xref: /dragonfly/sys/kern/kern_event.c (revision 6e316fcd)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/malloc.h>
34 #include <sys/unistd.h>
35 #include <sys/file.h>
36 #include <sys/lock.h>
37 #include <sys/fcntl.h>
38 #include <sys/queue.h>
39 #include <sys/event.h>
40 #include <sys/eventvar.h>
41 #include <sys/protosw.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/sysproto.h>
47 #include <sys/thread.h>
48 #include <sys/uio.h>
49 #include <sys/signalvar.h>
50 #include <sys/filio.h>
51 #include <sys/ktr.h>
52 #include <sys/spinlock.h>
53 
54 #include <sys/thread2.h>
55 #include <sys/file2.h>
56 #include <sys/mplock2.h>
57 #include <sys/spinlock2.h>
58 
59 #define EVENT_REGISTER	1
60 #define EVENT_PROCESS	2
61 
62 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
63 
64 struct kevent_copyin_args {
65 	struct kevent_args	*ka;
66 	int			pchanges;
67 };
68 
69 #define KNOTE_CACHE_MAX		8
70 
71 struct knote_cache_list {
72 	struct klist		knote_cache;
73 	int			knote_cache_cnt;
74 } __cachealign;
75 
76 static int	kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
77 		    struct knote *marker, int closedcounter);
78 static int 	kqueue_read(struct file *fp, struct uio *uio,
79 		    struct ucred *cred, int flags);
80 static int	kqueue_write(struct file *fp, struct uio *uio,
81 		    struct ucred *cred, int flags);
82 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
83 		    struct ucred *cred, struct sysmsg *msg);
84 static int 	kqueue_kqfilter(struct file *fp, struct knote *kn);
85 static int 	kqueue_stat(struct file *fp, struct stat *st,
86 		    struct ucred *cred);
87 static int 	kqueue_close(struct file *fp);
88 static void	kqueue_wakeup(struct kqueue *kq);
89 static int	filter_attach(struct knote *kn);
90 static int	filter_event(struct knote *kn, long hint);
91 
92 /*
93  * MPSAFE
94  */
95 static struct fileops kqueueops = {
96 	.fo_read = kqueue_read,
97 	.fo_write = kqueue_write,
98 	.fo_ioctl = kqueue_ioctl,
99 	.fo_kqfilter = kqueue_kqfilter,
100 	.fo_stat = kqueue_stat,
101 	.fo_close = kqueue_close,
102 	.fo_shutdown = nofo_shutdown
103 };
104 
105 static void 	knote_attach(struct knote *kn);
106 static void 	knote_drop(struct knote *kn);
107 static void	knote_detach_and_drop(struct knote *kn);
108 static void 	knote_enqueue(struct knote *kn);
109 static void 	knote_dequeue(struct knote *kn);
110 static struct 	knote *knote_alloc(void);
111 static void 	knote_free(struct knote *kn);
112 
113 static void	precise_sleep_intr(systimer_t info, int in_ipi,
114 				   struct intrframe *frame);
115 static int	precise_sleep(void *ident, int flags, const char *wmesg,
116 			      int us);
117 
118 static void	filt_kqdetach(struct knote *kn);
119 static int	filt_kqueue(struct knote *kn, long hint);
120 static int	filt_procattach(struct knote *kn);
121 static void	filt_procdetach(struct knote *kn);
122 static int	filt_proc(struct knote *kn, long hint);
123 static int	filt_fileattach(struct knote *kn);
124 static void	filt_timerexpire(void *knx);
125 static int	filt_timerattach(struct knote *kn);
126 static void	filt_timerdetach(struct knote *kn);
127 static int	filt_timer(struct knote *kn, long hint);
128 static int	filt_userattach(struct knote *kn);
129 static void	filt_userdetach(struct knote *kn);
130 static int	filt_user(struct knote *kn, long hint);
131 static void	filt_usertouch(struct knote *kn, struct kevent *kev,
132 				u_long type);
133 static int	filt_fsattach(struct knote *kn);
134 static void	filt_fsdetach(struct knote *kn);
135 static int	filt_fs(struct knote *kn, long hint);
136 
137 static struct filterops file_filtops =
138 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, filt_fileattach, NULL, NULL };
139 static struct filterops kqread_filtops =
140 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, NULL, filt_kqdetach, filt_kqueue };
141 static struct filterops proc_filtops =
142 	{ FILTEROP_MPSAFE, filt_procattach, filt_procdetach, filt_proc };
143 static struct filterops timer_filtops =
144 	{ FILTEROP_MPSAFE, filt_timerattach, filt_timerdetach, filt_timer };
145 static struct filterops user_filtops =
146 	{ FILTEROP_MPSAFE, filt_userattach, filt_userdetach, filt_user };
147 static struct filterops fs_filtops =
148 	{ FILTEROP_MPSAFE, filt_fsattach, filt_fsdetach, filt_fs };
149 
150 static int 		kq_ncallouts = 0;
151 static int 		kq_calloutmax = 65536;
152 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
153     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
154 static int		kq_checkloop = 1000000;
155 SYSCTL_INT(_kern, OID_AUTO, kq_checkloop, CTLFLAG_RW,
156     &kq_checkloop, 0, "Maximum number of loops for kqueue scan");
157 static int		kq_sleep_threshold = 20000;
158 SYSCTL_INT(_kern, OID_AUTO, kq_sleep_threshold, CTLFLAG_RW,
159     &kq_sleep_threshold, 0, "Minimum sleep duration without busy-looping");
160 
161 #define KNOTE_ACTIVATE(kn) do { 					\
162 	kn->kn_status |= KN_ACTIVE;					\
163 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
164 		knote_enqueue(kn);					\
165 } while(0)
166 
167 #define	KN_HASHSIZE		64		/* XXX should be tunable */
168 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
169 
170 extern struct filterops aio_filtops;
171 extern struct filterops sig_filtops;
172 
173 /*
174  * Table for for all system-defined filters.
175  */
176 static struct filterops *sysfilt_ops[] = {
177 	&file_filtops,			/* EVFILT_READ */
178 	&file_filtops,			/* EVFILT_WRITE */
179 	&aio_filtops,			/* EVFILT_AIO */
180 	&file_filtops,			/* EVFILT_VNODE */
181 	&proc_filtops,			/* EVFILT_PROC */
182 	&sig_filtops,			/* EVFILT_SIGNAL */
183 	&timer_filtops,			/* EVFILT_TIMER */
184 	&file_filtops,			/* EVFILT_EXCEPT */
185 	&user_filtops,			/* EVFILT_USER */
186 	&fs_filtops,			/* EVFILT_FS */
187 };
188 
189 static struct knote_cache_list	knote_cache_lists[MAXCPU];
190 
191 /*
192  * Acquire a knote, return non-zero on success, 0 on failure.
193  *
194  * If we cannot acquire the knote we sleep and return 0.  The knote
195  * may be stale on return in this case and the caller must restart
196  * whatever loop they are in.
197  *
198  * Related kq token must be held.
199  */
200 static __inline int
201 knote_acquire(struct knote *kn)
202 {
203 	if (kn->kn_status & KN_PROCESSING) {
204 		kn->kn_status |= KN_WAITING | KN_REPROCESS;
205 		tsleep(kn, 0, "kqepts", hz);
206 		/* knote may be stale now */
207 		return(0);
208 	}
209 	kn->kn_status |= KN_PROCESSING;
210 	return(1);
211 }
212 
213 /*
214  * Release an acquired knote, clearing KN_PROCESSING and handling any
215  * KN_REPROCESS events.
216  *
217  * Caller must be holding the related kq token
218  *
219  * Non-zero is returned if the knote is destroyed or detached.
