(calloutp, M_KQUEUE);
398 	kq_ncallouts--;
399 }
400 
401 static int
402 filt_timer(struct knote *kn, long hint)
403 {
404 
405 	return (kn->kn_data != 0);
406 }
407 
408 /*
409  * Initialize a kqueue.
410  *
411  * NOTE: The lwp/proc code initializes a kqueue for select/poll ops.
412  *
413  * MPSAFE
414  */
415 void
416 kqueue_init(struct kqueue *kq, struct filedesc *fdp)
417 {
418 	TAILQ_INIT(&kq->kq_knpend);
419 	TAILQ_INIT(&kq->kq_knlist);
420 	kq->kq_count = 0;
421 	kq->kq_fdp = fdp;
422 	SLIST_INIT(&kq->kq_kqinfo.ki_note);
423 }
424 
425 /*
426  * Terminate a kqueue.  Freeing the actual kq itself is left up to the
427  * caller (it might be embedded in a lwp so we don't do it here).
428  *
429  * The kq's knlist must be completely eradicated so block on any
430  * processing races.
431  */
432 void
433 kqueue_terminate(struct kqueue *kq)
434 {
435 	struct knote *kn;
436 
437 	lwkt_gettoken(&kq_token);
438 	while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) {
439 		if (kn->kn_status & KN_PROCESSING) {
440 			kn->kn_status |= KN_WAITING | KN_REPROCESS;
441 			tsleep(kn, 0, "kqtrms", hz);
442 			continue;
443 		}
444 		knote_detach_and_drop(kn);
445 	}
446 	if (kq->kq_knhash) {
447 		kfree(kq->kq_knhash, M_KQUEUE);
448 		kq->kq_knhash = NULL;
449 		kq->kq_knhashmask = 0;
450 	}
451 	lwkt_reltoken(&kq_token);
452 }
453 
454 /*
455  * MPSAFE
456  */
457 int
458 sys_kqueue(struct kqueue_args *uap)
459 {
460 	struct thread *td = curthread;
461 	struct kqueue *kq;
462 	struct file *fp;
463 	int fd, error;
464 
465 	error = falloc(td->td_lwp, &fp, &fd);
466 	if (error)
467 		return (error);
468 	fp->f_flag = FREAD | FWRITE;
469 	fp->f_type = DTYPE_KQUEUE;
470 	fp->f_ops = &kqueueops;
471 
472 	kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
473 	kqueue_init(kq, td->td_proc->p_fd);
474 	fp->f_data = kq;
475 
476 	fsetfd(kq->kq_fdp, fp, fd);
477 	uap->sysmsg_result = fd;
478 	fdrop(fp);
479 	return (error);
480 }
481 
482 /*
483  * Copy 'count' items into the destination list pointed to by uap->eventlist.
484  */
485 static int
486 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res)
487 {
488 	struct kevent_copyin_args *kap;
489 	int error;
490 
491 	kap = (struct kevent_copyin_args *)arg;
492 
493 	error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp));
494 	if (error == 0) {
495 		kap->ka->eventlist += count;
496 		*res += count;
497 	} else {
498 		*res = -1;
499 	}
500 
501 	return (error);
502 }
503 
504 /*
505  * Copy at most 'max' items from the list pointed to by kap->changelist,
506  * return number of items in 'events'.
507  */
508 static int
509 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events)
510 {
511 	struct kevent_copyin_args *kap;
512 	int error, count;
513 
514 	kap = (struct kevent_copyin_args *)arg;
515 
516 	count = min(kap->ka->nchanges - kap->pchanges, max);
517 	error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp);
518 	if (error == 0) {
519 		kap->ka->changelist += count;
520 		kap->pchanges += count;
521 		*events = count;
522 	}
523 
524 	return (error);
525 }
526 
527 /*
528  * MPSAFE
529  */
530 int
531 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap,
532 	    k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn,
533 	    struct timespec *tsp_in)
534 {
535 	struct kevent *kevp;
536 	struct timespec *tsp;
537 	int i, n, total, error, nerrors = 0;
538 	int lres;
539 	int limit = kq_checkloop;
540 	struct kevent kev[KQ_NEVENTS];
541 	struct knote marker;
542 
543 	tsp = tsp_in;
544 	*res = 0;
545 
546 	lwkt_gettoken(&kq_token);
547 	for ( ;; ) {
548 		n = 0;
549 		error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n);
550 		if (error)
551 			goto done;
552 		if (n == 0)
553 			break;
554 		for (i = 0; i < n; i++) {
555 			kevp = &kev[i];
556 			kevp->flags &= ~EV_SYSFLAGS;
557 			error = kqueue_register(kq, kevp);
558 
559 			/*
560 			 * If a registration returns an error we
561 			 * immediately post the error.  The kevent()
562 			 * call itself will fail with the error if
563 			 * no space is available for posting.
