xref: /dragonfly/sys/kern/kern_event.c (revision 9b76bf24)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/malloc.h>
34 #include <sys/unistd.h>
35 #include <sys/file.h>
36 #include <sys/lock.h>
37 #include <sys/fcntl.h>
38 #include <sys/queue.h>
39 #include <sys/event.h>
40 #include <sys/eventvar.h>
41 #include <sys/protosw.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/sysproto.h>
47 #include <sys/thread.h>
48 #include <sys/uio.h>
49 #include <sys/signalvar.h>
50 #include <sys/filio.h>
51 #include <sys/ktr.h>
52 #include <sys/spinlock.h>
53 
54 #include <sys/thread2.h>
55 #include <sys/file2.h>
56 #include <sys/mplock2.h>
57 #include <sys/spinlock2.h>
58 
59 #define EVENT_REGISTER	1
60 #define EVENT_PROCESS	2
61 
62 static MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
63 
64 struct kevent_copyin_args {
65 	struct kevent_args	*ka;
66 	int			pchanges;
67 };
68 
69 #define KNOTE_CACHE_MAX		64
70 
71 struct knote_cache_list {
72 	struct klist		knote_cache;
73 	int			knote_cache_cnt;
74 } __cachealign;
75 
76 static int	kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
77 		    struct knote *marker, int closedcounter, int scan_flags);
78 static int 	kqueue_read(struct file *fp, struct uio *uio,
79 		    struct ucred *cred, int flags);
80 static int	kqueue_write(struct file *fp, struct uio *uio,
81 		    struct ucred *cred, int flags);
82 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
83 		    struct ucred *cred, struct sysmsg *msg);
84 static int 	kqueue_kqfilter(struct file *fp, struct knote *kn);
85 static int 	kqueue_stat(struct file *fp, struct stat *st,
86 		    struct ucred *cred);
87 static int 	kqueue_close(struct file *fp);
88 static void	kqueue_wakeup(struct kqueue *kq);
89 static int	filter_attach(struct knote *kn);
90 static int	filter_event(struct knote *kn, long hint);
91 
92 /*
93  * MPSAFE
94  */
95 static struct fileops kqueueops = {
96 	.fo_read = kqueue_read,
97 	.fo_write = kqueue_write,
98 	.fo_ioctl = kqueue_ioctl,
99 	.fo_kqfilter = kqueue_kqfilter,
100 	.fo_stat = kqueue_stat,
101 	.fo_close = kqueue_close,
102 	.fo_shutdown = nofo_shutdown
103 };
104 
105 static void 	knote_attach(struct knote *kn);
106 static void 	knote_drop(struct knote *kn);
107 static void	knote_detach_and_drop(struct knote *kn);
108 static void 	knote_enqueue(struct knote *kn);
109 static void 	knote_dequeue(struct knote *kn);
110 static struct 	knote *knote_alloc(void);
111 static void 	knote_free(struct knote *kn);
112 
113 static void	precise_sleep_intr(systimer_t info, int in_ipi,
114 				   struct intrframe *frame);
115 static int	precise_sleep(void *ident, int flags, const char *wmesg,
116 			      int us);
117 
118 static void	filt_kqdetach(struct knote *kn);
119 static int	filt_kqueue(struct knote *kn, long hint);
120 static int	filt_procattach(struct knote *kn);
121 static void	filt_procdetach(struct knote *kn);
122 static int	filt_proc(struct knote *kn, long hint);
123 static int	filt_fileattach(struct knote *kn);
124 static void	filt_timerexpire(void *knx);
125 static int	filt_timerattach(struct knote *kn);
126 static void	filt_timerdetach(struct knote *kn);
127 static int	filt_timer(struct knote *kn, long hint);
128 static int	filt_userattach(struct knote *kn);
129 static void	filt_userdetach(struct knote *kn);
130 static int	filt_user(struct knote *kn, long hint);
