xref: /dragonfly/sys/kern/kern_event.c (revision 685c703c)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27  * $DragonFly: src/sys/kern/kern_event.c,v 1.28 2006/08/02 01:25:25 dillon Exp $
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/lock.h>
38 #include <sys/fcntl.h>
39 #include <sys/select.h>
40 #include <sys/queue.h>
41 #include <sys/event.h>
42 #include <sys/eventvar.h>
43 #include <sys/poll.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/sysproto.h>
50 #include <sys/uio.h>
51 #include <sys/thread2.h>
52 #include <sys/file2.h>
53 
54 #include <vm/vm_zone.h>
55 
56 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
57 
58 static int	kqueue_scan(struct file *fp, int maxevents,
59 		    struct kevent *ulistp, const struct timespec *timeout,
60 		    struct thread *td, int *res);
61 static int 	kqueue_read(struct file *fp, struct uio *uio,
62 		    struct ucred *cred, int flags);
63 static int	kqueue_write(struct file *fp, struct uio *uio,
64 		    struct ucred *cred, int flags);
65 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
66 		    struct ucred *cred);
67 static int 	kqueue_poll(struct file *fp, int events, struct ucred *cred);
68 static int 	kqueue_kqfilter(struct file *fp, struct knote *kn);
69 static int 	kqueue_stat(struct file *fp, struct stat *st,
70 		    struct ucred *cred);
71 static int 	kqueue_close(struct file *fp);
72 static void 	kqueue_wakeup(struct kqueue *kq);
73 
74 /*
75  * MPSAFE
76  */
77 static struct fileops kqueueops = {
78 	.fo_read = kqueue_read,
79 	.fo_write = kqueue_write,
80 	.fo_ioctl = kqueue_ioctl,
81 	.fo_poll = kqueue_poll,
82 	.fo_kqfilter = kqueue_kqfilter,
83 	.fo_stat = kqueue_stat,
84 	.fo_close = kqueue_close,
85 	.fo_shutdown = nofo_shutdown
86 };
87 
88 static void 	knote_attach(struct knote *kn, struct filedesc *fdp);
89 static void 	knote_drop(struct knote *kn, struct thread *td);
90 static void 	knote_enqueue(struct knote *kn);
91 static void 	knote_dequeue(struct knote *kn);
92 static void 	knote_init(void);
93 static struct 	knote *knote_alloc(void);
94 static void 	knote_free(struct knote *kn);
95 
96 static void	filt_kqdetach(struct knote *kn);
97 static int	filt_kqueue(struct knote *kn, long hint);
98 static int	filt_procattach(struct knote *kn);
99 static void	filt_procdetach(struct knote *kn);
100 static int	filt_proc(struct knote *kn, long hint);
101 static int	filt_fileattach(struct knote *kn);
102 static void	filt_timerexpire(void *knx);
103 static int	filt_timerattach(struct knote *kn);
104 static void	filt_timerdetach(struct knote *kn);
105 static int	filt_timer(struct knote *kn, long hint);
106 
107 static struct filterops file_filtops =
108 	{ 1, filt_fileattach, NULL, NULL };
109 static struct filterops kqread_filtops =
110 	{ 1, NULL, filt_kqdetach, filt_kqueue };
111 static struct filterops proc_filtops =
112 	{ 0, filt_procattach, filt_procdetach, filt_proc };
113 static struct filterops timer_filtops =
114 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
115 
116 static vm_zone_t	knote_zone;
117 static int 		kq_ncallouts = 0;
118 static int 		kq_calloutmax = (4 * 1024);
119 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
120     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
121 
122 #define KNOTE_ACTIVATE(kn) do { 					\
123 	kn->kn_status |= KN_ACTIVE;					\
124 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
125 		knote_enqueue(kn);					\
126 } while(0)
127 
128 #define	KN_HASHSIZE		64		/* XXX should be tunable */
129 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
130 
131 extern struct filterops aio_filtops;
132 extern struct filterops sig_filtops;
133 
134 /*
135  * Table for for all system-defined filters.