564 			 *
565 			 * Such errors normally bypass the timeout/blocking
566 			 * code.  However, if the copyoutfn function refuses
567 			 * to post the error (see sys_poll()), then we
568 			 * ignore it too.
569 			 */
570 			if (error) {
571 				kevp->flags = EV_ERROR;
572 				kevp->data = error;
573 				lres = *res;
574 				kevent_copyoutfn(uap, kevp, 1, res);
575 				if (lres != *res) {
576 					nevents--;
577 					nerrors++;
578 				}
579 			}
580 		}
581 	}
582 	if (nerrors) {
583 		error = 0;
584 		goto done;
585 	}
586 
587 	/*
588 	 * Acquire/wait for events - setup timeout
589 	 */
590 	if (tsp != NULL) {
591 		struct timespec ats;
592 
593 		if (tsp->tv_sec || tsp->tv_nsec) {
594 			nanouptime(&ats);
595 			timespecadd(tsp, &ats);		/* tsp = target time */
596 		}
597 	}
598 
599 	/*
600 	 * Loop as required.
601 	 *
602 	 * Collect as many events as we can. Sleeping on successive
603 	 * loops is disabled if copyoutfn has incremented (*res).
604 	 *
605 	 * The loop stops if an error occurs, all events have been
606 	 * scanned (the marker has been reached), or fewer than the
607 	 * maximum number of events is found.
608 	 *
609 	 * The copyoutfn function does not have to increment (*res) in
610 	 * order for the loop to continue.
611 	 *
612 	 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents.
613 	 */
614 	total = 0;
615 	error = 0;
616 	marker.kn_filter = EVFILT_MARKER;
617 	marker.kn_status = KN_PROCESSING;
618 	TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
619 	while ((n = nevents - total) > 0) {
620 		if (n > KQ_NEVENTS)
621 			n = KQ_NEVENTS;
622 
623 		/*
624 		 * If no events are pending sleep until timeout (if any)
625 		 * or an event occurs.
626 		 *
627 		 * After the sleep completes the marker is moved to the
628 		 * end of the list, making any received events available
629 		 * to our scan.
630 		 */
631 		if (kq->kq_count == 0 && *res == 0) {
632 			error = kqueue_sleep(kq, tsp);
633 			if (error)
634 				break;
635 
636 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
637 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
638 		}
639 
640 		/*
641 		 * Process all received events
642 		 * Account for all non-spurious events in our total
643 		 */
644 		i = kqueue_scan(kq, kev, n, &marker);
645 		if (i) {
646 			lres = *res;
647 			error = kevent_copyoutfn(uap, kev, i, res);
648 			total += *res - lres;
649 			if (error)
650 				break;
651 		}
652 		if (limit && --limit == 0)
653 			panic("kqueue: checkloop failed i=%d", i);
654 
655 		/*
656 		 * Normally when fewer events are returned than requested
657 		 * we can stop.  However, if only spurious events were
658 		 * collected the copyout will not bump (*res) and we have
659 		 * to continue.
660 		 */
661 		if (i < n && *res)
662 			break;
663 
664 		/*
665 		 * Deal with an edge case where spurious events can cause
666 		 * a loop to occur without moving the marker.  This can
667 		 * prevent kqueue_scan() from picking up new events which
668 		 * race us.  We must be sure to move the marker for this
669 		 * case.
670 		 *
671 		 * NOTE: We do not want to move the marker if events
672 		 *	 were scanned because normal kqueue operations
673 		 *	 may reactivate events.  Moving the marker in
674 		 *	 that case could result in duplicates for the
675 		 *	 same event.