220  */
221 static __inline int
222 knote_release(struct knote *kn)
223 {
224 	int ret;
225 
226 	while (kn->kn_status & KN_REPROCESS) {
227 		kn->kn_status &= ~KN_REPROCESS;
228 		if (kn->kn_status & KN_WAITING) {
229 			kn->kn_status &= ~KN_WAITING;
230 			wakeup(kn);
231 		}
232 		if (kn->kn_status & KN_DELETING) {
233 			knote_detach_and_drop(kn);
234 			return(1);
235 			/* NOT REACHED */
236 		}
237 		if (filter_event(kn, 0))
238 			KNOTE_ACTIVATE(kn);
239 	}
240 	if (kn->kn_status & KN_DETACHED)
241 		ret = 1;
242 	else
243 		ret = 0;
244 	kn->kn_status &= ~KN_PROCESSING;
245 	/* kn should not be accessed anymore */
246 	return ret;
247 }
248 
249 static int
250 filt_fileattach(struct knote *kn)
251 {
252 	return (fo_kqfilter(kn->kn_fp, kn));
253 }
254 
255 /*
256  * MPSAFE
257  */
258 static int
259 kqueue_kqfilter(struct file *fp, struct knote *kn)
260 {
261 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
262 
263 	if (kn->kn_filter != EVFILT_READ)
264 		return (EOPNOTSUPP);
265 
266 	kn->kn_fop = &kqread_filtops;
267 	knote_insert(&kq->kq_kqinfo.ki_note, kn);
268 	return (0);
269 }
270 
271 static void
272 filt_kqdetach(struct knote *kn)
273 {
274 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
275 
276 	knote_remove(&kq->kq_kqinfo.ki_note, kn);
277 }
278 
279 /*ARGSUSED*/
280 static int
281 filt_kqueue(struct knote *kn, long hint)
282 {
283 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
284 
285 	kn->kn_data = kq->kq_count;
286 	return (kn->kn_data > 0);
287 }
288 
289 static int
290 filt_procattach(struct knote *kn)
291 {
292 	struct proc *p;
293 	int immediate;
294 
295 	immediate = 0;
296 	p = pfind(kn->kn_id);
297 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
298 		p = zpfind(kn->kn_id);
299 		immediate = 1;
300 	}
301 	if (p == NULL) {
302 		return (ESRCH);
303 	}
304 	if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
305 		if (p)
306 			PRELE(p);
307 		return (EACCES);
308 	}
309 
310 	lwkt_gettoken(&p->p_token);
311 	kn->kn_ptr.p_proc = p;
312 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
313 
314 	/*
315 	 * internal flag indicating registration done by kernel
316 	 */
317 	if (kn->kn_flags & EV_FLAG1) {
318 		kn->kn_data = kn->kn_sdata;		/* ppid */
319 		kn->kn_fflags = NOTE_CHILD;
320 		kn->kn_flags &= ~EV_FLAG1;
321 	}
322 
323 	knote_insert(&p->p_klist, kn);
324 
325 	/*
326 	 * Immediately activate any exit notes if the target process is a
327 	 * zombie.  This is necessary to handle the case where the target
328 	 * process, e.g. a child, dies before the kevent is negistered.
329 	 */
330 	if (immediate && filt_proc(kn, NOTE_EXIT))
331 		KNOTE_ACTIVATE(kn);
332 	lwkt_reltoken(&p->p_token);
333 	PRELE(p);
334 
335 	return (0);
336 }
337 
338 /*
339  * The knote may be attached to a different process, which may exit,
340  * leaving nothing for the knote to be attached to.  So when the process
341  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
342  * it will be deleted when read out.  However, as part of the knote deletion,
343  * this routine is called, so a check is needed to avoid actually performing
344  * a detach, because the original process does not exist any more.
345  */
346 static void
347 filt_procdetach(struct knote *kn)
348 {
349 	struct proc *p;
350 
351 	if (kn->kn_status & KN_DETACHED)
352 		return;
353 	p = kn->kn_ptr.p_proc;
354 	knote_remove(&p->p_klist, kn);
355 }
356 
357 static int
358 filt_proc(struct knote *kn, long hint)
359 {
360 	u_int event;
361 
362 	/*
363 	 * mask off extra data
364 	 */
365 	event = (u_int)hint & NOTE_PCTRLMASK;
366 
367 	/*
368 	 * if the user is interested in this event, record it.
369 	 */
370 	if (kn->kn_sfflags & event)
371 		kn->kn_fflags |= event;
372 
373 	/*
374 	 * Process is gone, so flag the event as finished.  Detach the
375 	 * knote from the process now because the process will be poof,
376 	 * gone later on.
377 	 */
378 	if (event == NOTE_EXIT) {
379 		struct proc *p = kn->kn_ptr.p_proc;
380 		if ((kn->kn_status & KN_DETACHED) == 0) {
381 			PHOLD(p);
382 			knote_remove(&p->p_klist, kn);
383 			kn->kn_status |= KN_DETACHED;
384 			kn->kn_data = p->p_xstat;
385 			kn->kn_ptr.p_proc = NULL;
386 			PRELE(p);
387 		}
388 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
389 		return (1);
390 	}
391 
392 	/*
393 	 * process forked, and user wants to track the new process,
394 	 * so attach a new knote to it, and immediately report an
395 	 * event with the parent's pid.
396 	 */
397 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
398 		struct kevent kev;
399 		int error;
400 		int n;
401 
402 		/*
403 		 * register knote with new process.
404 		 */
405 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
406 		kev.filter = kn->kn_filter;
407 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
408 		kev.fflags = kn->kn_sfflags;
409 		kev.data = kn->kn_id;			/* parent */
410 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
411 		n = 1;
412 		error = kqueue_register(kn->kn_kq, &kev, &n);
413 		if (error)
414 			kn->kn_fflags |= NOTE_TRACKERR;
415 	}
416 
417 	return (kn->kn_fflags != 0);
418 }
419 
420 static void
421 filt_timerreset(struct knote *kn)
422 {
423 	struct callout *calloutp;
424 	struct timeval tv;
425 	int tticks;
426 
427 	tv.tv_sec = kn->kn_sdata / 1000;
428 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
429 	tticks = tvtohz_high(&tv);
430 	calloutp = (struct callout *)kn->kn_hook;
431 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
432 }
433 
434 /*
435  * The callout interlocks with callout_stop() but can still
436  * race a deletion so if KN_DELETING is set we just don't touch
437  * the knote.
438  */
439 static void
440 filt_timerexpire(void *knx)
441 {
442 	struct knote *kn = knx;
443 	struct kqueue *kq = kn->kn_kq;
444 
445 	lwkt_getpooltoken(kq);
446 
447 	/*
448 	 * Open knote_acquire(), since we can't sleep in callout,
449 	 * however, we do need to record this expiration.
450 	 */
451 	kn->kn_data++;
452 	if (kn->kn_status & KN_PROCESSING) {
453 		kn->kn_status |= KN_REPROCESS;
454 		if ((kn->kn_status & KN_DELETING) == 0 &&
455 		    (kn->kn_flags & EV_ONESHOT) == 0)
456 			filt_timerreset(kn);
457 		lwkt_relpooltoken(kq);
458 		return;
459 	}
460 	KASSERT((kn->kn_status & KN_DELETING) == 0,
461 	    ("acquire a deleting knote %#x", kn->kn_status));
462 	kn->kn_status |= KN_PROCESSING;
463 
464 	KNOTE_ACTIVATE(kn);
465 	if ((kn->kn_flags & EV_ONESHOT) == 0)
466 		filt_timerreset(kn);
467 
468 	knote_release(kn);
469 
470 	lwkt_relpooltoken(kq);
471 }
472 
473 /*
474  * data contains amount of time to sleep, in milliseconds
475  */
476 static int
477 filt_timerattach(struct knote *kn)
478 {
479 	struct callout *calloutp;
480 	int prev_ncallouts;
481 
482 	prev_ncallouts = atomic_fetchadd_int(&kq_ncallouts, 1);
483 	if (prev_ncallouts >= kq_calloutmax) {
484 		atomic_subtract_int(&kq_ncallouts, 1);
485 		kn->kn_hook = NULL;
486 		return (ENOMEM);
487 	}
488 
489 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
490 	calloutp = kmalloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
491 	callout_init_mp(calloutp);
492 	kn->kn_hook = (caddr_t)calloutp;
493 
494 	filt_timerreset(kn);
495 	return (0);
496 }
497 
498 /*
499  * This function is called with the knote flagged locked but it is
500  * still possible to race a callout event due to the callback blocking.