136  */
137 static struct filterops *sysfilt_ops[] = {
138 	&file_filtops,			/* EVFILT_READ */
139 	&file_filtops,			/* EVFILT_WRITE */
140 	&aio_filtops,			/* EVFILT_AIO */
141 	&file_filtops,			/* EVFILT_VNODE */
142 	&proc_filtops,			/* EVFILT_PROC */
143 	&sig_filtops,			/* EVFILT_SIGNAL */
144 	&timer_filtops,			/* EVFILT_TIMER */
145 };
146 
147 static int
148 filt_fileattach(struct knote *kn)
149 {
150 	return (fo_kqfilter(kn->kn_fp, kn));
151 }
152 
153 /*
154  * MPALMOSTSAFE - acquires mplock
155  */
156 static int
157 kqueue_kqfilter(struct file *fp, struct knote *kn)
158 {
159 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
160 
161 	get_mplock();
162 	if (kn->kn_filter != EVFILT_READ) {
163 		rel_mplock();
164 		return (1);
165 	}
166 
167 	kn->kn_fop = &kqread_filtops;
168 	SLIST_INSERT_HEAD(&kq->kq_sel.si_note, kn, kn_selnext);
169 	rel_mplock();
170 	return (0);
171 }
172 
173 static void
174 filt_kqdetach(struct knote *kn)
175 {
176 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
177 
178 	SLIST_REMOVE(&kq->kq_sel.si_note, kn, knote, kn_selnext);
179 }
180 
181 /*ARGSUSED*/
182 static int
183 filt_kqueue(struct knote *kn, long hint)
184 {
185 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
186 
187 	kn->kn_data = kq->kq_count;
188 	return (kn->kn_data > 0);
189 }
190 
191 static int
192 filt_procattach(struct knote *kn)
193 {
194 	struct proc *p;
195 	int immediate;
196 
197 	immediate = 0;
198 	p = pfind(kn->kn_id);
199 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
200 		p = zpfind(kn->kn_id);
201 		immediate = 1;
202 	}
203 	if (p == NULL)
204 		return (ESRCH);
205 	if (! PRISON_CHECK(curproc->p_ucred, p->p_ucred))
206 		return (EACCES);
207 
208 	kn->kn_ptr.p_proc = p;
209 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
210 
211 	/*
212 	 * internal flag indicating registration done by kernel
213 	 */
214 	if (kn->kn_flags & EV_FLAG1) {
215 		kn->kn_data = kn->kn_sdata;		/* ppid */
216 		kn->kn_fflags = NOTE_CHILD;
217 		kn->kn_flags &= ~EV_FLAG1;
218 	}
219 
220 	/* XXX lock the proc here while adding to the list? */
221 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
222 
223 	/*
224 	 * Immediately activate any exit notes if the target process is a
225 	 * zombie.  This is necessary to handle the case where the target
226 	 * process, e.g. a child, dies before the kevent is registered.
227 	 */
228 	if (immediate && filt_proc(kn, NOTE_EXIT))
229 		KNOTE_ACTIVATE(kn);
230 
231 	return (0);
232 }
233 
234 /*
235  * The knote may be attached to a different process, which may exit,
236  * leaving nothing for the knote to be attached to.  So when the process
237  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
238  * it will be deleted when read out.  However, as part of the knote deletion,
239  * this routine is called, so a check is needed to avoid actually performing
240  * a detach, because the original process does not exist any more.
241  */
242 static void
243 filt_procdetach(struct knote *kn)
244 {
245 	struct proc *p = kn->kn_ptr.p_proc;
246 
247 	if (kn->kn_status & KN_DETACHED)
248 		return;
249 
250 	/* XXX locking?  this might modify another process. */
251 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
252 }
253 
254 static int
255 filt_proc(struct knote *kn, long hint)
256 {
257 	u_int event;
258 
259 	/*
260 	 * mask off extra data
261 	 */
262 	event = (u_int)hint & NOTE_PCTRLMASK;
263 
264 	/*
265 	 * if the user is interested in this event, record it.
266 	 */
267 	if (kn->kn_sfflags & event)
268 		kn->kn_fflags |= event;
269 
270 	/*
271 	 * process is gone, so flag the event as finished.
272 	 */
273 	if (event == NOTE_EXIT) {
274 		kn->kn_status |= KN_DETACHED;
275 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
276 		return (1);
277 	}
278 
279 	/*
280 	 * process forked, and user wants to track the new process,
281 	 * so attach a new knote to it, and immediately report an
282 	 * event with the parent's pid.
283 	 */
284 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
285 		struct kevent kev;
286 		int error;
287 
288 		/*
289 		 * register knote with new process.