676 		 */
677 		if (i == 0) {
678 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
679 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
680 		}
681 	}
682 	TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
683 
684 	/* Timeouts do not return EWOULDBLOCK. */
685 	if (error == EWOULDBLOCK)
686 		error = 0;
687 
688 done:
689 	lwkt_reltoken(&kq_token);
690 	return (error);
691 }
692 
693 /*
694  * MPALMOSTSAFE
695  */
696 int
697 sys_kevent(struct kevent_args *uap)
698 {
699 	struct thread *td = curthread;
700 	struct proc *p = td->td_proc;
701 	struct timespec ts, *tsp;
702 	struct kqueue *kq;
703 	struct file *fp = NULL;
704 	struct kevent_copyin_args *kap, ka;
705 	int error;
706 
707 	if (uap->timeout) {
708 		error = copyin(uap->timeout, &ts, sizeof(ts));
709 		if (error)
710 			return (error);
711 		tsp = &ts;
712 	} else {
713 		tsp = NULL;
714 	}
715 
716 	fp = holdfp(p->p_fd, uap->fd, -1);
717 	if (fp == NULL)
718 		return (EBADF);
719 	if (fp->f_type != DTYPE_KQUEUE) {
720 		fdrop(fp);
721 		return (EBADF);
722 	}
723 
724 	kq = (struct kqueue *)fp->f_data;
725 
726 	kap = &ka;
727 	kap->ka = uap;
728 	kap->pchanges = 0;
729 
730 	error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap,
731 			    kevent_copyin, kevent_copyout, tsp);
732 
733 	fdrop(fp);
734 
735 	return (error);
736 }
737 
738 int
739 kqueue_register(struct kqueue *kq, struct kevent *kev)
740 {
741 	struct filedesc *fdp = kq->kq_fdp;
742 	struct filterops *fops;
743 	struct file *fp = NULL;
744 	struct knote *kn = NULL;
745 	int error = 0;
746 
747 	if (kev->filter < 0) {
748 		if (kev->filter + EVFILT_SYSCOUNT < 0)
749 			return (EINVAL);
750 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
751 	} else {
752 		/*
753 		 * XXX
754 		 * filter attach routine is responsible for insuring that
755 		 * the identifier can be attached to it.
756 		 */
757 		kprintf("unknown filter: %d\n", kev->filter);
758 		return (EINVAL);
759 	}
760 
761 	lwkt_gettoken(&kq_token);
762 	if (fops->f_flags & FILTEROP_ISFD) {
763 		/* validate descriptor */
764 		fp = holdfp(fdp, kev->ident, -1);
765 		if (fp == NULL) {
766 			lwkt_reltoken(&kq_token);
767 			return (EBADF);
768 		}
769 
770 		SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
771 			if (kn->kn_kq == kq &&
772 			    kn->kn_filter == kev->filter &&
773 			    kn->kn_id == kev->ident) {
774 				break;
775 			}
776 		}
777 	} else {
778 		if (kq->kq_knhashmask) {
779 			struct klist *list;
780 
781 			list = &kq->kq_knhash[
782 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
783 			SLIST_FOREACH(kn, list, kn_link) {
784 				if (kn->kn_id == kev->ident &&
785 				    kn->kn_filter == kev->filter)
786 					break;
787 			}
788 		}
789 	}
790 
791 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
792 		error = ENOENT;
793 		goto done;
794 	}
795 
796 	/*
797 	 * kn now contains the matching knote, or NULL if no match
798 	 */
799 	if (kev->flags & EV_ADD) {
800 		if (kn == NULL) {
801 			kn = knote_alloc();
802 			if (kn == NULL) {
803 				error = ENOMEM;
804 				goto done;
805 			}
806 			kn->kn_fp = fp;
807 			kn->kn_kq = kq;
808 			kn->kn_fop = fops;
809 
810 			/*
811 			 * apply reference count to knote structure, and
812 			 * do not release it at the end of this routine.
813 			 */
814 			fp = NULL;
815 
816 			kn->kn_sfflags = kev->fflags;
817 			kn->kn_sdata = kev->data;
818 			kev->fflags = 0;
819 			kev->data = 0;
820 			kn->kn_kevent = *kev;
821 
822 			/*
823 			 * KN_PROCESSING prevents the knote from getting
824 			 * ripped out from under us while we are trying
825 			 * to attach it, in case the attach blocks.
826 			 */
827 			kn->kn_status = KN_PROCESSING;
828 			knote_attach(kn);
829 			if ((error = filter_attach(kn)) != 0) {
830 				kn->kn_status |= KN_DELETING;
831 				knote_drop(kn);
832 				goto done;
833 			}
834 
835 			/*
836 			 * Interlock against close races which either tried
837 			 * to remove our knote while we were blocked or missed
838 			 * it entirely prior to our attachment.  We do not
839 			 * want to end up with a knote on a closed descriptor.
