xref: /dragonfly/sys/kern/kern_event.c (revision 6bd457ed)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27  * $DragonFly: src/sys/kern/kern_event.c,v 1.16 2005/07/13 01:38:50 dillon Exp $
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/fcntl.h>
38 #include <sys/select.h>
39 #include <sys/queue.h>
40 #include <sys/event.h>
41 #include <sys/eventvar.h>
42 #include <sys/poll.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/stat.h>
47 #include <sys/sysctl.h>
48 #include <sys/sysproto.h>
49 #include <sys/uio.h>
50 #include <sys/thread2.h>
51 #include <sys/file2.h>
52 
53 #include <vm/vm_zone.h>
54 
55 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
56 
57 static int	kqueue_scan(struct file *fp, int maxevents,
58 		    struct kevent *ulistp, const struct timespec *timeout,
59 		    struct proc *p, int *res);
60 static int 	kqueue_read(struct file *fp, struct uio *uio,
61 		    struct ucred *cred, int flags, struct thread *td);
62 static int	kqueue_write(struct file *fp, struct uio *uio,
63 		    struct ucred *cred, int flags, struct thread *td);
64 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
65 		    struct thread *td);
66 static int 	kqueue_poll(struct file *fp, int events, struct ucred *cred,
67 		    struct thread *td);
68 static int 	kqueue_kqfilter(struct file *fp, struct knote *kn);
69 static int 	kqueue_stat(struct file *fp, struct stat *st, struct thread *td);
70 static int 	kqueue_close(struct file *fp, struct thread *td);
71 static void 	kqueue_wakeup(struct kqueue *kq);
72 
73 static struct fileops kqueueops = {
74 	NULL,	/* port */
75 	NULL,	/* clone */
76 	kqueue_read,
77 	kqueue_write,
78 	kqueue_ioctl,
79 	kqueue_poll,
80 	kqueue_kqfilter,
81 	kqueue_stat,
82 	kqueue_close,
83 	nofo_shutdown
84 };
85 
86 static void 	knote_attach(struct knote *kn, struct filedesc *fdp);
87 static void 	knote_drop(struct knote *kn, struct thread *td);
88 static void 	knote_enqueue(struct knote *kn);
89 static void 	knote_dequeue(struct knote *kn);
90 static void 	knote_init(void);
91 static struct 	knote *knote_alloc(void);
92 static void 	knote_free(struct knote *kn);
93 
94 static void	filt_kqdetach(struct knote *kn);
95 static int	filt_kqueue(struct knote *kn, long hint);
96 static int	filt_procattach(struct knote *kn);
97 static void	filt_procdetach(struct knote *kn);
98 static int	filt_proc(struct knote *kn, long hint);
99 static int	filt_fileattach(struct knote *kn);
100 static void	filt_timerexpire(void *knx);
101 static int	filt_timerattach(struct knote *kn);
102 static void	filt_timerdetach(struct knote *kn);
103 static int	filt_timer(struct knote *kn, long hint);
104 
105 static struct filterops file_filtops =
106 	{ 1, filt_fileattach, NULL, NULL };
107 static struct filterops kqread_filtops =
108 	{ 1, NULL, filt_kqdetach, filt_kqueue };
109 static struct filterops proc_filtops =
110 	{ 0, filt_procattach, filt_procdetach, filt_proc };
111 static struct filterops timer_filtops =
112 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
113 
114 static vm_zone_t	knote_zone;
115 static int 		kq_ncallouts = 0;
116 static int 		kq_calloutmax = (4 * 1024);
117 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
118     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
119 
120 #define KNOTE_ACTIVATE(kn) do { 					\
121 	kn->kn_status |= KN_ACTIVE;					\
122 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
123 		knote_enqueue(kn);					\
124 } while(0)
125 
126 #define	KN_HASHSIZE		64		/* XXX should be tunable */
127 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
128 
129 extern struct filterops aio_filtops;
130 extern struct filterops sig_filtops;
131 
132 /*
133  * Table for for all system-defined filters.