290 		 */
291 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
292 		kev.filter = kn->kn_filter;
293 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
294 		kev.fflags = kn->kn_sfflags;
295 		kev.data = kn->kn_id;			/* parent */
296 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
297 		error = kqueue_register(kn->kn_kq, &kev, NULL);
298 		if (error)
299 			kn->kn_fflags |= NOTE_TRACKERR;
300 	}
301 
302 	return (kn->kn_fflags != 0);
303 }
304 
305 static void
306 filt_timerexpire(void *knx)
307 {
308 	struct knote *kn = knx;
309 	struct callout *calloutp;
310 	struct timeval tv;
311 	int tticks;
312 
313 	kn->kn_data++;
314 	KNOTE_ACTIVATE(kn);
315 
316 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
317 		tv.tv_sec = kn->kn_sdata / 1000;
318 		tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
319 		tticks = tvtohz_high(&tv);
320 		calloutp = (struct callout *)kn->kn_hook;
321 		callout_reset(calloutp, tticks, filt_timerexpire, kn);
322 	}
323 }
324 
325 /*
326  * data contains amount of time to sleep, in milliseconds
327  */
328 static int
329 filt_timerattach(struct knote *kn)
330 {
331 	struct callout *calloutp;
332 	struct timeval tv;
333 	int tticks;
334 
335 	if (kq_ncallouts >= kq_calloutmax)
336 		return (ENOMEM);
337 	kq_ncallouts++;
338 
339 	tv.tv_sec = kn->kn_sdata / 1000;
340 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
341 	tticks = tvtohz_high(&tv);
342 
343 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
344 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
345 	    M_KQUEUE, M_WAITOK);
346 	callout_init(calloutp);
347 	kn->kn_hook = (caddr_t)calloutp;
348 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
349 
350 	return (0);
351 }
352 
353 static void
354 filt_timerdetach(struct knote *kn)
355 {
356 	struct callout *calloutp;
357 
358 	calloutp = (struct callout *)kn->kn_hook;
359 	callout_stop(calloutp);
360 	FREE(calloutp, M_KQUEUE);
361 	kq_ncallouts--;
362 }
363 
364 static int
365 filt_timer(struct knote *kn, long hint)
366 {
367 
368 	return (kn->kn_data != 0);
369 }
370 
371 int
372 sys_kqueue(struct kqueue_args *uap)
373 {
374 	struct proc *p = curproc;
375 	struct filedesc *fdp = p->p_fd;
376 	struct kqueue *kq;
377 	struct file *fp;
378 	int fd, error;
379 
380 	error = falloc(p, &fp, &fd);
381 	if (error)
382 		return (error);
383 	fp->f_flag = FREAD | FWRITE;
384 	fp->f_type = DTYPE_KQUEUE;
385 	fp->f_ops = &kqueueops;
386 
387 	kq = malloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
388 	TAILQ_INIT(&kq->kq_head);
389 	kq->kq_fdp = fdp;
390 	fp->f_data = kq;
391 
392 	fsetfd(p, fp, fd);
393 	uap->sysmsg_result = fd;
394 	fdrop(fp);
395 	return (error);
396 }
397 
398 int
399 sys_kevent(struct kevent_args *uap)
400 {
401 	struct thread *td = curthread;
402 	struct proc *p = td->td_proc;
403 	struct kevent *kevp;
404 	struct kqueue *kq;
405 	struct file *fp = NULL;
406 	struct timespec ts;
407 	int i, n, nerrors, error;
408 
409 	KKASSERT(p);
410 
411 	fp = holdfp(p->p_fd, uap->fd, -1);
412 	if (fp == NULL)
413 		return (EBADF);
414 	if (fp->f_type != DTYPE_KQUEUE) {
415 		fdrop(fp);
416 		return (EBADF);
417 	}
418 
419 	if (uap->timeout != NULL) {
420 		error = copyin(uap->timeout, &ts, sizeof(ts));
421 		if (error)
422 			goto done;
423 		uap->timeout = &ts;
424 	}
425 
426 	kq = (struct kqueue *)fp->f_data;
427 	nerrors = 0;
428 
429 	while (uap->nchanges > 0) {