840 			 */
841 			if ((fops->f_flags & FILTEROP_ISFD) &&
842 			    checkfdclosed(fdp, kev->ident, kn->kn_fp)) {
843 				kn->kn_status |= KN_DELETING;
844 			}
845 		} else {
846 			/*
847 			 * The user may change some filter values after the
848 			 * initial EV_ADD, but doing so will not reset any
849 			 * filter which have already been triggered.
850 			 */
851 			kn->kn_status |= KN_PROCESSING;
852 			kn->kn_sfflags = kev->fflags;
853 			kn->kn_sdata = kev->data;
854 			kn->kn_kevent.udata = kev->udata;
855 		}
856 
857 		/*
858 		 * Execute the filter event to immediately activate the
859 		 * knote if necessary.  We still own KN_PROCESSING so
860 		 * process any KN_REPROCESS races as well.
861 		 */
862 		for (;;) {
863 			if (kn->kn_status & KN_DELETING) {
864 				error = EBADF;
865 				knote_detach_and_drop_locked(kn);
866 				goto done;
867 			}
868 			if (filter_event(kn, 0))
869 				KNOTE_ACTIVATE(kn);
870 			if ((kn->kn_status & KN_REPROCESS) == 0)
871 				break;
872 			if (kn->kn_status & KN_WAITING) {
873 				kn->kn_status &= ~KN_WAITING;
874 				wakeup(kn);
875 			}
876 			kn->kn_status &= ~KN_REPROCESS;
877 		}
878 		kn->kn_status &= ~KN_PROCESSING;
879 	} else if (kev->flags & EV_DELETE) {
880 		/*
881 		 * Attempt to delete the existing knote
882 		 */
883 		knote_detach_and_drop(kn);
884 		goto done;
885 	}
886 
887 	/*
888 	 * Disablement does not deactivate a knote here.
889 	 */
890 	if ((kev->flags & EV_DISABLE) &&
891 	    ((kn->kn_status & KN_DISABLED) == 0)) {
892 		kn->kn_status |= KN_DISABLED;
893 	}
894 
895 	/*
896 	 * Re-enablement may have to immediately enqueue an active knote.
897 	 */
898 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
899 		kn->kn_status &= ~KN_DISABLED;
900 		if ((kn->kn_status & KN_ACTIVE) &&
901 		    ((kn->kn_status & KN_QUEUED) == 0)) {
902 			knote_enqueue(kn);
903 		}
904 	}
905 
906 done:
907 	lwkt_reltoken(&kq_token);
908 	if (fp != NULL)
909 		fdrop(fp);
910 	return (error);
911 }
912 
913 /*
914  * Block as necessary until the target time is reached.
915  * If tsp is NULL we block indefinitely.  If tsp->ts_secs/nsecs are both
916  * 0 we do not block at all.
917  */
918 static int
919 kqueue_sleep(struct kqueue *kq, struct timespec *tsp)
920 {
921 	int error = 0;
922 
923 	if (tsp == NULL) {
924 		kq->kq_state |= KQ_SLEEP;
925 		error = tsleep(kq, PCATCH, "kqread", 0);
926 	} else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
927 		error = EWOULDBLOCK;
928 	} else {
929 		struct timespec ats;
930 		struct timespec atx = *tsp;
931 		int timeout;
932 
933 		nanouptime(&ats);
934 		timespecsub(&atx, &ats);
935 		if (ats.tv_sec < 0) {
936 			error = EWOULDBLOCK;
937 		} else {
938 			timeout = atx.tv_sec > 24 * 60 * 60 ?
939 				24 * 60 * 60 * hz : tstohz_high(&atx);
940 			kq->kq_state |= KQ_SLEEP;
941 			error = tsleep(kq, PCATCH, "kqread", timeout);
942 		}
943 	}
944 
945 	/* don't restart after signals... */
946 	if (error == ERESTART)
947 		return (EINTR);
948 
949 	return (error);
950 }
951 
952 /*
953  * Scan the kqueue, return the number of active events placed in kevp up
954  * to count.
955  *
956  * Continuous mode events may get recycled, do not continue scanning past
957  * marker unless no events have been collected.