501  */
502 static void
503 filt_timerdetach(struct knote *kn)
504 {
505 	struct callout *calloutp;
506 
507 	calloutp = (struct callout *)kn->kn_hook;
508 	callout_terminate(calloutp);
509 	kn->kn_hook = NULL;
510 	kfree(calloutp, M_KQUEUE);
511 	atomic_subtract_int(&kq_ncallouts, 1);
512 }
513 
514 static int
515 filt_timer(struct knote *kn, long hint)
516 {
517 	return (kn->kn_data != 0);
518 }
519 
520 /*
521  * EVFILT_USER
522  */
523 static int
524 filt_userattach(struct knote *kn)
525 {
526 	u_int ffctrl;
527 
528 	kn->kn_hook = NULL;
529 	if (kn->kn_sfflags & NOTE_TRIGGER)
530 		kn->kn_ptr.hookid = 1;
531 	else
532 		kn->kn_ptr.hookid = 0;
533 
534 	ffctrl = kn->kn_sfflags & NOTE_FFCTRLMASK;
535 	kn->kn_sfflags &= NOTE_FFLAGSMASK;
536 	switch (ffctrl) {
537 	case NOTE_FFNOP:
538 		break;
539 
540 	case NOTE_FFAND:
541 		kn->kn_fflags &= kn->kn_sfflags;
542 		break;
543 
544 	case NOTE_FFOR:
545 		kn->kn_fflags |= kn->kn_sfflags;
546 		break;
547 
548 	case NOTE_FFCOPY:
549 		kn->kn_fflags = kn->kn_sfflags;
550 		break;
551 
552 	default:
553 		/* XXX Return error? */
554 		break;
555 	}
556 	/* We just happen to copy this value as well. Undocumented. */
557 	kn->kn_data = kn->kn_sdata;
558 
559 	return 0;
560 }
561 
562 static void
563 filt_userdetach(struct knote *kn)
564 {
565 	/* nothing to do */
566 }
567 
568 static int
569 filt_user(struct knote *kn, long hint)
570 {
571 	return (kn->kn_ptr.hookid);
572 }
573 
574 static void
575 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
576 {
577 	u_int ffctrl;
578 
579 	switch (type) {
580 	case EVENT_REGISTER:
581 		if (kev->fflags & NOTE_TRIGGER)
582 			kn->kn_ptr.hookid = 1;
583 
584 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
585 		kev->fflags &= NOTE_FFLAGSMASK;
586 		switch (ffctrl) {
587 		case NOTE_FFNOP:
588 			break;
589 
590 		case NOTE_FFAND:
591 			kn->kn_fflags &= kev->fflags;
592 			break;
593 
594 		case NOTE_FFOR:
595 			kn->kn_fflags |= kev->fflags;
596 			break;
597 
598 		case NOTE_FFCOPY:
599 			kn->kn_fflags = kev->fflags;
600 			break;
601 
602 		default:
603 			/* XXX Return error? */
604 			break;
605 		}
606 		/* We just happen to copy this value as well. Undocumented. */
607 		kn->kn_data = kev->data;
608 
609 		/*
610 		 * This is not the correct use of EV_CLEAR in an event
611 		 * modification, it should have been passed as a NOTE instead.
612 		 * But we need to maintain compatibility with Apple & FreeBSD.
613 		 *
614 		 * Note however that EV_CLEAR can still be used when doing
615 		 * the initial registration of the event and works as expected
616 		 * (clears the event on reception).
617 		 */
618 		if (kev->flags & EV_CLEAR) {
619 			kn->kn_ptr.hookid = 0;
620 			/*
621 			 * Clearing kn->kn_data is fine, since it gets set
622 			 * every time anyway. We just shouldn't clear
623 			 * kn->kn_fflags here, since that would limit the
624 			 * possible uses of this API. NOTE_FFAND or
625 			 * NOTE_FFCOPY should be used for explicitly clearing
626 			 * kn->kn_fflags.
627 			 */
628 			kn->kn_data = 0;
629 		}
630 		break;
631 
632         case EVENT_PROCESS:
633 		*kev = kn->kn_kevent;
634 		kev->fflags = kn->kn_fflags;
635 		kev->data = kn->kn_data;
636 		if (kn->kn_flags & EV_CLEAR) {
637 			kn->kn_ptr.hookid = 0;
638 			/* kn_data, kn_fflags handled by parent */
639 		}
640 		break;
641 
642 	default:
643 		panic("filt_usertouch() - invalid type (%ld)", type);
644 		break;
645 	}
646 }
647 
648 /*
649  * EVFILT_FS
650  */
651 struct klist fs_klist = SLIST_HEAD_INITIALIZER(&fs_klist);
652 
653 static int
654 filt_fsattach(struct knote *kn)
655 {
656 	kn->kn_flags |= EV_CLEAR;
657 	knote_insert(&fs_klist, kn);
658 
659 	return (0);
660 }
661 
662 static void
663 filt_fsdetach(struct knote *kn)
664 {
665 	knote_remove(&fs_klist, kn);
666 }
667 
668 static int
669 filt_fs(struct knote *kn, long hint)
670 {
671 	kn->kn_fflags |= hint;
672 	return (kn->kn_fflags != 0);
673 }
674 
675 /*
676  * Initialize a kqueue.
677  *
678  * NOTE: The lwp/proc code initializes a kqueue for select/poll ops.
679  *
680  * MPSAFE
681  */
682 void
683 kqueue_init(struct kqueue *kq, struct filedesc *fdp)
684 {
685 	TAILQ_INIT(&kq->kq_knpend);
686 	TAILQ_INIT(&kq->kq_knlist);
687 	kq->kq_count = 0;
688 	kq->kq_fdp = fdp;
689 	SLIST_INIT(&kq->kq_kqinfo.ki_note);
690 }
691 
692 /*
693  * Terminate a kqueue.  Freeing the actual kq itself is left up to the
694  * caller (it might be embedded in a lwp so we don't do it here).
695  *
696  * The kq's knlist must be completely eradicated so block on any
697  * processing races.
698  */
699 void
700 kqueue_terminate(struct kqueue *kq)
701 {
702 	struct knote *kn;
703 
704 	lwkt_getpooltoken(kq);
705 	while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) {
706 		if (knote_acquire(kn))
707 			knote_detach_and_drop(kn);
708 	}
709 	lwkt_relpooltoken(kq);
710 
711 	if (kq->kq_knhash) {
712 		hashdestroy(kq->kq_knhash, M_KQUEUE, kq->kq_knhashmask);
713 		kq->kq_knhash = NULL;
714 		kq->kq_knhashmask = 0;
715 	}
716 }
717 
718 /*
719  * MPSAFE
720  */
721 int
722 sys_kqueue(struct kqueue_args *uap)
723 {
724 	struct thread *td = curthread;
725 	struct kqueue *kq;
726 	struct file *fp;
727 	int fd, error;
728 
729 	error = falloc(td->td_lwp, &fp, &fd);
730 	if (error)
731 		return (error);
732 	fp->f_flag = FREAD | FWRITE;
733 	fp->f_type = DTYPE_KQUEUE;
734 	fp->f_ops = &kqueueops;
735 
736 	kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
737 	kqueue_init(kq, td->td_proc->p_fd);
738 	fp->f_data = kq;
739 
740 	fsetfd(kq->kq_fdp, fp, fd);
741 	uap->sysmsg_result = fd;
742 	fdrop(fp);
743 	return (error);
744 }
745 
746 /*
747  * Copy 'count' items into the destination list pointed to by uap->eventlist.
748  */
749 static int
750 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res)
751 {
752 	struct kevent_copyin_args *kap;
753 	int error;
754 
755 	kap = (struct kevent_copyin_args *)arg;
756 
757 	error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp));
758 	if (error == 0) {
759 		kap->ka->eventlist += count;
760 		*res += count;
761 	} else {
762 		*res = -1;
763 	}
764 
765 	return (error);
766 }
767 
768 /*
769  * Copy at most 'max' items from the list pointed to by kap->changelist,
770  * return number of items in 'events'.