131 static void	filt_usertouch(struct knote *kn, struct kevent *kev,
132 				u_long type);
133 static int	filt_fsattach(struct knote *kn);
134 static void	filt_fsdetach(struct knote *kn);
135 static int	filt_fs(struct knote *kn, long hint);
136 
137 static struct filterops file_filtops =
138 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, filt_fileattach, NULL, NULL };
139 static struct filterops kqread_filtops =
140 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, NULL, filt_kqdetach, filt_kqueue };
141 static struct filterops proc_filtops =
142 	{ FILTEROP_MPSAFE, filt_procattach, filt_procdetach, filt_proc };
143 static struct filterops timer_filtops =
144 	{ FILTEROP_MPSAFE, filt_timerattach, filt_timerdetach, filt_timer };
145 static struct filterops user_filtops =
146 	{ FILTEROP_MPSAFE, filt_userattach, filt_userdetach, filt_user };
147 static struct filterops fs_filtops =
148 	{ FILTEROP_MPSAFE, filt_fsattach, filt_fsdetach, filt_fs };
149 
150 static int 		kq_ncallouts = 0;
151 static int 		kq_calloutmax = 65536;
152 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
153     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
154 static int		kq_checkloop = 1000000;
155 SYSCTL_INT(_kern, OID_AUTO, kq_checkloop, CTLFLAG_RW,
156     &kq_checkloop, 0, "Maximum number of loops for kqueue scan");
157 static int		kq_sleep_threshold = 20000;
158 SYSCTL_INT(_kern, OID_AUTO, kq_sleep_threshold, CTLFLAG_RW,
159     &kq_sleep_threshold, 0, "Minimum sleep duration without busy-looping");
160 
161 #define KNOTE_ACTIVATE(kn) do { 					\
162 	kn->kn_status |= KN_ACTIVE;					\
163 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
164 		knote_enqueue(kn);					\
165 } while(0)
166 
167 #define	KN_HASHSIZE		64		/* XXX should be tunable */
168 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
169 
170 extern struct filterops aio_filtops;
171 extern struct filterops sig_filtops;
172 
173 /*
174  * Table for for all system-defined filters.
175  */
176 static struct filterops *sysfilt_ops[] = {
177 	&file_filtops,			/* EVFILT_READ */
178 	&file_filtops,			/* EVFILT_WRITE */
179 	&aio_filtops,			/* EVFILT_AIO */
180 	&file_filtops,			/* EVFILT_VNODE */
181 	&proc_filtops,			/* EVFILT_PROC */
182 	&sig_filtops,			/* EVFILT_SIGNAL */
183 	&timer_filtops,			/* EVFILT_TIMER */
184 	&file_filtops,			/* EVFILT_EXCEPT */
185 	&user_filtops,			/* EVFILT_USER */
186 	&fs_filtops,			/* EVFILT_FS */
187 };
188 
189 static struct knote_cache_list	knote_cache_lists[MAXCPU];
190 
191 /*
192  * Acquire a knote, return non-zero on success, 0 on failure.
193  *
194  * If we cannot acquire the knote we sleep and return 0.  The knote
195  * may be stale on return in this case and the caller must restart
196  * whatever loop they are in.
197  *
198  * Related kq token must be held.
199  */
200 static __inline int
201 knote_acquire(struct knote *kn)
202 {
203 	if (kn->kn_status & KN_PROCESSING) {
204 		kn->kn_status |= KN_WAITING | KN_REPROCESS;
205 		tsleep(kn, 0, "kqepts", hz);
206 		/* knote may be stale now */
207 		return(0);
208 	}
209 	kn->kn_status |= KN_PROCESSING;
210 	return(1);
211 }
212 
213 /*
214  * Release an acquired knote, clearing KN_PROCESSING and handling any
215  * KN_REPROCESS events.
216  *
217  * Caller must be holding the related kq token
218  *
219  * Non-zero is returned if the knote is destroyed or detached.