958  */
959 static int
960 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
961             struct knote *marker)
962 {
963         struct knote *kn, local_marker;
964         int total;
965 
966         total = 0;
967 	local_marker.kn_filter = EVFILT_MARKER;
968 	local_marker.kn_status = KN_PROCESSING;
969 
970 	/*
971 	 * Collect events.
972 	 */
973 	TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe);
974 	while (count) {
975 		kn = TAILQ_NEXT(&local_marker, kn_tqe);
976 		if (kn->kn_filter == EVFILT_MARKER) {
977 			/* Marker reached, we are done */
978 			if (kn == marker)
979 				break;
980 
981 			/* Move local marker past some other threads marker */
982 			kn = TAILQ_NEXT(kn, kn_tqe);
983 			TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
984 			TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe);
985 			continue;
986 		}
987 
988 		/*
989 		 * We can't skip a knote undergoing processing, otherwise
990 		 * we risk not returning it when the user process expects
991 		 * it should be returned.  Sleep and retry.
992 		 */
993 		if (kn->kn_status & KN_PROCESSING) {
994 			kn->kn_status |= KN_WAITING | KN_REPROCESS;
995 			tsleep(kn, 0, "kqepts", hz);
996 			continue;
997 		}
998 
999 		/*
1000 		 * Remove the event for processing.
1001 		 *
1002 		 * WARNING!  We must leave KN_QUEUED set to prevent the
1003 		 *	     event from being KNOTE_ACTIVATE()d while
1004 		 *	     the queue state is in limbo, in case we
1005 		 *	     block.
1006 		 *
1007 		 * WARNING!  We must set KN_PROCESSING to avoid races
1008 		 *	     against deletion or another thread's
1009 		 *	     processing.
1010 		 */
1011 		TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1012 		kq->kq_count--;
1013 		kn->kn_status |= KN_PROCESSING;
1014 
1015 		/*
1016 		 * We have to deal with an extremely important race against
1017 		 * file descriptor close()s here.  The file descriptor can
1018 		 * disappear MPSAFE, and there is a small window of
1019 		 * opportunity between that and the call to knote_fdclose().
1020 		 *
1021 		 * If we hit that window here while doselect or dopoll is
1022 		 * trying to delete a spurious event they will not be able
1023 		 * to match up the event against a knote and will go haywire.
1024 		 */
1025 		if ((kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1026 		    checkfdclosed(kq->kq_fdp, kn->kn_kevent.ident, kn->kn_fp)) {
1027 			kn->kn_status |= KN_DELETING | KN_REPROCESS;
1028 		}
1029 
1030 		if (kn->kn_status & KN_DISABLED) {
1031 			/*
1032 			 * If disabled we ensure the event is not queued
1033 			 * but leave its active bit set.  On re-enablement
1034 			 * the event may be immediately triggered.
1035 			 */
1036 			kn->kn_status &= ~KN_QUEUED;
1037 		} else if ((kn->kn_flags & EV_ONESHOT) == 0 &&
1038 			   filter_event(kn, 0) == 0) {
1039 			/*
1040 			 * If not running in one-shot mode and the event
1041 			 * is no longer present we ensure it is removed
1042 			 * from the queue and ignore it.
1043 			 */
1044 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1045 		} else {
1046 			/*
1047 			 * Post the event
1048 			 */
1049 			*kevp++ = kn->kn_kevent;
1050 			++total;
1051 			--count;
1052 
1053 			if (kn->kn_flags & EV_ONESHOT) {
1054 				kn->kn_status &= ~KN_QUEUED;
1055 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1056 			} else if (kn->kn_flags & EV_CLEAR) {
1057 				kn->kn_data = 0;
1058 				kn->kn_fflags = 0;
1059 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1060 			} else {
1061 				TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1062 				kq->kq_count++;
1063 			}
1064 		}
1065 
1066 		/*
1067 		 * Handle any post-processing states
1068 		 */
1069 		while (kn->kn_status & KN_REPROCESS) {
1070 			kn->kn_status &= ~KN_REPROCESS;
1071 			if (kn->kn_status & KN_DELETING) {
1072 				knote_detach_and_drop_locked(kn);
1073 				goto skip;
1074 			}
1075 			if (kn->kn_status & KN_WAITING) {
1076 				kn->kn_status &= ~KN_WAITING;
1077 				wakeup(kn);
1078 			}
1079 			if (filter_event(kn, 0))
1080 				KNOTE_ACTIVATE(kn);
1081 		}
1082 		kn->kn_status &= ~KN_PROCESSING;
1083 skip:
1084 		;
1085 	}
1086 	TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1087 
1088 	return (total);
1089 }
1090 
1091 /*
1092  * XXX
1093  * This could be expanded to call kqueue_scan, if desired.