134  */
135 static struct filterops *sysfilt_ops[] = {
136 	&file_filtops,			/* EVFILT_READ */
137 	&file_filtops,			/* EVFILT_WRITE */
138 	&aio_filtops,			/* EVFILT_AIO */
139 	&file_filtops,			/* EVFILT_VNODE */
140 	&proc_filtops,			/* EVFILT_PROC */
141 	&sig_filtops,			/* EVFILT_SIGNAL */
142 	&timer_filtops,			/* EVFILT_TIMER */
143 };
144 
145 static int
146 filt_fileattach(struct knote *kn)
147 {
148 	return (fo_kqfilter(kn->kn_fp, kn));
149 }
150 
151 /*ARGSUSED*/
152 static int
153 kqueue_kqfilter(struct file *fp, struct knote *kn)
154 {
155 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
156 
157 	if (kn->kn_filter != EVFILT_READ)
158 		return (1);
159 
160 	kn->kn_fop = &kqread_filtops;
161 	SLIST_INSERT_HEAD(&kq->kq_sel.si_note, kn, kn_selnext);
162 	return (0);
163 }
164 
165 static void
166 filt_kqdetach(struct knote *kn)
167 {
168 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
169 
170 	SLIST_REMOVE(&kq->kq_sel.si_note, kn, knote, kn_selnext);
171 }
172 
173 /*ARGSUSED*/
174 static int
175 filt_kqueue(struct knote *kn, long hint)
176 {
177 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
178 
179 	kn->kn_data = kq->kq_count;
180 	return (kn->kn_data > 0);
181 }
182 
183 static int
184 filt_procattach(struct knote *kn)
185 {
186 	struct proc *p;
187 	int immediate;
188 
189 	immediate = 0;
190 	p = pfind(kn->kn_id);
191 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
192 		p = zpfind(kn->kn_id);
193 		immediate = 1;
194 	}
195 	if (p == NULL)
196 		return (ESRCH);
197 	if (! PRISON_CHECK(curproc->p_ucred, p->p_ucred))
198 		return (EACCES);
199 
200 	kn->kn_ptr.p_proc = p;
201 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
202 
203 	/*
204 	 * internal flag indicating registration done by kernel
205 	 */
206 	if (kn->kn_flags & EV_FLAG1) {
207 		kn->kn_data = kn->kn_sdata;		/* ppid */
208 		kn->kn_fflags = NOTE_CHILD;
209 		kn->kn_flags &= ~EV_FLAG1;
210 	}
211 
212 	/* XXX lock the proc here while adding to the list? */
213 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
214 
215 	/*
216 	 * Immediately activate any exit notes if the target process is a
217 	 * zombie.  This is necessary to handle the case where the target
218 	 * process, e.g. a child, dies before the kevent is registered.
219 	 */
220 	if (immediate && filt_proc(kn, NOTE_EXIT))
221 		KNOTE_ACTIVATE(kn);
222 
223 	return (0);
224 }
225 
226 /*
227  * The knote may be attached to a different process, which may exit,
228  * leaving nothing for the knote to be attached to.  So when the process
229  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
230  * it will be deleted when read out.  However, as part of the knote deletion,
231  * this routine is called, so a check is needed to avoid actually performing
232  * a detach, because the original process does not exist any more.
233  */
234 static void
235 filt_procdetach(struct knote *kn)
236 {
237 	struct proc *p = kn->kn_ptr.p_proc;
238 
239 	if (kn->kn_status & KN_DETACHED)
240 		return;
241 
242 	/* XXX locking?  this might modify another process. */
243 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
244 }
245 
246 static int
247 filt_proc(struct knote *kn, long hint)
248 {
249 	u_int event;
250 
251 	/*
252 	 * mask off extra data
253 	 */
254 	event = (u_int)hint & NOTE_PCTRLMASK;
255 
256 	/*
257 	 * if the user is interested in this event, record it.
258 	 */
259 	if (kn->kn_sfflags & event)
260 		kn->kn_fflags |= event;
261 
262 	/*
263 	 * process is gone, so flag the event as finished.
264 	 */
265 	if (event == NOTE_EXIT) {
266 		kn->kn_status |= KN_DETACHED;
267 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
268 		return (1);
269 	}
270 
271 	/*
272 	 * process forked, and user wants to track the new process,
273 	 * so attach a new knote to it, and immediately report an
274 	 * event with the parent's pid.
275 	 */
276 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
277 		struct kevent kev;
278 		int error;
279 
280 		/*
281 		 * register knote with new process.