771  */
772 static int
773 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events)
774 {
775 	struct kevent_copyin_args *kap;
776 	int error, count;
777 
778 	kap = (struct kevent_copyin_args *)arg;
779 
780 	count = min(kap->ka->nchanges - kap->pchanges, max);
781 	error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp);
782 	if (error == 0) {
783 		kap->ka->changelist += count;
784 		kap->pchanges += count;
785 		*events = count;
786 	}
787 
788 	return (error);
789 }
790 
791 /*
792  * MPSAFE
793  */
794 int
795 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap,
796 	    k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn,
797 	    struct timespec *tsp_in, int flags)
798 {
799 	struct kevent *kevp;
800 	struct timespec *tsp, ats;
801 	int i, n, total, error, nerrors = 0;
802 	int gobbled;
803 	int lres;
804 	int limit = kq_checkloop;
805 	int closedcounter;
806 	struct kevent kev[KQ_NEVENTS];
807 	struct knote marker;
808 	struct lwkt_token *tok;
809 
810 	if (tsp_in == NULL || tsp_in->tv_sec || tsp_in->tv_nsec)
811 		atomic_set_int(&curthread->td_mpflags, TDF_MP_BATCH_DEMARC);
812 
813 	tsp = tsp_in;
814 	*res = 0;
815 
816 	closedcounter = kq->kq_fdp->fd_closedcounter;
817 
818 	for (;;) {
819 		n = 0;
820 		error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n);
821 		if (error)
822 			return error;
823 		if (n == 0)
824 			break;
825 		for (i = 0; i < n; ++i)
826 			kev[i].flags &= ~EV_SYSFLAGS;
827 		for (i = 0; i < n; ++i) {
828 			gobbled = n - i;
829 			error = kqueue_register(kq, &kev[i], &gobbled);
830 			i += gobbled - 1;
831 			kevp = &kev[i];
832 
833 			/*
834 			 * If a registration returns an error we
835 			 * immediately post the error.  The kevent()
836 			 * call itself will fail with the error if
837 			 * no space is available for posting.
838 			 *
839 			 * Such errors normally bypass the timeout/blocking
840 			 * code.  However, if the copyoutfn function refuses
841 			 * to post the error (see sys_poll()), then we
842 			 * ignore it too.
843 			 */
844 			if (error || (kevp->flags & EV_RECEIPT)) {
845 				kevp->flags = EV_ERROR;
846 				kevp->data = error;
847 				lres = *res;
848 				kevent_copyoutfn(uap, kevp, 1, res);
849 				if (*res < 0) {
850 					return error;
851 				} else if (lres != *res) {
852 					nevents--;
853 					nerrors++;
854 				}
855 			}
856 		}
857 	}
858 	if (nerrors)
859 		return 0;
860 
861 	/*
862 	 * Acquire/wait for events - setup timeout
863 	 */
864 	if (tsp != NULL) {
865 		if (tsp->tv_sec || tsp->tv_nsec) {
866 			getnanouptime(&ats);
867 			timespecadd(tsp, &ats);		/* tsp = target time */
868 		}
869 	}
870 
871 	/*
872 	 * Loop as required.
873 	 *
874 	 * Collect as many events as we can. Sleeping on successive
875 	 * loops is disabled if copyoutfn has incremented (*res).
876 	 *
877 	 * The loop stops if an error occurs, all events have been
878 	 * scanned (the marker has been reached), or fewer than the
879 	 * maximum number of events is found.
880 	 *
881 	 * The copyoutfn function does not have to increment (*res) in
882 	 * order for the loop to continue.
883 	 *
884 	 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents.
885 	 */
886 	total = 0;
887 	error = 0;
888 	marker.kn_filter = EVFILT_MARKER;
889 	marker.kn_status = KN_PROCESSING;
890 	tok = lwkt_token_pool_lookup(kq);
891 	lwkt_gettoken(tok);
892 	TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
893 	lwkt_reltoken(tok);
894 	while ((n = nevents - total) > 0) {
895 		if (n > KQ_NEVENTS)
896 			n = KQ_NEVENTS;
897 
898 		/*
899 		 * If no events are pending sleep until timeout (if any)
900 		 * or an event occurs.
901 		 *
902 		 * After the sleep completes the marker is moved to the
903 		 * end of the list, making any received events available
904 		 * to our scan.
905 		 */
906 		if (kq->kq_count == 0 && *res == 0) {
907 			int timeout, ustimeout = 0;
908 
909 			if (tsp == NULL) {
910 				timeout = 0;
911 			} else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
912 				error = EWOULDBLOCK;
913 				break;
914 			} else {
915 				struct timespec atx = *tsp;
916 
917 				getnanouptime(&ats);
918 				timespecsub(&atx, &ats);
919 				if (atx.tv_sec < 0) {
920 					error = EWOULDBLOCK;
921 					break;
922 				} else {
923 					timeout = atx.tv_sec > 24 * 60 * 60 ?
924 					    24 * 60 * 60 * hz :
925 					    tstohz_high(&atx);
926 				}
927 				if (flags & KEVENT_TIMEOUT_PRECISE &&
928 				    timeout != 0) {
929 					if (atx.tv_sec == 0 &&
930 					    atx.tv_nsec < kq_sleep_threshold) {
931 						DELAY(atx.tv_nsec / 1000);
932 						error = EWOULDBLOCK;
933 						break;
934 					} else if (atx.tv_sec < 2000) {
935 						ustimeout = atx.tv_sec *
936 						    1000000 + atx.tv_nsec/1000;
937 					} else {
938 						ustimeout = 2000000000;
939 					}
940 				}
941 			}
942 
943 			lwkt_gettoken(tok);
944 			if (kq->kq_count == 0) {
945 				kq->kq_sleep_cnt++;
946 				if (__predict_false(kq->kq_sleep_cnt == 0)) {
947 					/*
948 					 * Guard against possible wrapping.  And
949 					 * set it to 2, so that kqueue_wakeup()
950 					 * can wake everyone up.
951 					 */
952 					kq->kq_sleep_cnt = 2;
953 				}
954 				if ((flags & KEVENT_TIMEOUT_PRECISE) &&
955 				    timeout != 0) {
956 					error = precise_sleep(kq, PCATCH,
957 					    "kqread", ustimeout);
958 				} else {
959 					error = tsleep(kq, PCATCH, "kqread",
960 					    timeout);
961 				}
962 
963 				/* don't restart after signals... */
964 				if (error == ERESTART)
965 					error = EINTR;
966 				if (error) {
967 					lwkt_reltoken(tok);
968 					break;
969 				}
970 
971 				TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
972 				TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker,
973 				    kn_tqe);
974 			}
975 			lwkt_reltoken(tok);
976 		}
977 
978 		/*
979 		 * Process all received events
980 		 * Account for all non-spurious events in our total
981 		 */
982 		i = kqueue_scan(kq, kev, n, &marker, closedcounter);
983 		if (i) {
984 			lres = *res;
985 			error = kevent_copyoutfn(uap, kev, i, res);
986 			total += *res - lres;
987 			if (error)
988 				break;
989 		}
990 		if (limit && --limit == 0)
991 			panic("kqueue: checkloop failed i=%d", i);
992 
993 		/*
994 		 * Normally when fewer events are returned than requested
995 		 * we can stop.  However, if only spurious events were
996 		 * collected the copyout will not bump (*res) and we have
997 		 * to continue.
998 		 */
999 		if (i < n && *res)
1000 			break;
1001 
1002 		/*
1003 		 * Deal with an edge case where spurious events can cause
1004 		 * a loop to occur without moving the marker.  This can
1005 		 * prevent kqueue_scan() from picking up new events which
1006 		 * race us.  We must be sure to move the marker for this
1007 		 * case.
1008 		 *
1009 		 * NOTE: We do not want to move the marker if events
1010 		 *	 were scanned because normal kqueue operations
1011 		 *	 may reactivate events.  Moving the marker in
1012 		 *	 that case could result in duplicates for the
1013 		 *	 same event.
1014 		 */
1015 		if (i == 0) {
1016 			lwkt_gettoken(tok);
1017 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
1018 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
1019 			lwkt_reltoken(tok);
1020 		}
1021 	}
1022 	lwkt_gettoken(tok);
1023 	TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
1024 	lwkt_reltoken(tok);
1025 
1026 	/* Timeouts do not return EWOULDBLOCK. */
1027 	if (error == EWOULDBLOCK)
1028 		error = 0;
1029 	return error;
1030 }
1031 
1032 /*
1033  * MPALMOSTSAFE
1034  */
1035 int
1036 sys_kevent(struct kevent_args *uap)
1037 {
1038 	struct thread *td = curthread;
1039 	struct timespec ts, *tsp;
1040 	struct kqueue *kq;
1041 	struct file *fp = NULL;
1042 	struct kevent_copyin_args *kap, ka;
1043 	int error;
1044 
1045 	if (uap->timeout) {
1046 		error = copyin(uap->timeout, &ts, sizeof(ts));
1047 		if (error)
1048 			return (error);
1049 		tsp = &ts;
1050 	} else {
1051 		tsp = NULL;
1052 	}
1053 	fp = holdfp(td, uap->fd, -1);
1054 	if (fp == NULL)
1055 		return (EBADF);
1056 	if (fp->f_type != DTYPE_KQUEUE) {
1057 		fdrop(fp);
1058 		return (EBADF);
1059 	}
1060 
1061 	kq = (struct kqueue *)fp->f_data;
1062 
1063 	kap = &ka;
1064 	kap->ka = uap;
1065 	kap->pchanges = 0;
1066 
1067 	error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap,
1068 			    kevent_copyin, kevent_copyout, tsp, 0);
1069 
1070 	dropfp(td, uap->fd, fp);
1071 
1072 	return (error);
1073 }
1074 
1075 /*
1076  * Efficiently load multiple file pointers.  This significantly reduces
1077  * threaded overhead.  When doing simple polling we can depend on the
1078  * per-thread (fd,fp) cache.  With more descriptors, we batch.