1094  *
1095  * MPSAFE
1096  */
1097 static int
1098 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1099 {
1100 	return (ENXIO);
1101 }
1102 
1103 /*
1104  * MPSAFE
1105  */
1106 static int
1107 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1108 {
1109 	return (ENXIO);
1110 }
1111 
1112 /*
1113  * MPALMOSTSAFE
1114  */
1115 static int
1116 kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
1117 	     struct ucred *cred, struct sysmsg *msg)
1118 {
1119 	struct kqueue *kq;
1120 	int error;
1121 
1122 	lwkt_gettoken(&kq_token);
1123 	kq = (struct kqueue *)fp->f_data;
1124 
1125 	switch(com) {
1126 	case FIOASYNC:
1127 		if (*(int *)data)
1128 			kq->kq_state |= KQ_ASYNC;
1129 		else
1130 			kq->kq_state &= ~KQ_ASYNC;
1131 		error = 0;
1132 		break;
1133 	case FIOSETOWN:
1134 		error = fsetown(*(int *)data, &kq->kq_sigio);
1135 		break;
1136 	default:
1137 		error = ENOTTY;
1138 		break;
1139 	}
1140 	lwkt_reltoken(&kq_token);
1141 	return (error);
1142 }
1143 
1144 /*
1145  * MPSAFE
1146  */
1147 static int
1148 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred)
1149 {
1150 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1151 
1152 	bzero((void *)st, sizeof(*st));
1153 	st->st_size = kq->kq_count;
1154 	st->st_blksize = sizeof(struct kevent);
1155 	st->st_mode = S_IFIFO;
1156 	return (0);
1157 }
1158 
1159 /*
1160  * MPSAFE
1161  */
1162 static int
1163 kqueue_close(struct file *fp)
1164 {
1165 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1166 
1167 	kqueue_terminate(kq);
1168 
1169 	fp->f_data = NULL;
1170 	funsetown(kq->kq_sigio);
1171 
1172 	kfree(kq, M_KQUEUE);
1173 	return (0);
1174 }
1175 
1176 static void
1177 kqueue_wakeup(struct kqueue *kq)
1178 {
1179 	if (kq->kq_state & KQ_SLEEP) {
1180 		kq->kq_state &= ~KQ_SLEEP;
1181 		wakeup(kq);
1182 	}
1183 	KNOTE(&kq->kq_kqinfo.ki_note, 0);
1184 }
1185 
1186 /*
1187  * Calls filterops f_attach function, acquiring mplock if filter is not
1188  * marked as FILTEROP_MPSAFE.
1189  */
1190 static int
1191 filter_attach(struct knote *kn)
1192 {
1193 	int ret;
1194 
1195 	if (!(kn->kn_fop->f_flags & FILTEROP_MPSAFE)) {
1196 		get_mplock();
1197 		ret = kn->kn_fop->f_attach(kn);
1198 		rel_mplock();
1199 	} else {
1200 		ret = kn->kn_fop->f_attach(kn);
1201 	}
1202 
1203 	return (ret);
1204 }
1205 
1206 /*
1207  * Detach the knote and drop it, destroying the knote.
1208  *
1209  * Calls filterops f_detach function, acquiring mplock if filter is not
1210  * marked as FILTEROP_MPSAFE.
1211  */
1212 static void
1213 knote_detach_and_drop(struct knote *kn)
1214 {
1215 	/*
1216 	 * If someone else is procesing the knote we cannot destroy it now,
1217 	 * flag the request and return.
1218 	 */
1219 	if (kn->kn_status & KN_PROCESSING) {
1220 		kn->kn_status |= KN_DELETING | KN_REPROCESS;
1221 		return;
1222 	}
1223 	kn->kn_status |= KN_PROCESSING | KN_DELETING;
1224 	knote_detach_and_drop_locked(kn);
1225 }
1226 
1227 static void
1228 knote_detach_and_drop_locked(struct knote *kn)
1229 {
1230 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1231 		kn->kn_fop->f_detach(kn);
1232 	} else {
1233 		get_mplock();
1234 		kn->kn_fop->f_detach(kn);
1235 		rel_mplock();
1236 	}
1237 	knote_drop(kn);
1238 }
1239 
1240 /*
1241  * Calls filterops f_event function, acquiring mplock if filter is not
1242  * marked as FILTEROP_MPSAFE.