282 		 */
283 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
284 		kev.filter = kn->kn_filter;
285 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
286 		kev.fflags = kn->kn_sfflags;
287 		kev.data = kn->kn_id;			/* parent */
288 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
289 		error = kqueue_register(kn->kn_kq, &kev, NULL);
290 		if (error)
291 			kn->kn_fflags |= NOTE_TRACKERR;
292 	}
293 
294 	return (kn->kn_fflags != 0);
295 }
296 
297 static void
298 filt_timerexpire(void *knx)
299 {
300 	struct knote *kn = knx;
301 	struct callout *calloutp;
302 	struct timeval tv;
303 	int tticks;
304 
305 	kn->kn_data++;
306 	KNOTE_ACTIVATE(kn);
307 
308 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
309 		tv.tv_sec = kn->kn_sdata / 1000;
310 		tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
311 		tticks = tvtohz_high(&tv);
312 		calloutp = (struct callout *)kn->kn_hook;
313 		callout_reset(calloutp, tticks, filt_timerexpire, kn);
314 	}
315 }
316 
317 /*
318  * data contains amount of time to sleep, in milliseconds
319  */
320 static int
321 filt_timerattach(struct knote *kn)
322 {
323 	struct callout *calloutp;
324 	struct timeval tv;
325 	int tticks;
326 
327 	if (kq_ncallouts >= kq_calloutmax)
328 		return (ENOMEM);
329 	kq_ncallouts++;
330 
331 	tv.tv_sec = kn->kn_sdata / 1000;
332 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
333 	tticks = tvtohz_high(&tv);
334 
335 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
336 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
337 	    M_KQUEUE, M_WAITOK);
338 	callout_init(calloutp);
339 	kn->kn_hook = (caddr_t)calloutp;
340 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
341 
342 	return (0);
343 }
344 
345 static void
346 filt_timerdetach(struct knote *kn)
347 {
348 	struct callout *calloutp;
349 
350 	calloutp = (struct callout *)kn->kn_hook;
351 	callout_stop(calloutp);
352 	FREE(calloutp, M_KQUEUE);
353 	kq_ncallouts--;
354 }
355 
356 static int
357 filt_timer(struct knote *kn, long hint)
358 {
359 
360 	return (kn->kn_data != 0);
361 }
362 
363 int
364 kqueue(struct kqueue_args *uap)
365 {
366 	struct proc *p = curproc;
367 	struct filedesc *fdp = p->p_fd;
368 	struct kqueue *kq;
369 	struct file *fp;
370 	int fd, error;
371 
372 	error = falloc(p, &fp, &fd);
373 	if (error)
374 		return (error);
375 	fp->f_flag = FREAD | FWRITE;
376 	fp->f_type = DTYPE_KQUEUE;
377 	fp->f_ops = &kqueueops;
378 	kq = malloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
379 	TAILQ_INIT(&kq->kq_head);
380 	fp->f_data = (caddr_t)kq;
381 	uap->sysmsg_result = fd;
382 	fdrop(fp, curthread);
383 	if (fdp->fd_knlistsize < 0)
384 		fdp->fd_knlistsize = 0;		/* this process has a kq */
385 	kq->kq_fdp = fdp;
386 	return (error);
387 }
388 
389 int
390 kevent(struct kevent_args *uap)
391 {
392 	struct thread *td = curthread;
393 	struct proc *p = td->td_proc;
394 	struct filedesc *fdp;
395 	struct kevent *kevp;
396 	struct kqueue *kq;
397 	struct file *fp = NULL;
398 	struct timespec ts;
399 	int i, n, nerrors, error;
400 
401 	KKASSERT(p);
402 	fdp = p->p_fd;
403 
404         if (((u_int)uap->fd) >= fdp->fd_nfiles ||
405             (fp = fdp->fd_files[uap->fd].fp) == NULL ||
406 	    (fp->f_type != DTYPE_KQUEUE))
407 		return (EBADF);
408 
409 	fhold(fp);
410 
411 	if (uap->timeout != NULL) {
412 		error = copyin(uap->timeout, &ts, sizeof(ts));
413 		if (error)
414 			goto done;
415 		uap->timeout = &ts;
416 	}
417 
418 	kq = (struct kqueue *)fp->f_data;
419 	nerrors = 0;
420 
421 	while (uap->nchanges > 0) {