220  */
221 static __inline int
222 knote_release(struct knote *kn)
223 {
224 	int ret;
225 
226 	while (kn->kn_status & KN_REPROCESS) {
227 		kn->kn_status &= ~KN_REPROCESS;
228 		if (kn->kn_status & KN_WAITING) {
229 			kn->kn_status &= ~KN_WAITING;
230 			wakeup(kn);
231 		}
232 		if (kn->kn_status & KN_DELETING) {
233 			knote_detach_and_drop(kn);
234 			return(1);
235 			/* NOT REACHED */
236 		}
237 		if (filter_event(kn, 0))
238 			KNOTE_ACTIVATE(kn);
239 	}
240 	if (kn->kn_status & KN_DETACHED)
241 		ret = 1;
242 	else
243 		ret = 0;
244 	kn->kn_status &= ~KN_PROCESSING;
245 	/* kn should not be accessed anymore */
246 	return ret;
247 }
248 
249 static int
250 filt_fileattach(struct knote *kn)
251 {
252 	return (fo_kqfilter(kn->kn_fp, kn));
253 }
254 
255 /*
256  * MPSAFE
257  */
258 static int
259 kqueue_kqfilter(struct file *fp, struct knote *kn)
260 {
261 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
262 
263 	if (kn->kn_filter != EVFILT_READ)
264 		return (EOPNOTSUPP);
265 
266 	kn->kn_fop = &kqread_filtops;
267 	knote_insert(&kq->kq_kqinfo.ki_note, kn);
268 	return (0);
269 }
270 
271 static void
272 filt_kqdetach(struct knote *kn)
273 {
274 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
275 
276 	knote_remove(&kq->kq_kqinfo.ki_note, kn);
277 }
278 
279 /*ARGSUSED*/
280 static int
281 filt_kqueue(struct knote *kn, long hint)
282 {
283 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
284 
285 	kn->kn_data = kq->kq_count;
286 	return (kn->kn_data > 0);
287 }
288 
289 static int
290 filt_procattach(struct knote *kn)
291 {
292 	struct proc *p;
293 	int immediate;
294 
295 	immediate = 0;
296 	p = pfind(kn->kn_id);
297 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
298 		p = zpfind(kn->kn_id);
299 		immediate = 1;
300 	}
301 	if (p == NULL) {
302 		return (ESRCH);
303 	}
304 	if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
305 		if (p)
306 			PRELE(p);
307 		return (EACCES);
308 	}
309 
310 	lwkt_gettoken(&p->p_token);
311 	kn->kn_ptr.p_proc = p;
312 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
313 
314 	/*
315 	 * internal flag indicating registration done by kernel
316 	 */
317 	if (kn->kn_flags & EV_FLAG1) {
318 		kn->kn_data = kn->kn_sdata;		/* ppid */
319 		kn->kn_fflags = NOTE_CHILD;
320 		kn->kn_flags &= ~EV_FLAG1;
321 	}
322 
323 	knote_insert(&p->p_klist, kn);
324 
325 	/*
326 	 * Immediately activate any exit notes if the target process is a
327 	 * zombie.  This is necessary to handle the case where the target
328 	 * process, e.g. a child, dies before the kevent is negistered.
329 	 */
330 	if (immediate && filt_proc(kn, NOTE_EXIT))
331 		KNOTE_ACTIVATE(kn);
332 	lwkt_reltoken(&p->p_token);
333 	PRELE(p);
334 
335 	return (0);
336 }
337 
338 /*
339  * The knote may be attached to a different process, which may exit,
340  * leaving nothing for the knote to be attached to.  So when the process
341  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
342  * it will be deleted when read out.  However, as part of the knote deletion,
343  * this routine is called, so a check is needed to avoid actually performing
344  * a detach, because the original process does not exist any more.