430 		n = uap->nchanges > KQ_NEVENTS ? KQ_NEVENTS : uap->nchanges;
431 		error = copyin(uap->changelist, kq->kq_kev,
432 		    n * sizeof(struct kevent));
433 		if (error)
434 			goto done;
435 		for (i = 0; i < n; i++) {
436 			kevp = &kq->kq_kev[i];
437 			kevp->flags &= ~EV_SYSFLAGS;
438 			error = kqueue_register(kq, kevp, td);
439 			if (error) {
440 				if (uap->nevents != 0) {
441 					kevp->flags = EV_ERROR;
442 					kevp->data = error;
443 					(void) copyout((caddr_t)kevp,
444 					    (caddr_t)uap->eventlist,
445 					    sizeof(*kevp));
446 					uap->eventlist++;
447 					uap->nevents--;
448 					nerrors++;
449 				} else {
450 					goto done;
451 				}
452 			}
453 		}
454 		uap->nchanges -= n;
455 		uap->changelist += n;
456 	}
457 	if (nerrors) {
458         	uap->sysmsg_result = nerrors;
459 		error = 0;
460 		goto done;
461 	}
462 
463 	error = kqueue_scan(fp, uap->nevents, uap->eventlist, uap->timeout, td, &uap->sysmsg_result);
464 done:
465 	if (fp != NULL)
466 		fdrop(fp);
467 	return (error);
468 }
469 
470 int
471 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td)
472 {
473 	struct filedesc *fdp = kq->kq_fdp;
474 	struct filterops *fops;
475 	struct file *fp = NULL;
476 	struct knote *kn = NULL;
477 	int error = 0;
478 
479 	if (kev->filter < 0) {
480 		if (kev->filter + EVFILT_SYSCOUNT < 0)
481 			return (EINVAL);
482 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
483 	} else {
484 		/*
485 		 * XXX
486 		 * filter attach routine is responsible for insuring that
487 		 * the identifier can be attached to it.
488 		 */
489 		printf("unknown filter: %d\n", kev->filter);
490 		return (EINVAL);
491 	}
492 
493 	if (fops->f_isfd) {
494 		/* validate descriptor */
495 		fp = holdfp(fdp, kev->ident, -1);
496 		if (fp == NULL)
497 			return (EBADF);
498 
499 		if (kev->ident < fdp->fd_knlistsize) {
500 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
501 				if (kq == kn->kn_kq &&
502 				    kev->filter == kn->kn_filter)
503 					break;
504 		}
505 	} else {
506 		if (fdp->fd_knhashmask != 0) {
507 			struct klist *list;
508 
509 			list = &fdp->fd_knhash[
510 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
511 			SLIST_FOREACH(kn, list, kn_link)
512 				if (kev->ident == kn->kn_id &&
513 				    kq == kn->kn_kq &&
514 				    kev->filter == kn->kn_filter)
515 					break;
516 		}
517 	}
518 
519 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
520 		error = ENOENT;
521 		goto done;
522 	}
523 
524 	/*
525 	 * kn now contains the matching knote, or NULL if no match
526 	 */
527 	if (kev->flags & EV_ADD) {
528 
529 		if (kn == NULL) {
530 			kn = knote_alloc();
531 			if (kn == NULL) {
532 				error = ENOMEM;
533 				goto done;
534 			}
535 			kn->kn_fp = fp;
536 			kn->kn_kq = kq;
537 			kn->kn_fop = fops;
538 
539 			/*
540 			 * apply reference count to knote structure, and
541 			 * do not release it at the end of this routine.
542 			 */
543 			fp = NULL;
544 
545 			kn->kn_sfflags = kev->fflags;
546 			kn->kn_sdata = kev->data;
547 			kev->fflags = 0;
548 			kev->data = 0;
549 			kn->kn_kevent = *kev;
550 
551 			knote_attach(kn, fdp);
552 			if ((error = fops->f_attach(kn)) != 0) {
553 				knote_drop(kn, td);
554 				goto done;
555 			}
556 		} else {
557 			/*
558 			 * The user may change some filter values after the
559 			 * initial EV_ADD, but doing so will not reset any
560 			 * filter which have already been triggered.