1079  */
1080 static
1081 void
1082 floadkevfps(thread_t td, struct filedesc *fdp, struct kevent *kev,
1083 	    struct file **fp, int climit)
1084 {
1085 	struct filterops *fops;
1086 	int tdcache;
1087 
1088 	if (climit <= 2 && td->td_proc && td->td_proc->p_fd == fdp) {
1089 		tdcache = 1;
1090 	} else {
1091 		tdcache = 0;
1092 		spin_lock_shared(&fdp->fd_spin);
1093 	}
1094 
1095 	while (climit) {
1096 		*fp = NULL;
1097 		if (kev->filter < 0 &&
1098 		    kev->filter + EVFILT_SYSCOUNT >= 0) {
1099 			fops = sysfilt_ops[~kev->filter];
1100 			if (fops->f_flags & FILTEROP_ISFD) {
1101 				if (tdcache) {
1102 					*fp = holdfp(td, kev->ident, -1);
1103 				} else {
1104 					*fp = holdfp_fdp_locked(fdp,
1105 								kev->ident, -1);
1106 				}
1107 			}
1108 		}
1109 		--climit;
1110 		++fp;
1111 		++kev;
1112 	}
1113 	if (tdcache == 0)
1114 		spin_unlock_shared(&fdp->fd_spin);
1115 }
1116 
1117 /*
1118  * Register up to *countp kev's.  Always registers at least 1.
1119  *
1120  * The number registered is returned in *countp.
1121  *
1122  * If an error occurs or a kev is flagged EV_RECEIPT, it is
1123  * processed and included in *countp, and processing then
1124  * stops.
1125  */
1126 int
1127 kqueue_register(struct kqueue *kq, struct kevent *kev, int *countp)
1128 {
1129 	struct filedesc *fdp = kq->kq_fdp;
1130 	struct klist *list = NULL;
1131 	struct filterops *fops;
1132 	struct file *fp[KQ_NEVENTS];
1133 	struct knote *kn = NULL;
1134 	struct thread *td;
1135 	int error;
1136 	int count;
1137 	int climit;
1138 	int closedcounter;
1139 	struct knote_cache_list *cache_list;
1140 
1141 	td = curthread;
1142 	climit = *countp;
1143 	if (climit > KQ_NEVENTS)
1144 		climit = KQ_NEVENTS;
1145 	closedcounter = fdp->fd_closedcounter;
1146 	floadkevfps(td, fdp, kev, fp, climit);
1147 
1148 	lwkt_getpooltoken(kq);
1149 	count = 0;
1150 
1151 	/*
1152 	 * To avoid races, only one thread can register events on this
1153 	 * kqueue at a time.
1154 	 */
1155 	while (__predict_false(kq->kq_regtd != NULL && kq->kq_regtd != td)) {
1156 		kq->kq_state |= KQ_REGWAIT;
1157 		tsleep(&kq->kq_regtd, 0, "kqreg", 0);
1158 	}
1159 	if (__predict_false(kq->kq_regtd != NULL)) {
1160 		/* Recursive calling of kqueue_register() */
1161 		td = NULL;
1162 	} else {
1163 		/* Owner of the kq_regtd, i.e. td != NULL */
1164 		kq->kq_regtd = td;
1165 	}
1166 
1167 loop:
1168 	if (kev->filter < 0) {
1169 		if (kev->filter + EVFILT_SYSCOUNT < 0) {
1170 			error = EINVAL;
1171 			++count;
1172 			goto done;
1173 		}
1174 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
1175 	} else {
1176 		/*
1177 		 * XXX
1178 		 * filter attach routine is responsible for insuring that
1179 		 * the identifier can be attached to it.
1180 		 */
1181 		error = EINVAL;
1182 		++count;
1183 		goto done;
1184 	}
1185 
1186 	if (fops->f_flags & FILTEROP_ISFD) {
1187 		/* validate descriptor */
1188 		if (fp[count] == NULL) {
1189 			error = EBADF;
1190 			++count;
1191 			goto done;
1192 		}
1193 	}
1194 
1195 	cache_list = &knote_cache_lists[mycpuid];
1196 	if (SLIST_EMPTY(&cache_list->knote_cache)) {
1197 		struct knote *new_kn;
1198 
1199 		new_kn = knote_alloc();
1200 		crit_enter();
1201 		SLIST_INSERT_HEAD(&cache_list->knote_cache, new_kn, kn_link);
1202 		cache_list->knote_cache_cnt++;
1203 		crit_exit();
1204 	}
1205 
1206 	if (fp[count] != NULL) {
1207 		list = &fp[count]->f_klist;
1208 	} else if (kq->kq_knhashmask) {
1209 		list = &kq->kq_knhash[
1210 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1211 	}
1212 	if (list != NULL) {
1213 		lwkt_getpooltoken(list);
1214 again:
1215 		SLIST_FOREACH(kn, list, kn_link) {
1216 			if (kn->kn_kq == kq &&
1217 			    kn->kn_filter == kev->filter &&
1218 			    kn->kn_id == kev->ident) {
1219 				if (knote_acquire(kn) == 0)
1220 					goto again;
1221 				break;
1222 			}
1223 		}
1224 		lwkt_relpooltoken(list);
1225 	}
1226 
1227 	/*
1228 	 * NOTE: At this point if kn is non-NULL we will have acquired
1229 	 *	 it and set KN_PROCESSING.
1230 	 */
1231 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
1232 		error = ENOENT;
1233 		++count;
1234 		goto done;
1235 	}
1236 
1237 	/*
1238 	 * kn now contains the matching knote, or NULL if no match
1239 	 */
1240 	if (kev->flags & EV_ADD) {
1241 		if (kn == NULL) {
1242 			crit_enter();
1243 			kn = SLIST_FIRST(&cache_list->knote_cache);
1244 			if (kn == NULL) {
1245 				crit_exit();
1246 				kn = knote_alloc();
1247 			} else {
1248 				SLIST_REMOVE_HEAD(&cache_list->knote_cache,
1249 				    kn_link);
1250 				cache_list->knote_cache_cnt--;
1251 				crit_exit();
1252 			}
1253 			kn->kn_fp = fp[count];
1254 			kn->kn_kq = kq;
1255 			kn->kn_fop = fops;
1256 
1257 			/*
1258 			 * apply reference count to knote structure, and
1259 			 * do not release it at the end of this routine.
1260 			 */
1261 			fp[count] = NULL;	/* safety */
1262 
1263 			kn->kn_sfflags = kev->fflags;
1264 			kn->kn_sdata = kev->data;
1265 			kev->fflags = 0;
1266 			kev->data = 0;
1267 			kn->kn_kevent = *kev;
1268 
1269 			/*
1270 			 * KN_PROCESSING prevents the knote from getting
1271 			 * ripped out from under us while we are trying
1272 			 * to attach it, in case the attach blocks.
1273 			 */
1274 			kn->kn_status = KN_PROCESSING;
1275 			knote_attach(kn);
1276 			if ((error = filter_attach(kn)) != 0) {
1277 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1278 				knote_drop(kn);
1279 				++count;
1280 				goto done;
1281 			}
1282 
1283 			/*
1284 			 * Interlock against close races which either tried
1285 			 * to remove our knote while we were blocked or missed
1286 			 * it entirely prior to our attachment.  We do not
1287 			 * want to end up with a knote on a closed descriptor.
1288 			 */
1289 			if ((fops->f_flags & FILTEROP_ISFD) &&
1290 			    checkfdclosed(curthread, fdp, kev->ident, kn->kn_fp,
1291 					  closedcounter)) {
1292 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1293 			}
1294 		} else {
1295 			/*
1296 			 * The user may change some filter values after the
1297 			 * initial EV_ADD, but doing so will not reset any
1298 			 * filter which have already been triggered.