345  */
346 static void
347 filt_procdetach(struct knote *kn)
348 {
349 	struct proc *p;
350 
351 	if (kn->kn_status & KN_DETACHED)
352 		return;
353 	p = kn->kn_ptr.p_proc;
354 	knote_remove(&p->p_klist, kn);
355 }
356 
357 static int
358 filt_proc(struct knote *kn, long hint)
359 {
360 	u_int event;
361 
362 	/*
363 	 * mask off extra data
364 	 */
365 	event = (u_int)hint & NOTE_PCTRLMASK;
366 
367 	/*
368 	 * if the user is interested in this event, record it.
369 	 */
370 	if (kn->kn_sfflags & event)
371 		kn->kn_fflags |= event;
372 
373 	/*
374 	 * Process is gone, so flag the event as finished.  Detach the
375 	 * knote from the process now because the process will be poof,
376 	 * gone later on.
377 	 */
378 	if (event == NOTE_EXIT) {
379 		struct proc *p = kn->kn_ptr.p_proc;
380 		if ((kn->kn_status & KN_DETACHED) == 0) {
381 			PHOLD(p);
382 			knote_remove(&p->p_klist, kn);
383 			kn->kn_status |= KN_DETACHED;
384 			kn->kn_data = p->p_xstat;
385 			kn->kn_ptr.p_proc = NULL;
386 			PRELE(p);
387 		}
388 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
389 		return (1);
390 	}
391 
392 	/*
393 	 * process forked, and user wants to track the new process,
394 	 * so attach a new knote to it, and immediately report an
395 	 * event with the parent's pid.
396 	 */
397 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
398 		struct kevent kev;
399 		int error;
400 		int n;
401 
402 		/*
403 		 * register knote with new process.
404 		 */
405 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
406 		kev.filter = kn->kn_filter;
407 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
408 		kev.fflags = kn->kn_sfflags;
409 		kev.data = kn->kn_id;			/* parent */
410 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
411 		n = 1;
412 		error = kqueue_register(kn->kn_kq, &kev, &n);
413 		if (error)
414 			kn->kn_fflags |= NOTE_TRACKERR;
415 	}
416 
417 	return (kn->kn_fflags != 0);
418 }
419 
420 static void
421 filt_timerreset(struct knote *kn)
422 {
423 	struct callout *calloutp;
424 	struct timeval tv;
425 	int tticks;
426 
427 	tv.tv_sec = kn->kn_sdata / 1000;
428 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
429 	tticks = tvtohz_high(&tv);
430 	calloutp = (struct callout *)kn->kn_hook;
431 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
432 }
433 
434 /*
435  * The callout interlocks with callout_stop() but can still
436  * race a deletion so if KN_DELETING is set we just don't touch
437  * the knote.
438  */
439 static void
440 filt_timerexpire(void *knx)
441 {
442 	struct knote *kn = knx;
443 	struct kqueue *kq = kn->kn_kq;
444 
445 	lwkt_getpooltoken(kq);
446 
447 	/*
448 	 * Open knote_acquire(), since we can't sleep in callout,
449 	 * however, we do need to record this expiration.