422 		n = uap->nchanges > KQ_NEVENTS ? KQ_NEVENTS : uap->nchanges;
423 		error = copyin(uap->changelist, kq->kq_kev,
424 		    n * sizeof(struct kevent));
425 		if (error)
426 			goto done;
427 		for (i = 0; i < n; i++) {
428 			kevp = &kq->kq_kev[i];
429 			kevp->flags &= ~EV_SYSFLAGS;
430 			error = kqueue_register(kq, kevp, td);
431 			if (error) {
432 				if (uap->nevents != 0) {
433 					kevp->flags = EV_ERROR;
434 					kevp->data = error;
435 					(void) copyout((caddr_t)kevp,
436 					    (caddr_t)uap->eventlist,
437 					    sizeof(*kevp));
438 					uap->eventlist++;
439 					uap->nevents--;
440 					nerrors++;
441 				} else {
442 					goto done;
443 				}
444 			}
445 		}
446 		uap->nchanges -= n;
447 		uap->changelist += n;
448 	}
449 	if (nerrors) {
450         	uap->sysmsg_result = nerrors;
451 		error = 0;
452 		goto done;
453 	}
454 
455 	error = kqueue_scan(fp, uap->nevents, uap->eventlist, uap->timeout, p, &uap->sysmsg_result);
456 done:
457 	if (fp != NULL)
458 		fdrop(fp, p->p_thread);
459 	return (error);
460 }
461 
462 int
463 kqueue_register(struct kqueue *kq, struct kevent *kev, struct thread *td)
464 {
465 	struct filedesc *fdp = kq->kq_fdp;
466 	struct filterops *fops;
467 	struct file *fp = NULL;
468 	struct knote *kn = NULL;
469 	int error = 0;
470 
471 	if (kev->filter < 0) {
472 		if (kev->filter + EVFILT_SYSCOUNT < 0)
473 			return (EINVAL);
474 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
475 	} else {
476 		/*
477 		 * XXX
478 		 * filter attach routine is responsible for insuring that
479 		 * the identifier can be attached to it.
480 		 */
481 		printf("unknown filter: %d\n", kev->filter);
482 		return (EINVAL);
483 	}
484 
485 	if (fops->f_isfd) {
486 		/* validate descriptor */
487 		if ((u_int)kev->ident >= fdp->fd_nfiles ||
488 		    (fp = fdp->fd_files[kev->ident].fp) == NULL)
489 			return (EBADF);
490 		fhold(fp);
491 
492 		if (kev->ident < fdp->fd_knlistsize) {
493 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
494 				if (kq == kn->kn_kq &&
495 				    kev->filter == kn->kn_filter)
496 					break;
497 		}
498 	} else {
499 		if (fdp->fd_knhashmask != 0) {
500 			struct klist *list;
501 
502 			list = &fdp->fd_knhash[
503 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
504 			SLIST_FOREACH(kn, list, kn_link)
505 				if (kev->ident == kn->kn_id &&
506 				    kq == kn->kn_kq &&
507 				    kev->filter == kn->kn_filter)
508 					break;
509 		}
510 	}
511 
512 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
513 		error = ENOENT;
514 		goto done;
515 	}
516 
517 	/*
518 	 * kn now contains the matching knote, or NULL if no match
519 	 */
520 	if (kev->flags & EV_ADD) {
521 
522 		if (kn == NULL) {
523 			kn = knote_alloc();
524 			if (kn == NULL) {
525 				error = ENOMEM;
526 				goto done;
527 			}
528 			kn->kn_fp = fp;
529 			kn->kn_kq = kq;
530 			kn->kn_fop = fops;
531 
532 			/*
533 			 * apply reference count to knote structure, and
534 			 * do not release it at the end of this routine.
535 			 */
536 			fp = NULL;
537 
538 			kn->kn_sfflags = kev->fflags;
539 			kn->kn_sdata = kev->data;
540 			kev->fflags = 0;
541 			kev->data = 0;
542 			kn->kn_kevent = *kev;
543 
544 			knote_attach(kn, fdp);
545 			if ((error = fops->f_attach(kn)) != 0) {
546 				knote_drop(kn, td);
547 				goto done;
548 			}
549 		} else {
550 			/*
551 			 * The user may change some filter values after the
552 			 * initial EV_ADD, but doing so will not reset any
553 			 * filter which have already been triggered.