1299 			 */
1300 			KKASSERT(kn->kn_status & KN_PROCESSING);
1301 			if (fops == &user_filtops) {
1302 				filt_usertouch(kn, kev, EVENT_REGISTER);
1303 			} else {
1304 				kn->kn_sfflags = kev->fflags;
1305 				kn->kn_sdata = kev->data;
1306 				kn->kn_kevent.udata = kev->udata;
1307 			}
1308 		}
1309 
1310 		/*
1311 		 * Execute the filter event to immediately activate the
1312 		 * knote if necessary.  If reprocessing events are pending
1313 		 * due to blocking above we do not run the filter here
1314 		 * but instead let knote_release() do it.  Otherwise we
1315 		 * might run the filter on a deleted event.
1316 		 */
1317 		if ((kn->kn_status & KN_REPROCESS) == 0) {
1318 			if (filter_event(kn, 0))
1319 				KNOTE_ACTIVATE(kn);
1320 		}
1321 	} else if (kev->flags & EV_DELETE) {
1322 		/*
1323 		 * Delete the existing knote
1324 		 */
1325 		knote_detach_and_drop(kn);
1326 		error = 0;
1327 		++count;
1328 		goto done;
1329 	} else {
1330 		/*
1331 		 * Modify an existing event.
1332 		 *
1333 		 * The user may change some filter values after the
1334 		 * initial EV_ADD, but doing so will not reset any
1335 		 * filter which have already been triggered.
1336 		 */
1337 		KKASSERT(kn->kn_status & KN_PROCESSING);
1338 		if (fops == &user_filtops) {
1339 			filt_usertouch(kn, kev, EVENT_REGISTER);
1340 		} else {
1341 			kn->kn_sfflags = kev->fflags;
1342 			kn->kn_sdata = kev->data;
1343 			kn->kn_kevent.udata = kev->udata;
1344 		}
1345 
1346 		/*
1347 		 * Execute the filter event to immediately activate the
1348 		 * knote if necessary.  If reprocessing events are pending
1349 		 * due to blocking above we do not run the filter here
1350 		 * but instead let knote_release() do it.  Otherwise we
1351 		 * might run the filter on a deleted event.
1352 		 */
1353 		if ((kn->kn_status & KN_REPROCESS) == 0) {
1354 			if (filter_event(kn, 0))
1355 				KNOTE_ACTIVATE(kn);
1356 		}
1357 	}
1358 
1359 	/*
1360 	 * Disablement does not deactivate a knote here.
1361 	 */
1362 	if ((kev->flags & EV_DISABLE) &&
1363 	    ((kn->kn_status & KN_DISABLED) == 0)) {
1364 		kn->kn_status |= KN_DISABLED;
1365 	}
1366 
1367 	/*
1368 	 * Re-enablement may have to immediately enqueue an active knote.
1369 	 */
1370 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
1371 		kn->kn_status &= ~KN_DISABLED;
1372 		if ((kn->kn_status & KN_ACTIVE) &&
1373 		    ((kn->kn_status & KN_QUEUED) == 0)) {
1374 			knote_enqueue(kn);
1375 		}
1376 	}
1377 
1378 	/*
1379 	 * Handle any required reprocessing
1380 	 */
1381 	knote_release(kn);
1382 	/* kn may be invalid now */
1383 
1384 	/*
1385 	 * Loop control.  We stop on errors (above), and also stop after
1386 	 * processing EV_RECEIPT, so the caller can process it.
1387 	 */
1388 	++count;
1389 	if (kev->flags & EV_RECEIPT) {
1390 		error = 0;
1391 		goto done;
1392 	}
1393 	++kev;
1394 	if (count < climit) {
1395 		if (fp[count-1])		/* drop unprocessed fp */
1396 			fdrop(fp[count-1]);
1397 		goto loop;
1398 	}
1399 
1400 	/*
1401 	 * Cleanup
1402 	 */
1403 done:
1404 	if (td != NULL) { /* Owner of the kq_regtd */
1405 		kq->kq_regtd = NULL;
1406 		if (__predict_false(kq->kq_state & KQ_REGWAIT)) {
1407 			kq->kq_state &= ~KQ_REGWAIT;
1408 			wakeup(&kq->kq_regtd);
1409 		}
1410 	}
1411 	lwkt_relpooltoken(kq);
1412 
1413 	/*
1414 	 * Drop unprocessed file pointers
1415 	 */
1416 	*countp = count;
1417 	if (count && fp[count-1])
1418 		fdrop(fp[count-1]);
1419 	while (count < climit) {
1420 		if (fp[count])
1421 			fdrop(fp[count]);
1422 		++count;
1423 	}
1424 	return (error);
1425 }
1426 
1427 /*
1428  * Scan the kqueue, return the number of active events placed in kevp up
1429  * to count.
1430  *
1431  * Continuous mode events may get recycled, do not continue scanning past
1432  * marker unless no events have been collected.
1433  */
1434 static int
1435 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
1436             struct knote *marker, int closedcounter)
1437 {
1438         struct knote *kn, local_marker;
1439 	thread_t td = curthread;
1440         int total;
1441 
1442 	total = 0;
1443 	local_marker.kn_filter = EVFILT_MARKER;
1444 	local_marker.kn_status = KN_PROCESSING;
1445 
1446 	lwkt_getpooltoken(kq);
1447 
1448 	/*
1449 	 * Collect events.
1450 	 */
1451 	TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe);
1452 	while (count) {
1453 		kn = TAILQ_NEXT(&local_marker, kn_tqe);
1454 		if (kn->kn_filter == EVFILT_MARKER) {
1455 			/* Marker reached, we are done */
1456 			if (kn == marker)
1457 				break;
1458 
1459 			/* Move local marker past some other threads marker */
1460 			kn = TAILQ_NEXT(kn, kn_tqe);
1461 			TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1462 			TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe);
1463 			continue;
1464 		}
1465 
1466 		/*
1467 		 * We can't skip a knote undergoing processing, otherwise
1468 		 * we risk not returning it when the user process expects
1469 		 * it should be returned.  Sleep and retry.
1470 		 */
1471 		if (knote_acquire(kn) == 0)
1472 			continue;
1473 
1474 		/*
1475 		 * Remove the event for processing.
1476 		 *
1477 		 * WARNING!  We must leave KN_QUEUED set to prevent the
1478 		 *	     event from being KNOTE_ACTIVATE()d while
1479 		 *	     the queue state is in limbo, in case we
1480 		 *	     block.
1481 		 */
1482 		TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1483 		kq->kq_count--;
1484 
1485 		/*
1486 		 * We have to deal with an extremely important race against
1487 		 * file descriptor close()s here.  The file descriptor can
1488 		 * disappear MPSAFE, and there is a small window of
1489 		 * opportunity between that and the call to knote_fdclose().
1490 		 *
1491 		 * If we hit that window here while doselect or dopoll is
1492 		 * trying to delete a spurious event they will not be able
1493 		 * to match up the event against a knote and will go haywire.
1494 		 */
1495 		if ((kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1496 		    checkfdclosed(td, kq->kq_fdp, kn->kn_kevent.ident,
1497 				  kn->kn_fp, closedcounter)) {
1498 			kn->kn_status |= KN_DELETING | KN_REPROCESS;
1499 		}
1500 
1501 		if (kn->kn_status & KN_DISABLED) {
1502 			/*
1503 			 * If disabled we ensure the event is not queued
1504 			 * but leave its active bit set.  On re-enablement
1505 			 * the event may be immediately triggered.
1506 			 */
1507 			kn->kn_status &= ~KN_QUEUED;
1508 		} else if ((kn->kn_flags & EV_ONESHOT) == 0 &&
1509 			   (kn->kn_status & KN_DELETING) == 0 &&
1510 			   filter_event(kn, 0) == 0) {
1511 			/*
1512 			 * If not running in one-shot mode and the event
1513 			 * is no longer present we ensure it is removed
1514 			 * from the queue and ignore it.