450 	 */
451 	kn->kn_data++;
452 	if (kn->kn_status & KN_PROCESSING) {
453 		kn->kn_status |= KN_REPROCESS;
454 		if ((kn->kn_status & KN_DELETING) == 0 &&
455 		    (kn->kn_flags & EV_ONESHOT) == 0)
456 			filt_timerreset(kn);
457 		lwkt_relpooltoken(kq);
458 		return;
459 	}
460 	KASSERT((kn->kn_status & KN_DELETING) == 0,
461 	    ("acquire a deleting knote %#x", kn->kn_status));
462 	kn->kn_status |= KN_PROCESSING;
463 
464 	KNOTE_ACTIVATE(kn);
465 	if ((kn->kn_flags & EV_ONESHOT) == 0)
466 		filt_timerreset(kn);
467 
468 	knote_release(kn);
469 
470 	lwkt_relpooltoken(kq);
471 }
472 
473 /*
474  * data contains amount of time to sleep, in milliseconds
475  */
476 static int
477 filt_timerattach(struct knote *kn)
478 {
479 	struct callout *calloutp;
480 	int prev_ncallouts;
481 
482 	prev_ncallouts = atomic_fetchadd_int(&kq_ncallouts, 1);
483 	if (prev_ncallouts >= kq_calloutmax) {
484 		atomic_subtract_int(&kq_ncallouts, 1);
485 		kn->kn_hook = NULL;
486 		return (ENOMEM);
487 	}
488 
489 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
490 	calloutp = kmalloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
491 	callout_init_mp(calloutp);
492 	kn->kn_hook = (caddr_t)calloutp;
493 
494 	filt_timerreset(kn);
495 	return (0);
496 }
497 
498 /*
499  * This function is called with the knote flagged locked but it is
500  * still possible to race a callout event due to the callback blocking.
501  */
502 static void
503 filt_timerdetach(struct knote *kn)
504 {
505 	struct callout *calloutp;
506 
507 	calloutp = (struct callout *)kn->kn_hook;
508 	callout_terminate(calloutp);
509 	kn->kn_hook = NULL;
510 	kfree(calloutp, M_KQUEUE);
511 	atomic_subtract_int(&kq_ncallouts, 1);
512 }
513 
514 static int
515 filt_timer(struct knote *kn, long hint)
516 {
517 	return (kn->kn_data != 0);
518 }
519 
520 /*
521  * EVFILT_USER
522  */
523 static int
524 filt_userattach(struct knote *kn)
525 {
526 	u_int ffctrl;
527 
528 	kn->kn_hook = NULL;
529 	if (kn->kn_sfflags & NOTE_TRIGGER)
530 		kn->kn_ptr.hookid = 1;
531 	else
532 		kn->kn_ptr.hookid = 0;
533 
534 	ffctrl = kn->kn_sfflags & NOTE_FFCTRLMASK;
535 	kn->kn_sfflags &= NOTE_FFLAGSMASK;
536 	switch (ffctrl) {
537 	case NOTE_FFNOP:
538 		break;
539 
540 	case NOTE_FFAND:
541 		kn->kn_fflags &= kn->kn_sfflags;
542 		break;
543 
544 	case NOTE_FFOR:
545 		kn->kn_fflags |= kn->kn_sfflags;
546 		break;
547 
548 	case NOTE_FFCOPY:
549 		kn->kn_fflags = kn->kn_sfflags;
550 		break;
551 
552 	default:
553 		/* XXX Return error? */
554 		break;
555 	}
556 	/* We just happen to copy this value as well. Undocumented. */
557 	kn->kn_data = kn->kn_sdata;
558 
559 	return 0;
560 }
561 
562 static void
563 filt_userdetach(struct knote *kn)
564 {
565 	/* nothing to do */
566 }
567 
568 static int
569 filt_user(struct knote *kn, long hint)
570 {
571 	return (kn->kn_ptr.hookid);
572 }
573 
574 static void
575 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
576 {
577 	u_int ffctrl;
578 
579 	switch (type) {
580 	case EVENT_REGISTER:
581 		if (kev->fflags & NOTE_TRIGGER)
582 			kn->kn_ptr.hookid = 1;
583 
584 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
585 		kev->fflags &= NOTE_FFLAGSMASK;
586 		switch (ffctrl) {
587 		case NOTE_FFNOP:
588 			break;
589 
590 		case NOTE_FFAND:
591 			kn->kn_fflags &= kev->fflags;
592 			break;
593 
594 		case NOTE_FFOR:
595 			kn->kn_fflags |= kev->fflags;
596 			break;
597 
598 		case NOTE_FFCOPY:
599 			kn->kn_fflags = kev->fflags;
600 			break;
601 
602 		default:
603 			/* XXX Return error? */
604 			break;
605 		}
606 		/* We just happen to copy this value as well. Undocumented. */
607 		kn->kn_data = kev->data;
608 
609 		/*
610 		 * This is not the correct use of EV_CLEAR in an event
611 		 * modification, it should have been passed as a NOTE instead.