561 			 */
562 			kn->kn_sfflags = kev->fflags;
563 			kn->kn_sdata = kev->data;
564 			kn->kn_kevent.udata = kev->udata;
565 		}
566 
567 		crit_enter();
568 		if (kn->kn_fop->f_event(kn, 0))
569 			KNOTE_ACTIVATE(kn);
570 		crit_exit();
571 	} else if (kev->flags & EV_DELETE) {
572 		kn->kn_fop->f_detach(kn);
573 		knote_drop(kn, td);
574 		goto done;
575 	}
576 
577 	if ((kev->flags & EV_DISABLE) &&
578 	    ((kn->kn_status & KN_DISABLED) == 0)) {
579 		crit_enter();
580 		kn->kn_status |= KN_DISABLED;
581 		crit_exit();
582 	}
583 
584 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
585 		crit_enter();
586 		kn->kn_status &= ~KN_DISABLED;
587 		if ((kn->kn_status & KN_ACTIVE) &&
588 		    ((kn->kn_status & KN_QUEUED) == 0))
589 			knote_enqueue(kn);
590 		crit_exit();
591 	}
592 
593 done:
594 	if (fp != NULL)
595 		fdrop(fp);
596 	return (error);
597 }
598 
599 static int
600 kqueue_scan(struct file *fp, int maxevents, struct kevent *ulistp,
601 	const struct timespec *tsp, struct thread *td, int *res)
602 {
603 	struct kqueue *kq = (struct kqueue *)fp->f_data;
604 	struct kevent *kevp;
605 	struct timeval atv, rtv, ttv;
606 	struct knote *kn, marker;
607 	int count, timeout, nkev = 0, error = 0;
608 
609 	count = maxevents;
610 	if (count == 0)
611 		goto done;
612 
613 	if (tsp != NULL) {
614 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
615 		if (itimerfix(&atv)) {
616 			error = EINVAL;
617 			goto done;
618 		}
619 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
620 			timeout = -1;
621 		else
622 			timeout = atv.tv_sec > 24 * 60 * 60 ?
623 			    24 * 60 * 60 * hz : tvtohz_high(&atv);
624 		getmicrouptime(&rtv);
625 		timevaladd(&atv, &rtv);
626 	} else {
627 		atv.tv_sec = 0;
628 		atv.tv_usec = 0;
629 		timeout = 0;
630 	}
631 	goto start;
632 
633 retry:
634 	if (atv.tv_sec || atv.tv_usec) {
635 		getmicrouptime(&rtv);
636 		if (timevalcmp(&rtv, &atv, >=))
637 			goto done;
638 		ttv = atv;
639 		timevalsub(&ttv, &rtv);
640 		timeout = ttv.tv_sec > 24 * 60 * 60 ?
641 			24 * 60 * 60 * hz : tvtohz_high(&ttv);
642 	}
643 
644 start:
645 	kevp = kq->kq_kev;
646 	crit_enter();
647 	if (kq->kq_count == 0) {
648 		if (timeout < 0) {
649 			error = EWOULDBLOCK;
650 		} else {
651 			kq->kq_state |= KQ_SLEEP;
652 			error = tsleep(kq, PCATCH, "kqread", timeout);
653 		}
654 		crit_exit();
655 		if (error == 0)
656 			goto retry;
657 		/* don't restart after signals... */
658 		if (error == ERESTART)
659 			error = EINTR;
660 		else if (error == EWOULDBLOCK)
661 			error = 0;
662 		goto done;
663 	}
664 
665 	TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
666 	while (count) {
667 		kn = TAILQ_FIRST(&kq->kq_head);
668 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
669 		if (kn == &marker) {
670 			crit_exit();
671 			if (count == maxevents)
672 				goto retry;
673 			goto done;
674 		}
675 		if (kn->kn_status & KN_DISABLED) {
676 			kn->kn_status &= ~KN_QUEUED;
677 			kq->kq_count--;
678 			continue;
679 		}
680 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
681 		    kn->kn_fop->f_event(kn, 0) == 0) {
682 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
683 			kq->kq_count--;
684 			continue;
685 		}
686 		*kevp = kn->kn_kevent;
687 		kevp++;
688 		nkev++;
689 		if (kn->kn_flags & EV_ONESHOT) {
690 			kn->kn_status &= ~KN_QUEUED;
691 			kq->kq_count--;
692 			crit_exit();
693 			kn->kn_fop->f_detach(kn);
694 			knote_drop(kn, td);
695 			crit_enter();
696 		} else if (kn->kn_flags & EV_CLEAR) {
697 			kn->kn_data = 0;
698 			kn->kn_fflags = 0;
699 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
700 			kq->kq_count--;
701 		} else {
702 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
703 		}
704 		count--;
705 		if (nkev == KQ_NEVENTS) {
706 			crit_exit();
707 			error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
708 			    sizeof(struct kevent) * nkev);
709 			ulistp += nkev;
710 			nkev = 0;
711 			kevp = kq->kq_kev;
712 			crit_enter();
713 			if (error)
714 				break;
715 		}
716 	}
717 	TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
718 	crit_exit();
719 done:
720 	if (nkev != 0)
721 		error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
722 		    sizeof(struct kevent) * nkev);
723         *res = maxevents - count;
724 	return (error);
725 }
726 
727 /*
728  * XXX
729  * This could be expanded to call kqueue_scan, if desired.