1515 			 */
1516 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1517 		} else {
1518 			/*
1519 			 * Post the event
1520 			 */
1521 			if (kn->kn_fop == &user_filtops)
1522 				filt_usertouch(kn, kevp, EVENT_PROCESS);
1523 			else
1524 				*kevp = kn->kn_kevent;
1525 			++kevp;
1526 			++total;
1527 			--count;
1528 
1529 			if (kn->kn_flags & EV_ONESHOT) {
1530 				kn->kn_status &= ~KN_QUEUED;
1531 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1532 			} else {
1533 				if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
1534 					if (kn->kn_flags & EV_CLEAR) {
1535 						kn->kn_data = 0;
1536 						kn->kn_fflags = 0;
1537 					}
1538 					if (kn->kn_flags & EV_DISPATCH) {
1539 						kn->kn_status |= KN_DISABLED;
1540 					}
1541 					kn->kn_status &= ~(KN_QUEUED |
1542 							   KN_ACTIVE);
1543 				} else {
1544 					TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1545 					kq->kq_count++;
1546 				}
1547 			}
1548 		}
1549 
1550 		/*
1551 		 * Handle any post-processing states
1552 		 */
1553 		knote_release(kn);
1554 	}
1555 	TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1556 
1557 	lwkt_relpooltoken(kq);
1558 	return (total);
1559 }
1560 
1561 /*
1562  * XXX
1563  * This could be expanded to call kqueue_scan, if desired.
1564  *
1565  * MPSAFE
1566  */
1567 static int
1568 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1569 {
1570 	return (ENXIO);
1571 }
1572 
1573 /*
1574  * MPSAFE
1575  */
1576 static int
1577 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1578 {
1579 	return (ENXIO);
1580 }
1581 
1582 /*
1583  * MPALMOSTSAFE
1584  */
1585 static int
1586 kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
1587 	     struct ucred *cred, struct sysmsg *msg)
1588 {
1589 	struct kqueue *kq;
1590 	int error;
1591 
1592 	kq = (struct kqueue *)fp->f_data;
1593 	lwkt_getpooltoken(kq);
1594 	switch(com) {
1595 	case FIOASYNC:
1596 		if (*(int *)data)
1597 			kq->kq_state |= KQ_ASYNC;
1598 		else
1599 			kq->kq_state &= ~KQ_ASYNC;
1600 		error = 0;
1601 		break;
1602 	case FIOSETOWN:
1603 		error = fsetown(*(int *)data, &kq->kq_sigio);
1604 		break;
1605 	default:
1606 		error = ENOTTY;
1607 		break;
1608 	}
1609 	lwkt_relpooltoken(kq);
1610 	return (error);
1611 }
1612 
1613 /*
1614  * MPSAFE
1615  */
1616 static int
1617 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred)
1618 {
1619 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1620 
1621 	bzero((void *)st, sizeof(*st));
1622 	st->st_size = kq->kq_count;
1623 	st->st_blksize = sizeof(struct kevent);
1624 	st->st_mode = S_IFIFO;
1625 	return (0);
1626 }
1627 
1628 /*
1629  * MPSAFE
1630  */
1631 static int
1632 kqueue_close(struct file *fp)
1633 {
1634 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1635 
1636 	kqueue_terminate(kq);
1637 
1638 	fp->f_data = NULL;
1639 	funsetown(&kq->kq_sigio);
1640 
1641 	kfree(kq, M_KQUEUE);
1642 	return (0);
1643 }
1644 
1645 static void
1646 kqueue_wakeup(struct kqueue *kq)
1647 {
1648 	if (kq->kq_sleep_cnt) {
1649 		u_int sleep_cnt = kq->kq_sleep_cnt;
1650 
1651 		kq->kq_sleep_cnt = 0;
1652 		if (sleep_cnt == 1)
1653 			wakeup_one(kq);
1654 		else
1655 			wakeup(kq);
1656 	}
1657 	KNOTE(&kq->kq_kqinfo.ki_note, 0);
1658 }
1659 
1660 /*
1661  * Calls filterops f_attach function, acquiring mplock if filter is not
1662  * marked as FILTEROP_MPSAFE.
1663  *
1664  * Caller must be holding the related kq token
1665  */
1666 static int
1667 filter_attach(struct knote *kn)
1668 {
1669 	int ret;
1670 
1671 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1672 		ret = kn->kn_fop->f_attach(kn);
1673 	} else {
1674 		get_mplock();
1675 		ret = kn->kn_fop->f_attach(kn);
1676 		rel_mplock();
1677 	}
1678 	return (ret);
1679 }
1680 
1681 /*
1682  * Detach the knote and drop it, destroying the knote.
1683  *
1684  * Calls filterops f_detach function, acquiring mplock if filter is not
1685  * marked as FILTEROP_MPSAFE.
1686  *
1687  * Caller must be holding the related kq token
1688  */
1689 static void
1690 knote_detach_and_drop(struct knote *kn)
1691 {
1692 	kn->kn_status |= KN_DELETING | KN_REPROCESS;
1693 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1694 		kn->kn_fop->f_detach(kn);
1695 	} else {
1696 		get_mplock();
1697 		kn->kn_fop->f_detach(kn);
1698 		rel_mplock();
1699 	}
1700 	knote_drop(kn);
1701 }
1702 
1703 /*
1704  * Calls filterops f_event function, acquiring mplock if filter is not
1705  * marked as FILTEROP_MPSAFE.
1706  *
1707  * If the knote is in the middle of being created or deleted we cannot
1708  * safely call the filter op.
1709  *
1710  * Caller must be holding the related kq token
1711  */
1712 static int
1713 filter_event(struct knote *kn, long hint)
1714 {
1715 	int ret;
1716 
1717 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1718 		ret = kn->kn_fop->f_event(kn, hint);
1719 	} else {
1720 		get_mplock();
1721 		ret = kn->kn_fop->f_event(kn, hint);
1722 		rel_mplock();
1723 	}
1724 	return (ret);
1725 }
1726 
1727 /*
1728  * Walk down a list of knotes, activating them if their event has triggered.
1729  *
1730  * If we encounter any knotes which are undergoing processing we just mark
1731  * them for reprocessing and do not try to [re]activate the knote.  However,
1732  * if a hint is being passed we have to wait and that makes things a bit
1733  * sticky.
1734  */
1735 void
1736 knote(struct klist *list, long hint)
1737 {
1738 	struct kqueue *kq;
1739 	struct knote *kn;
1740 	struct knote *kntmp;
1741 
1742 	lwkt_getpooltoken(list);
1743 restart:
1744 	SLIST_FOREACH(kn, list, kn_next) {
1745 		kq = kn->kn_kq;
1746 		lwkt_getpooltoken(kq);
1747 
1748 		/* temporary verification hack */
1749 		SLIST_FOREACH(kntmp, list, kn_next) {
1750 			if (kn == kntmp)
1751 				break;
1752 		}
1753 		if (kn != kntmp || kn->kn_kq != kq) {
1754 			lwkt_relpooltoken(kq);
1755 			goto restart;
1756 		}
1757 
1758 		if (kn->kn_status & KN_PROCESSING) {
1759 			/*
1760 			 * Someone else is processing the knote, ask the
1761 			 * other thread to reprocess it and don't mess
1762 			 * with it otherwise.
1763 			 */
1764 			if (hint == 0) {
1765 				kn->kn_status |= KN_REPROCESS;
1766 				lwkt_relpooltoken(kq);
1767 				continue;
1768 			}
1769 
1770 			/*
1771 			 * If the hint is non-zero we have to wait or risk
1772 			 * losing the state the caller is trying to update.
1773 			 *
1774 			 * XXX This is a real problem, certain process
1775 			 *     and signal filters will bump kn_data for
1776 			 *     already-processed notes more than once if
1777 			 *     we restart the list scan.  FIXME.
1778 			 */
1779 			kn->kn_status |= KN_WAITING | KN_REPROCESS;
1780 			tsleep(kn, 0, "knotec", hz);
1781 			lwkt_relpooltoken(kq);
1782 			goto restart;
1783 		}
1784 
1785 		/*
1786 		 * Become the reprocessing master ourselves.
1787 		 *
1788 		 * If hint is non-zero running the event is mandatory
1789 		 * when not deleting so do it whether reprocessing is
1790 		 * set or not.
1791 		 */
1792 		kn->kn_status |= KN_PROCESSING;
1793 		if ((kn->kn_status & KN_DELETING) == 0) {
1794 			if (filter_event(kn, hint))
1795 				KNOTE_ACTIVATE(kn);
1796 		}
1797 		if (knote_release(kn)) {
1798 			lwkt_relpooltoken(kq);
1799 			goto restart;
1800 		}
1801 		lwkt_relpooltoken(kq);
1802 	}
1803 	lwkt_relpooltoken(list);
1804 }
1805 
1806 /*
1807  * Insert knote at head of klist.