612 		 * But we need to maintain compatibility with Apple & FreeBSD.
613 		 *
614 		 * Note however that EV_CLEAR can still be used when doing
615 		 * the initial registration of the event and works as expected
616 		 * (clears the event on reception).
617 		 */
618 		if (kev->flags & EV_CLEAR) {
619 			kn->kn_ptr.hookid = 0;
620 			/*
621 			 * Clearing kn->kn_data is fine, since it gets set
622 			 * every time anyway. We just shouldn't clear
623 			 * kn->kn_fflags here, since that would limit the
624 			 * possible uses of this API. NOTE_FFAND or
625 			 * NOTE_FFCOPY should be used for explicitly clearing
626 			 * kn->kn_fflags.
627 			 */
628 			kn->kn_data = 0;
629 		}
630 		break;
631 
632         case EVENT_PROCESS:
633 		*kev = kn->kn_kevent;
634 		kev->fflags = kn->kn_fflags;
635 		kev->data = kn->kn_data;
636 		if (kn->kn_flags & EV_CLEAR) {
637 			kn->kn_ptr.hookid = 0;
638 			/* kn_data, kn_fflags handled by parent */
639 		}
640 		break;
641 
642 	default:
643 		panic("filt_usertouch() - invalid type (%ld)", type);
644 		break;
645 	}
646 }
647 
648 /*
649  * EVFILT_FS
650  */
651 struct klist fs_klist = SLIST_HEAD_INITIALIZER(&fs_klist);
652 
653 static int
654 filt_fsattach(struct knote *kn)
655 {
656 	kn->kn_flags |= EV_CLEAR;
657 	knote_insert(&fs_klist, kn);
658 
659 	return (0);
660 }
661 
662 static void
663 filt_fsdetach(struct knote *kn)
664 {
665 	knote_remove(&fs_klist, kn);
666 }
667 
668 static int
669 filt_fs(struct knote *kn, long hint)
670 {
671 	kn->kn_fflags |= hint;
672 	return (kn->kn_fflags != 0);
673 }
674 
675 /*
676  * Initialize a kqueue.
677  *
678  * NOTE: The lwp/proc code initializes a kqueue for select/poll ops.
679  */
680 void
681 kqueue_init(struct kqueue *kq, struct filedesc *fdp)
682 {
683 	bzero(kq, sizeof(*kq));
684 	TAILQ_INIT(&kq->kq_knpend);
685 	TAILQ_INIT(&kq->kq_knlist);
686 	kq->kq_fdp = fdp;
687 	SLIST_INIT(&kq->kq_kqinfo.ki_note);
688 }
689 
690 /*
691  * Terminate a kqueue.  Freeing the actual kq itself is left up to the
692  * caller (it might be embedded in a lwp so we don't do it here).
693  *
694  * The kq's knlist must be completely eradicated so block on any
695  * processing races.