1243  *
1244  * If the knote is in the middle of being created or deleted we cannot
1245  * safely call the filter op.
1246  */
1247 static int
1248 filter_event(struct knote *kn, long hint)
1249 {
1250 	int ret;
1251 
1252 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1253 		ret = kn->kn_fop->f_event(kn, hint);
1254 	} else {
1255 		get_mplock();
1256 		ret = kn->kn_fop->f_event(kn, hint);
1257 		rel_mplock();
1258 	}
1259 	return (ret);
1260 }
1261 
1262 /*
1263  * Walk down a list of knotes, activating them if their event has triggered.
1264  *
1265  * If we encounter any knotes which are undergoing processing we just mark
1266  * them for reprocessing and do not try to [re]activate the knote.  However,
1267  * if a hint is being passed we have to wait and that makes things a bit
1268  * sticky.
1269  */
1270 void
1271 knote(struct klist *list, long hint)
1272 {
1273 	struct knote *kn;
1274 
1275 	lwkt_gettoken(&kq_token);
1276 restart:
1277 	SLIST_FOREACH(kn, list, kn_next) {
1278 		if (kn->kn_status & KN_PROCESSING) {
1279 			/*
1280 			 * Someone else is processing the knote, ask the
1281 			 * other thread to reprocess it and don't mess
1282 			 * with it otherwise.
1283 			 */
1284 			if (hint == 0) {
1285 				kn->kn_status |= KN_REPROCESS;
1286 				continue;
1287 			}
1288 
1289 			/*
1290 			 * If the note is not empty we have to wait.
1291 			 *
1292 			 * XXX This is a real problem, certain process
1293 			 *     and signal filters will bump kn_data for
1294 			 *     already-processed notes more than once if
1295 			 *     we restart the list scan.  FIXME.
1296 			 */
1297 			kprintf("Warning: knote() on busy "
1298 				"knote (ev=%d hint=%08lx)\n",
1299 				kn->kn_filter, hint);
1300 			kn->kn_status |= KN_WAITING | KN_REPROCESS;
1301 			tsleep(kn, 0, "knotec", hz);
1302 			goto restart;
1303 		}
1304 
1305 		/*
1306 		 * Become the reprocessing master ourselves.
1307 		 */
1308 		kn->kn_status |= KN_PROCESSING;
1309 		if (filter_event(kn, hint))
1310 			KNOTE_ACTIVATE(kn);
1311 		while (kn->kn_status & KN_REPROCESS) {
1312 			kn->kn_status &= ~KN_REPROCESS;
1313 			if (kn->kn_status & KN_DELETING) {
1314 				knote_detach_and_drop_locked(kn);
1315 				goto restart;
1316 			}
1317 			if (kn->kn_status & KN_WAITING) {
1318 				kn->kn_status &= ~KN_WAITING;
1319 				wakeup(kn);
1320 			}
1321 			if (filter_event(kn, hint))
1322 				KNOTE_ACTIVATE(kn);
1323 		}
1324 		kn->kn_status &= ~KN_PROCESSING;
1325 	}
1326 	lwkt_reltoken(&kq_token);
1327 }
1328 
1329 /*
1330  * Insert knote at head of klist.
1331  *
1332  * This function may only be called via a filter function and thus
1333  * kq_token should already be held and marked for processing.
1334  */
1335 void
1336 knote_insert(struct klist *klist, struct knote *kn)
1337 {
1338 	KKASSERT(kn->kn_status & KN_PROCESSING);
1339 	ASSERT_LWKT_TOKEN_HELD(&kq_token);
1340 	SLIST_INSERT_HEAD(klist, kn, kn_next);
1341 }
1342 
1343 /*
1344  * Remove knote from a klist
1345  *
1346  * This function may only be called via a filter function and thus
1347  * kq_token should already be held and marked for processing.
1348  */
1349 void
1350 knote_remove(struct klist *klist, struct knote *kn)
1351 {
1352 	KKASSERT(kn->kn_status & KN_PROCESSING);
1353 	ASSERT_LWKT_TOKEN_HELD(&kq_token);
1354 	SLIST_REMOVE(klist, kn, knote, kn_next);
1355 }
1356 
1357 /*
1358  * Remove all knotes from a specified klist
1359  *
1360  * Only called from aio.