554 			 */
555 			kn->kn_sfflags = kev->fflags;
556 			kn->kn_sdata = kev->data;
557 			kn->kn_kevent.udata = kev->udata;
558 		}
559 
560 		crit_enter();
561 		if (kn->kn_fop->f_event(kn, 0))
562 			KNOTE_ACTIVATE(kn);
563 		crit_exit();
564 	} else if (kev->flags & EV_DELETE) {
565 		kn->kn_fop->f_detach(kn);
566 		knote_drop(kn, td);
567 		goto done;
568 	}
569 
570 	if ((kev->flags & EV_DISABLE) &&
571 	    ((kn->kn_status & KN_DISABLED) == 0)) {
572 		crit_enter();
573 		kn->kn_status |= KN_DISABLED;
574 		crit_exit();
575 	}
576 
577 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
578 		crit_enter();
579 		kn->kn_status &= ~KN_DISABLED;
580 		if ((kn->kn_status & KN_ACTIVE) &&
581 		    ((kn->kn_status & KN_QUEUED) == 0))
582 			knote_enqueue(kn);
583 		crit_exit();
584 	}
585 
586 done:
587 	if (fp != NULL)
588 		fdrop(fp, td);
589 	return (error);
590 }
591 
592 static int
593 kqueue_scan(struct file *fp, int maxevents, struct kevent *ulistp,
594 	const struct timespec *tsp, struct proc *p, int *res)
595 {
596 	struct thread *td = p->p_thread;
597 	struct kqueue *kq = (struct kqueue *)fp->f_data;
598 	struct kevent *kevp;
599 	struct timeval atv, rtv, ttv;
600 	struct knote *kn, marker;
601 	int count, timeout, nkev = 0, error = 0;
602 
603 	count = maxevents;
604 	if (count == 0)
605 		goto done;
606 
607 	if (tsp != NULL) {
608 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
609 		if (itimerfix(&atv)) {
610 			error = EINVAL;
611 			goto done;
612 		}
613 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
614 			timeout = -1;
615 		else
616 			timeout = atv.tv_sec > 24 * 60 * 60 ?
617 			    24 * 60 * 60 * hz : tvtohz_high(&atv);
618 		getmicrouptime(&rtv);
619 		timevaladd(&atv, &rtv);
620 	} else {
621 		atv.tv_sec = 0;
622 		atv.tv_usec = 0;
623 		timeout = 0;
624 	}
625 	goto start;
626 
627 retry:
628 	if (atv.tv_sec || atv.tv_usec) {
629 		getmicrouptime(&rtv);
630 		if (timevalcmp(&rtv, &atv, >=))
631 			goto done;
632 		ttv = atv;
633 		timevalsub(&ttv, &rtv);
634 		timeout = ttv.tv_sec > 24 * 60 * 60 ?
635 			24 * 60 * 60 * hz : tvtohz_high(&ttv);
636 	}
637 
638 start:
639 	kevp = kq->kq_kev;
640 	crit_enter();
641 	if (kq->kq_count == 0) {
642 		if (timeout < 0) {
643 			error = EWOULDBLOCK;
644 		} else {
645 			kq->kq_state |= KQ_SLEEP;
646 			error = tsleep(kq, PCATCH, "kqread", timeout);
647 		}
648 		crit_exit();
649 		if (error == 0)
650 			goto retry;
651 		/* don't restart after signals... */
652 		if (error == ERESTART)
653 			error = EINTR;
654 		else if (error == EWOULDBLOCK)
655 			error = 0;
656 		goto done;
657 	}
658 
659 	TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
660 	while (count) {
661 		kn = TAILQ_FIRST(&kq->kq_head);
662 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
663 		if (kn == &marker) {
664 			crit_exit();
665 			if (count == maxevents)
666 				goto retry;
667 			goto done;
668 		}
669 		if (kn->kn_status & KN_DISABLED) {
670 			kn->kn_status &= ~KN_QUEUED;
671 			kq->kq_count--;
672 			continue;
673 		}
674 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
675 		    kn->kn_fop->f_event(kn, 0) == 0) {
676 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
677 			kq->kq_count--;
678 			continue;
679 		}
680 		*kevp = kn->kn_kevent;
681 		kevp++;
682 		nkev++;
683 		if (kn->kn_flags & EV_ONESHOT) {
684 			kn->kn_status &= ~KN_QUEUED;
685 			kq->kq_count--;
686 			crit_exit();
687 			kn->kn_fop->f_detach(kn);
688 			knote_drop(kn, td);
689 			crit_enter();
690 		} else if (kn->kn_flags & EV_CLEAR) {
691 			kn->kn_data = 0;
692 			kn->kn_fflags = 0;
693 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
694 			kq->kq_count--;
695 		} else {
696 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
697 		}
698 		count--;
699 		if (nkev == KQ_NEVENTS) {
700 			crit_exit();
701 			error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
702 			    sizeof(struct kevent) * nkev);
703 			ulistp += nkev;
704 			nkev = 0;
705 			kevp = kq->kq_kev;
706 			crit_enter();
707 			if (error)
708 				break;
709 		}
710 	}
711 	TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
712 	crit_exit();
713 done:
714 	if (nkev != 0)
715 		error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
716 		    sizeof(struct kevent) * nkev);
717         *res = maxevents - count;
718 	return (error);
719 }
720 
721 /*
722  * XXX
723  * This could be expanded to call kqueue_scan, if desired.