696  */
697 void
698 kqueue_terminate(struct kqueue *kq)
699 {
700 	struct knote *kn;
701 
702 	lwkt_getpooltoken(kq);
703 	while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) {
704 		if (knote_acquire(kn))
705 			knote_detach_and_drop(kn);
706 	}
707 	lwkt_relpooltoken(kq);
708 
709 	if (kq->kq_knhash) {
710 		hashdestroy(kq->kq_knhash, M_KQUEUE, kq->kq_knhashmask);
711 		kq->kq_knhash = NULL;
712 		kq->kq_knhashmask = 0;
713 	}
714 }
715 
716 /*
717  * MPSAFE
718  */
719 int
720 sys_kqueue(struct kqueue_args *uap)
721 {
722 	struct thread *td = curthread;
723 	struct kqueue *kq;
724 	struct file *fp;
725 	int fd, error;
726 
727 	error = falloc(td->td_lwp, &fp, &fd);
728 	if (error)
729 		return (error);
730 	fp->f_flag = FREAD | FWRITE;
731 	fp->f_type = DTYPE_KQUEUE;
732 	fp->f_ops = &kqueueops;
733 
734 	kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
735 	kqueue_init(kq, td->td_proc->p_fd);
736 	fp->f_data = kq;
737 
738 	fsetfd(kq->kq_fdp, fp, fd);
739 	uap->sysmsg_result = fd;
740 	fdrop(fp);
741 	return (error);
742 }
743 
744 /*
745  * Copy 'count' items into the destination list pointed to by uap->eventlist.
746  */
747 static int
748 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res)
749 {
750 	struct kevent_copyin_args *kap;
751 	int error;
752 
753 	kap = (struct kevent_copyin_args *)arg;
754 
755 	error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp));
756 	if (error == 0) {
757 		kap->ka->eventlist += count;
758 		*res += count;
759 	} else {
760 		*res = -1;
761 	}
762 
763 	return (error);
764 }
765 
766 /*
767  * Copy at most 'max' items from the list pointed to by kap->changelist,
768  * return number of items in 'events'.
769  */
770 static int
771 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events)
772 {
773 	struct kevent_copyin_args *kap;
774 	int error, count;
775 
776 	kap = (struct kevent_copyin_args *)arg;
777 
778 	count = min(kap->ka->nchanges - kap->pchanges, max);
779 	error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp);
780 	if (error == 0) {
781 		kap->ka->changelist += count;
782 		kap->pchanges += count;
783 		*events = count;
784 	}
785 
786 	return (error);
787 }
788 
789 /*
790  * MPSAFE
791  */
792 int
793 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap,
794 	    k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn,
795 	    struct timespec *tsp_in, int flags)
796 {
797 	struct kevent *kevp;
798 	struct timespec *tsp, ats;
799 	int i, n, total, error, nerrors = 0;
800 	int gobbled;
801 	int lres;
802 	int limit = kq_checkloop;
803 	int closedcounter;
804 	int scan_flags;
805 	struct kevent kev[KQ_NEVENTS];
806 	struct knote marker;
807 	struct lwkt_token *tok;
808 
809 	if (tsp_in == NULL || tsp_in->tv_sec || tsp_in->tv_nsec)
810 		atomic_set_int(&curthread->td_mpflags, TDF_MP_BATCH_DEMARC);
811 
812 	tsp = tsp_in;
813 	*res = 0;
814 
815 	closedcounter = kq->kq_fdp->fd_closedcounter;
816 
817 	for (;;) {
818 		n = 0;
819 		error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n);
820 		if (error)
821 			return error;
822 		if (n == 0)
823 			break;
824 		for (i = 0; i < n; ++i)
825 			kev[i].flags &= ~EV_SYSFLAGS;
826 		for (i = 0; i < n; ++i) {
827 			gobbled = n - i;
828 			error = kqueue_register(kq, &kev[i], &gobbled);
829 			i += gobbled - 1;
830 			kevp = &kev[i];
831 
832 			/*
833 			 * If a registration returns an error we
834 			 * immediately post the error.  The kevent()
835 			 * call itself will fail with the error if
836 			 * no space is available for posting.
837 			 *
838 			 * Such errors normally bypass the timeout/blocking
839 			 * code.  However, if the copyoutfn function refuses
840 			 * to post the error (see sys_poll()), then we
841 			 * ignore it too.