730  *
731  * MPSAFE
732  */
733 static int
734 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
735 {
736 	return (ENXIO);
737 }
738 
739 /*
740  * MPSAFE
741  */
742 static int
743 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
744 {
745 	return (ENXIO);
746 }
747 
748 /*
749  * MPSAFE
750  */
751 static int
752 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct ucred *cred)
753 {
754 	return (ENOTTY);
755 }
756 
757 /*
758  * MPALMOSTSAFE - acquires mplock
759  */
760 static int
761 kqueue_poll(struct file *fp, int events, struct ucred *cred)
762 {
763 	struct kqueue *kq = (struct kqueue *)fp->f_data;
764 	int revents = 0;
765 
766 	get_mplock();
767 	crit_enter();
768         if (events & (POLLIN | POLLRDNORM)) {
769                 if (kq->kq_count) {
770                         revents |= events & (POLLIN | POLLRDNORM);
771 		} else {
772                         selrecord(curthread, &kq->kq_sel);
773 			kq->kq_state |= KQ_SEL;
774 		}
775 	}
776 	crit_exit();
777 	rel_mplock();
778 	return (revents);
779 }
780 
781 /*
782  * MPSAFE
783  */
784 static int
785 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred)
786 {
787 	struct kqueue *kq = (struct kqueue *)fp->f_data;
788 
789 	bzero((void *)st, sizeof(*st));
790 	st->st_size = kq->kq_count;
791 	st->st_blksize = sizeof(struct kevent);
792 	st->st_mode = S_IFIFO;
793 	return (0);
794 }
795 
796 /*
797  * MPALMOSTSAFE - acquires mplock
798  */
799 static int
800 kqueue_close(struct file *fp)
801 {
802 	struct thread *td = curthread;
803 	struct proc *p = td->td_proc;
804 	struct kqueue *kq = (struct kqueue *)fp->f_data;
805 	struct filedesc *fdp;
806 	struct knote **knp, *kn, *kn0;
807 	int i;
808 
809 	KKASSERT(p);
810 	get_mplock();
811 	fdp = p->p_fd;
812 	for (i = 0; i < fdp->fd_knlistsize; i++) {
813 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
814 		kn = *knp;
815 		while (kn != NULL) {
816 			kn0 = SLIST_NEXT(kn, kn_link);
817 			if (kq == kn->kn_kq) {
818 				kn->kn_fop->f_detach(kn);
819 				fdrop(kn->kn_fp);
820 				knote_free(kn);
821 				*knp = kn0;
822 			} else {
823 				knp = &SLIST_NEXT(kn, kn_link);
824 			}
825 			kn = kn0;
826 		}
827 	}
828 	if (fdp->fd_knhashmask != 0) {
829 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
830 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
831 			kn = *knp;
832 			while (kn != NULL) {
833 				kn0 = SLIST_NEXT(kn, kn_link);
834 				if (kq == kn->kn_kq) {
835 					kn->kn_fop->f_detach(kn);
836 		/* XXX non-fd release of kn->kn_ptr */
837 					knote_free(kn);
838 					*knp = kn0;
839 				} else {
840 					knp = &SLIST_NEXT(kn, kn_link);
841 				}
842 				kn = kn0;
843 			}
844 		}
845 	}
846 	fp->f_data = NULL;
847 	rel_mplock();
848 
849 	free(kq, M_KQUEUE);
850 	return (0);
851 }
852 
853 static void
854 kqueue_wakeup(struct kqueue *kq)
855 {
856 	if (kq->kq_state & KQ_SLEEP) {
857 		kq->kq_state &= ~KQ_SLEEP;
858 		wakeup(kq);
859 	}
860 	if (kq->kq_state & KQ_SEL) {
861 		kq->kq_state &= ~KQ_SEL;
862 		selwakeup(&kq->kq_sel);
863 	}
864 	KNOTE(&kq->kq_sel.si_note, 0);
865 }
866 
867 /*
868  * walk down a list of knotes, activating them if their event has triggered.