724  */
725 /*ARGSUSED*/
726 static int
727 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred,
728 	int flags, struct thread *td)
729 {
730 	return (ENXIO);
731 }
732 
733 /*ARGSUSED*/
734 static int
735 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred,
736 	 int flags, struct thread *td)
737 {
738 	return (ENXIO);
739 }
740 
741 /*ARGSUSED*/
742 static int
743 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct thread *td)
744 {
745 	return (ENOTTY);
746 }
747 
748 /*ARGSUSED*/
749 static int
750 kqueue_poll(struct file *fp, int events, struct ucred *cred, struct thread *td)
751 {
752 	struct kqueue *kq = (struct kqueue *)fp->f_data;
753 	int revents = 0;
754 
755 	crit_enter();
756         if (events & (POLLIN | POLLRDNORM)) {
757                 if (kq->kq_count) {
758                         revents |= events & (POLLIN | POLLRDNORM);
759 		} else {
760                         selrecord(td, &kq->kq_sel);
761 			kq->kq_state |= KQ_SEL;
762 		}
763 	}
764 	crit_exit();
765 	return (revents);
766 }
767 
768 /*ARGSUSED*/
769 static int
770 kqueue_stat(struct file *fp, struct stat *st, struct thread *td)
771 {
772 	struct kqueue *kq = (struct kqueue *)fp->f_data;
773 
774 	bzero((void *)st, sizeof(*st));
775 	st->st_size = kq->kq_count;
776 	st->st_blksize = sizeof(struct kevent);
777 	st->st_mode = S_IFIFO;
778 	return (0);
779 }
780 
781 /*ARGSUSED*/
782 static int
783 kqueue_close(struct file *fp, struct thread *td)
784 {
785 	struct proc *p = td->td_proc;
786 	struct kqueue *kq = (struct kqueue *)fp->f_data;
787 	struct filedesc *fdp;
788 	struct knote **knp, *kn, *kn0;
789 	int i;
790 
791 	KKASSERT(p);
792 	fdp = p->p_fd;
793 	for (i = 0; i < fdp->fd_knlistsize; i++) {
794 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
795 		kn = *knp;
796 		while (kn != NULL) {
797 			kn0 = SLIST_NEXT(kn, kn_link);
798 			if (kq == kn->kn_kq) {
799 				kn->kn_fop->f_detach(kn);
800 				fdrop(kn->kn_fp, td);
801 				knote_free(kn);
802 				*knp = kn0;
803 			} else {
804 				knp = &SLIST_NEXT(kn, kn_link);
805 			}
806 			kn = kn0;
807 		}
808 	}
809 	if (fdp->fd_knhashmask != 0) {
810 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
811 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
812 			kn = *knp;
813 			while (kn != NULL) {
814 				kn0 = SLIST_NEXT(kn, kn_link);
815 				if (kq == kn->kn_kq) {
816 					kn->kn_fop->f_detach(kn);
817 		/* XXX non-fd release of kn->kn_ptr */
818 					knote_free(kn);
819 					*knp = kn0;
820 				} else {
821 					knp = &SLIST_NEXT(kn, kn_link);
822 				}
823 				kn = kn0;
824 			}
825 		}
826 	}
827 	free(kq, M_KQUEUE);
828 	fp->f_data = NULL;
829 
830 	return (0);
831 }
832 
833 static void
834 kqueue_wakeup(struct kqueue *kq)
835 {
836 
837 	if (kq->kq_state & KQ_SLEEP) {
838 		kq->kq_state &= ~KQ_SLEEP;
839 		wakeup(kq);
840 	}
841 	if (kq->kq_state & KQ_SEL) {
842 		kq->kq_state &= ~KQ_SEL;
843 		selwakeup(&kq->kq_sel);
844 	}
845 	KNOTE(&kq->kq_sel.si_note, 0);
846 }
847 
848 /*
849  * walk down a list of knotes, activating them if their event has triggered.