1361  */
1362 void
1363 knote_empty(struct klist *list)
1364 {
1365 	struct knote *kn;
1366 
1367 	lwkt_gettoken(&kq_token);
1368 	while ((kn = SLIST_FIRST(list)) != NULL) {
1369 		if (kn->kn_status & KN_PROCESSING) {
1370 			kn->kn_status |= KN_WAITING | KN_REPROCESS;
1371 			tsleep(kn, 0, "kqepts", hz);
1372 			continue;
1373 		}
1374 		knote_detach_and_drop(kn);
1375 	}
1376 	lwkt_reltoken(&kq_token);
1377 }
1378 
1379 /*
1380  * remove all knotes referencing a specified fd
1381  */
1382 void
1383 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd)
1384 {
1385 	struct knote *kn;
1386 
1387 	lwkt_gettoken(&kq_token);
1388 restart:
1389 	SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
1390 		if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) {
1391 			if (kn->kn_status & KN_PROCESSING) {
1392 				kn->kn_status |= KN_WAITING | KN_REPROCESS;
1393 				tsleep(kn, 0, "kqepts", hz);
1394 			} else {
1395 				knote_detach_and_drop(kn);
1396 			}
1397 			goto restart;
1398 		}
1399 	}
1400 	lwkt_reltoken(&kq_token);
1401 }
1402 
1403 /*
1404  * Low level attach function.
1405  *
1406  * The knote should already be marked for processing.
1407  */
1408 static void
1409 knote_attach(struct knote *kn)
1410 {
1411 	struct klist *list;
1412 	struct kqueue *kq = kn->kn_kq;
1413 
1414 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1415 		KKASSERT(kn->kn_fp);
1416 		list = &kn->kn_fp->f_klist;
1417 	} else {
1418 		if (kq->kq_knhashmask == 0)
1419 			kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1420 						 &kq->kq_knhashmask);
1421 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1422 	}
1423 	SLIST_INSERT_HEAD(list, kn, kn_link);
1424 	TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink);
1425 }
1426 
1427 /*
1428  * Low level drop function.
1429  *
1430  * The knote should already be marked for processing.
1431  */
1432 static void
1433 knote_drop(struct knote *kn)
1434 {
1435 	struct kqueue *kq;
1436 	struct klist *list;
1437 
1438 	kq = kn->kn_kq;
1439 
1440 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1441 		list = &kn->kn_fp->f_klist;
1442 	else
1443 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1444 
1445 	SLIST_REMOVE(list, kn, knote, kn_link);
1446 	TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
1447 	if (kn->kn_status & KN_QUEUED)
1448 		knote_dequeue(kn);
1449 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1450 		fdrop(kn->kn_fp);
1451 		kn->kn_fp = NULL;
1452 	}
1453 	knote_free(kn);
1454 }
1455 
1456 /*
1457  * Low level enqueue function.
1458  *
1459  * The knote should already be marked for processing.
1460  */
1461 static void
1462 knote_enqueue(struct knote *kn)
1463 {
1464 	struct kqueue *kq = kn->kn_kq;
1465 
1466 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1467 	TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1468 	kn->kn_status |= KN_QUEUED;
1469 	++kq->kq_count;
1470 
1471 	/*
1472 	 * Send SIGIO on request (typically set up as a mailbox signal)
1473 	 */
1474 	if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1)
1475 		pgsigio(kq->kq_sigio, SIGIO, 0);
1476 
1477 	kqueue_wakeup(kq);
1478 }
1479 
1480 /*
1481  * Low level dequeue function.
1482  *
1483  * The knote should already be marked for processing.
1484  */
1485 static void
1486 knote_dequeue(struct knote *kn)
1487 {
1488 	struct kqueue *kq = kn->kn_kq;
1489 
1490 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1491 	TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1492 	kn->kn_status &= ~KN_QUEUED;
1493 	kq->kq_count--;
1494 }
1495 
1496 static void
1497 knote_init(void)
1498 {
1499 	knote_zone = zinit("KNOTE", sizeof(struct knote), 0, 0, 1);
1500 }
1501 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
1502 
1503 static struct knote *
1504 knote_alloc(void)
1505 {
1506 	return ((struct knote *)zalloc(knote_zone));
1507 }
1508 
1509 static void
1510 knote_free(struct knote *kn)
1511 {
1512 	zfree(knote_zone, kn);
1513 }
1514