869  */
870 void
871 knote(struct klist *list, long hint)
872 {
873 	struct knote *kn;
874 
875 	SLIST_FOREACH(kn, list, kn_selnext)
876 		if (kn->kn_fop->f_event(kn, hint))
877 			KNOTE_ACTIVATE(kn);
878 }
879 
880 /*
881  * remove all knotes from a specified klist
882  */
883 void
884 knote_remove(struct thread *td, struct klist *list)
885 {
886 	struct knote *kn;
887 
888 	while ((kn = SLIST_FIRST(list)) != NULL) {
889 		kn->kn_fop->f_detach(kn);
890 		knote_drop(kn, td);
891 	}
892 }
893 
894 /*
895  * remove all knotes referencing a specified fd
896  */
897 void
898 knote_fdclose(struct proc *p, int fd)
899 {
900 	struct filedesc *fdp = p->p_fd;
901 	struct klist *list = &fdp->fd_knlist[fd];
902 
903 	knote_remove(p->p_thread, list);
904 }
905 
906 static void
907 knote_attach(struct knote *kn, struct filedesc *fdp)
908 {
909 	struct klist *list;
910 	int size;
911 
912 	if (! kn->kn_fop->f_isfd) {
913 		if (fdp->fd_knhashmask == 0)
914 			fdp->fd_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
915 			    &fdp->fd_knhashmask);
916 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
917 		goto done;
918 	}
919 
920 	if (fdp->fd_knlistsize <= kn->kn_id) {
921 		size = fdp->fd_knlistsize;
922 		while (size <= kn->kn_id)
923 			size += KQEXTENT;
924 		MALLOC(list, struct klist *,
925 		    size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
926 		bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list,
927 		    fdp->fd_knlistsize * sizeof(struct klist *));
928 		bzero((caddr_t)list +
929 		    fdp->fd_knlistsize * sizeof(struct klist *),
930 		    (size - fdp->fd_knlistsize) * sizeof(struct klist *));
931 		if (fdp->fd_knlist != NULL)
932 			FREE(fdp->fd_knlist, M_KQUEUE);
933 		fdp->fd_knlistsize = size;
934 		fdp->fd_knlist = list;
935 	}
936 	list = &fdp->fd_knlist[kn->kn_id];
937 done:
938 	SLIST_INSERT_HEAD(list, kn, kn_link);
939 	kn->kn_status = 0;
940 }
941 
942 /*
943  * should be called outside of a critical section, since we don't want to
944  * hold a critical section while calling fdrop and free.
945  */
946 static void
947 knote_drop(struct knote *kn, struct thread *td)
948 {
949         struct filedesc *fdp;
950 	struct klist *list;
951 
952 	KKASSERT(td->td_proc);
953         fdp = td->td_proc->p_fd;
954 	if (kn->kn_fop->f_isfd)
955 		list = &fdp->fd_knlist[kn->kn_id];
956 	else
957 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
958 
959 	SLIST_REMOVE(list, kn, knote, kn_link);
960 	if (kn->kn_status & KN_QUEUED)
961 		knote_dequeue(kn);
962 	if (kn->kn_fop->f_isfd)
963 		fdrop(kn->kn_fp);
964 	knote_free(kn);
965 }
966 
967 
968 static void
969 knote_enqueue(struct knote *kn)
970 {
971 	struct kqueue *kq = kn->kn_kq;
972 
973 	crit_enter();
974 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
975 
976 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
977 	kn->kn_status |= KN_QUEUED;
978 	kq->kq_count++;
979 	crit_exit();
980 	kqueue_wakeup(kq);
981 }
982 
983 static void
984 knote_dequeue(struct knote *kn)
985 {
986 	struct kqueue *kq = kn->kn_kq;
987 
988 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
989 	crit_enter();
990 
991 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
992 	kn->kn_status &= ~KN_QUEUED;
993 	kq->kq_count--;
994 	crit_exit();
995 }
996 
997 static void
998 knote_init(void)
999 {
1000 	knote_zone = zinit("KNOTE", sizeof(struct knote), 0, 0, 1);
1001 }
1002 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
1003 
1004 static struct knote *
1005 knote_alloc(void)
1006 {
1007 	return ((struct knote *)zalloc(knote_zone));
1008 }
1009 
1010 static void
1011 knote_free(struct knote *kn)
1012 {
1013 	zfree(knote_zone, kn);
1014 }
1015