1808  *
1809  * This function may only be called via a filter function and thus
1810  * kq_token should already be held and marked for processing.
1811  */
1812 void
1813 knote_insert(struct klist *klist, struct knote *kn)
1814 {
1815 	lwkt_getpooltoken(klist);
1816 	KKASSERT(kn->kn_status & KN_PROCESSING);
1817 	SLIST_INSERT_HEAD(klist, kn, kn_next);
1818 	lwkt_relpooltoken(klist);
1819 }
1820 
1821 /*
1822  * Remove knote from a klist
1823  *
1824  * This function may only be called via a filter function and thus
1825  * kq_token should already be held and marked for processing.
1826  */
1827 void
1828 knote_remove(struct klist *klist, struct knote *kn)
1829 {
1830 	lwkt_getpooltoken(klist);
1831 	KKASSERT(kn->kn_status & KN_PROCESSING);
1832 	SLIST_REMOVE(klist, kn, knote, kn_next);
1833 	lwkt_relpooltoken(klist);
1834 }
1835 
1836 void
1837 knote_assume_knotes(struct kqinfo *src, struct kqinfo *dst,
1838 		    struct filterops *ops, void *hook)
1839 {
1840 	struct kqueue *kq;
1841 	struct knote *kn;
1842 
1843 	lwkt_getpooltoken(&src->ki_note);
1844 	lwkt_getpooltoken(&dst->ki_note);
1845 	while ((kn = SLIST_FIRST(&src->ki_note)) != NULL) {
1846 		kq = kn->kn_kq;
1847 		lwkt_getpooltoken(kq);
1848 		if (SLIST_FIRST(&src->ki_note) != kn || kn->kn_kq != kq) {
1849 			lwkt_relpooltoken(kq);
1850 			continue;
1851 		}
1852 		if (knote_acquire(kn)) {
1853 			knote_remove(&src->ki_note, kn);
1854 			kn->kn_fop = ops;
1855 			kn->kn_hook = hook;
1856 			knote_insert(&dst->ki_note, kn);
1857 			knote_release(kn);
1858 			/* kn may be invalid now */
1859 		}
1860 		lwkt_relpooltoken(kq);
1861 	}
1862 	lwkt_relpooltoken(&dst->ki_note);
1863 	lwkt_relpooltoken(&src->ki_note);
1864 }
1865 
1866 /*
1867  * Remove all knotes referencing a specified fd
1868  */
1869 void
1870 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd)
1871 {
1872 	struct kqueue *kq;
1873 	struct knote *kn;
1874 	struct knote *kntmp;
1875 
1876 	lwkt_getpooltoken(&fp->f_klist);
1877 restart:
1878 	SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
1879 		if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) {
1880 			kq = kn->kn_kq;
1881 			lwkt_getpooltoken(kq);
1882 
1883 			/* temporary verification hack */
1884 			SLIST_FOREACH(kntmp, &fp->f_klist, kn_link) {
1885 				if (kn == kntmp)
1886 					break;
1887 			}
1888 			if (kn != kntmp || kn->kn_kq->kq_fdp != fdp ||
1889 			    kn->kn_id != fd || kn->kn_kq != kq) {
1890 				lwkt_relpooltoken(kq);
1891 				goto restart;
1892 			}
1893 			if (knote_acquire(kn))
1894 				knote_detach_and_drop(kn);
1895 			lwkt_relpooltoken(kq);
1896 			goto restart;
1897 		}
1898 	}
1899 	lwkt_relpooltoken(&fp->f_klist);
1900 }
1901 
1902 /*
1903  * Low level attach function.
1904  *
1905  * The knote should already be marked for processing.
1906  * Caller must hold the related kq token.
1907  */
1908 static void
1909 knote_attach(struct knote *kn)
1910 {
1911 	struct klist *list;
1912 	struct kqueue *kq = kn->kn_kq;
1913 
1914 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1915 		KKASSERT(kn->kn_fp);
1916 		list = &kn->kn_fp->f_klist;
1917 	} else {
1918 		if (kq->kq_knhashmask == 0)
1919 			kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1920 						 &kq->kq_knhashmask);
1921 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1922 	}
1923 	lwkt_getpooltoken(list);
1924 	SLIST_INSERT_HEAD(list, kn, kn_link);
1925 	lwkt_relpooltoken(list);
1926 	TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink);
1927 }
1928 
1929 /*
1930  * Low level drop function.
1931  *
1932  * The knote should already be marked for processing.
1933  * Caller must hold the related kq token.
1934  */
1935 static void
1936 knote_drop(struct knote *kn)
1937 {
1938 	struct kqueue *kq;
1939 	struct klist *list;
1940 
1941 	kq = kn->kn_kq;
1942 
1943 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1944 		list = &kn->kn_fp->f_klist;
1945 	else
1946 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1947 
1948 	lwkt_getpooltoken(list);
1949 	SLIST_REMOVE(list, kn, knote, kn_link);
1950 	lwkt_relpooltoken(list);
1951 	TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
1952 	if (kn->kn_status & KN_QUEUED)
1953 		knote_dequeue(kn);
1954 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1955 		fdrop(kn->kn_fp);
1956 		kn->kn_fp = NULL;
1957 	}
1958 	knote_free(kn);
1959 }
1960 
1961 /*
1962  * Low level enqueue function.
1963  *
1964  * The knote should already be marked for processing.
1965  * Caller must be holding the kq token
1966  */
1967 static void
1968 knote_enqueue(struct knote *kn)
1969 {
1970 	struct kqueue *kq = kn->kn_kq;
1971 
1972 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1973 	TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1974 	kn->kn_status |= KN_QUEUED;
1975 	++kq->kq_count;
1976 
1977 	/*
1978 	 * Send SIGIO on request (typically set up as a mailbox signal)
1979 	 */
1980 	if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1)
1981 		pgsigio(kq->kq_sigio, SIGIO, 0);
1982 
1983 	kqueue_wakeup(kq);
1984 }
1985 
1986 /*
1987  * Low level dequeue function.
1988  *
1989  * The knote should already be marked for processing.
1990  * Caller must be holding the kq token
1991  */
1992 static void
1993 knote_dequeue(struct knote *kn)
1994 {
1995 	struct kqueue *kq = kn->kn_kq;
1996 
1997 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1998 	TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1999 	kn->kn_status &= ~KN_QUEUED;
2000 	kq->kq_count--;
2001 }
2002 
2003 static struct knote *
2004 knote_alloc(void)
2005 {
2006 	return kmalloc(sizeof(struct knote), M_KQUEUE, M_WAITOK);
2007 }
2008 
2009 static void
2010 knote_free(struct knote *kn)
2011 {
2012 	struct knote_cache_list *cache_list;
2013 
2014 	cache_list = &knote_cache_lists[mycpuid];
2015 	if (cache_list->knote_cache_cnt < KNOTE_CACHE_MAX) {
2016 		crit_enter();
2017 		SLIST_INSERT_HEAD(&cache_list->knote_cache, kn, kn_link);
2018 		cache_list->knote_cache_cnt++;
2019 		crit_exit();
2020 		return;
2021 	}
2022 	kfree(kn, M_KQUEUE);
2023 }
2024 
2025 struct sleepinfo {
2026 	void *ident;
2027 	int timedout;
2028 };
2029 
2030 static void
2031 precise_sleep_intr(systimer_t info, int in_ipi, struct intrframe *frame)
2032 {
2033 	struct sleepinfo *si;
2034 
2035 	si = info->data;
2036 	si->timedout = 1;
2037 	wakeup(si->ident);
2038 }
2039 
2040 static int
2041 precise_sleep(void *ident, int flags, const char *wmesg, int us)
2042 {
2043 	struct systimer info;
2044 	struct sleepinfo si = {
2045 		.ident = ident,
2046 		.timedout = 0,
2047 	};
2048 	int r;
2049 
2050 	tsleep_interlock(ident, flags);
2051 	systimer_init_oneshot(&info, precise_sleep_intr, &si,
2052 	    us == 0 ? 1 : us);
2053 	r = tsleep(ident, flags | PINTERLOCKED, wmesg, 0);
2054 	systimer_del(&info);
2055 	if (si.timedout)
2056 		r = EWOULDBLOCK;
2057 
2058 	return r;
2059 }
2060