850  */
851 void
852 knote(struct klist *list, long hint)
853 {
854 	struct knote *kn;
855 
856 	SLIST_FOREACH(kn, list, kn_selnext)
857 		if (kn->kn_fop->f_event(kn, hint))
858 			KNOTE_ACTIVATE(kn);
859 }
860 
861 /*
862  * remove all knotes from a specified klist
863  */
864 void
865 knote_remove(struct thread *td, struct klist *list)
866 {
867 	struct knote *kn;
868 
869 	while ((kn = SLIST_FIRST(list)) != NULL) {
870 		kn->kn_fop->f_detach(kn);
871 		knote_drop(kn, td);
872 	}
873 }
874 
875 /*
876  * remove all knotes referencing a specified fd
877  */
878 void
879 knote_fdclose(struct proc *p, int fd)
880 {
881 	struct filedesc *fdp = p->p_fd;
882 	struct klist *list = &fdp->fd_knlist[fd];
883 
884 	knote_remove(p->p_thread, list);
885 }
886 
887 static void
888 knote_attach(struct knote *kn, struct filedesc *fdp)
889 {
890 	struct klist *list;
891 	int size;
892 
893 	if (! kn->kn_fop->f_isfd) {
894 		if (fdp->fd_knhashmask == 0)
895 			fdp->fd_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
896 			    &fdp->fd_knhashmask);
897 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
898 		goto done;
899 	}
900 
901 	if (fdp->fd_knlistsize <= kn->kn_id) {
902 		size = fdp->fd_knlistsize;
903 		while (size <= kn->kn_id)
904 			size += KQEXTENT;
905 		MALLOC(list, struct klist *,
906 		    size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
907 		bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list,
908 		    fdp->fd_knlistsize * sizeof(struct klist *));
909 		bzero((caddr_t)list +
910 		    fdp->fd_knlistsize * sizeof(struct klist *),
911 		    (size - fdp->fd_knlistsize) * sizeof(struct klist *));
912 		if (fdp->fd_knlist != NULL)
913 			FREE(fdp->fd_knlist, M_KQUEUE);
914 		fdp->fd_knlistsize = size;
915 		fdp->fd_knlist = list;
916 	}
917 	list = &fdp->fd_knlist[kn->kn_id];
918 done:
919 	SLIST_INSERT_HEAD(list, kn, kn_link);
920 	kn->kn_status = 0;
921 }
922 
923 /*
924  * should be called outside of a critical section, since we don't want to
925  * hold a critical section while calling fdrop and free.
926  */
927 static void
928 knote_drop(struct knote *kn, struct thread *td)
929 {
930         struct filedesc *fdp;
931 	struct klist *list;
932 
933 	KKASSERT(td->td_proc);
934         fdp = td->td_proc->p_fd;
935 	if (kn->kn_fop->f_isfd)
936 		list = &fdp->fd_knlist[kn->kn_id];
937 	else
938 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
939 
940 	SLIST_REMOVE(list, kn, knote, kn_link);
941 	if (kn->kn_status & KN_QUEUED)
942 		knote_dequeue(kn);
943 	if (kn->kn_fop->f_isfd)
944 		fdrop(kn->kn_fp, td);
945 	knote_free(kn);
946 }
947 
948 
949 static void
950 knote_enqueue(struct knote *kn)
951 {
952 	struct kqueue *kq = kn->kn_kq;
953 
954 	crit_enter();
955 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
956 
957 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
958 	kn->kn_status |= KN_QUEUED;
959 	kq->kq_count++;
960 	crit_exit();
961 	kqueue_wakeup(kq);
962 }
963 
964 static void
965 knote_dequeue(struct knote *kn)
966 {
967 	struct kqueue *kq = kn->kn_kq;
968 
969 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
970 	crit_enter();
971 
972 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
973 	kn->kn_status &= ~KN_QUEUED;
974 	kq->kq_count--;
975 	crit_exit();
976 }
977 
978 static void
979 knote_init(void)
980 {
981 	knote_zone = zinit("KNOTE", sizeof(struct knote), 0, 0, 1);
982 }
983 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
984 
985 static struct knote *
986 knote_alloc(void)
987 {
988 	return ((struct knote *)zalloc(knote_zone));
989 }
990 
991 static void
992 knote_free(struct knote *kn)
993 {
994 	zfree(knote_zone, kn);
995 }
996