842 			 */
843 			if (error || (kevp->flags & EV_RECEIPT)) {
844 				kevp->flags = EV_ERROR;
845 				kevp->data = error;
846 				lres = *res;
847 				kevent_copyoutfn(uap, kevp, 1, res);
848 				if (*res < 0) {
849 					return error;
850 				} else if (lres != *res) {
851 					nevents--;
852 					nerrors++;
853 				}
854 			}
855 		}
856 	}
857 	if (nerrors)
858 		return 0;
859 
860 	/*
861 	 * Acquire/wait for events - setup timeout
862 	 *
863 	 * If no timeout specified clean up the run path by clearing the
864 	 * PRECISE flag.
865 	 */
866 	if (tsp != NULL) {
867 		if (tsp->tv_sec || tsp->tv_nsec) {
868 			getnanouptime(&ats);
869 			timespecadd(tsp, &ats, tsp);	/* tsp = target time */
870 		}
871 	} else {
872 		flags &= ~KEVENT_TIMEOUT_PRECISE;
873 	}
874 
875 	/*
876 	 * Loop as required.
877 	 *
878 	 * Collect as many events as we can. Sleeping on successive
879 	 * loops is disabled if copyoutfn has incremented (*res).
880 	 *
881 	 * The loop stops if an error occurs, all events have been
882 	 * scanned (the marker has been reached), or fewer than the
883 	 * maximum number of events is found.
884 	 *
885 	 * The copyoutfn function does not have to increment (*res) in
886 	 * order for the loop to continue.
887 	 *
888 	 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents.
889 	 */
890 	total = 0;
891 	error = 0;
892 	marker.kn_filter = EVFILT_MARKER;
893 	marker.kn_status = KN_PROCESSING;
894 
895 	tok = lwkt_token_pool_lookup(kq);
896 	scan_flags = KEVENT_SCAN_INSERT_MARKER;
897 
898 	while ((n = nevents - total) > 0) {
899 		if (n > KQ_NEVENTS)
900 			n = KQ_NEVENTS;
901 
902 		/*
903 		 * Process all received events
904 		 * Account for all non-spurious events in our total
905 		 */
906 		i = kqueue_scan(kq, kev, n, &marker, closedcounter, scan_flags);
907 		scan_flags = KEVENT_SCAN_KEEP_MARKER;
908 		if (i) {
909 			lres = *res;
910 			error = kevent_copyoutfn(uap, kev, i, res);
911 			total += *res - lres;
912 			if (error)
913 				break;
914 		}
915 		if (limit && --limit == 0)
916 			panic("kqueue: checkloop failed i=%d", i);
917 
918 		/*
919 		 * Normally when fewer events are returned than requested
920 		 * we can stop.  However, if only spurious events were
921 		 * collected the copyout will not bump (*res) and we have
922 		 * to continue.
923 		 */
924 		if (i < n && *res)
925 			break;
926 
927 		/*
928 		 * If no events were recorded (no events happened or the events
929 		 * that did happen were all spurious), block until an event
930 		 * occurs or the timeout occurs and reload the marker.
931 		 *
932 		 * If we saturated n (i == n) loop up without sleeping to
933 		 * continue processing the list.
934 		 */
935 		if (i != n && kq->kq_count == 0 && *res == 0) {
936 			int timeout;
937 			int ustimeout;
938 
939 			if (tsp == NULL) {
940 				timeout = 0;
941 				ustimeout = 0;
942 			} else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
943 				error = EWOULDBLOCK;
944 				break;
945 			} else {
946 				struct timespec atx = *tsp;
947 
948 				getnanouptime(&ats);
949 				timespecsub(&atx, &ats, &atx);
950 				if (atx.tv_sec < 0 ||
951 				    (atx.tv_sec == 0 && atx.tv_nsec <= 0)) {
952 					error = EWOULDBLOCK;
953 					break;
954 				}
955 				if (flags & KEVENT_TIMEOUT_PRECISE) {
956 					if (atx.tv_sec == 0 &&
957 					    atx.tv_nsec < kq_sleep_threshold) {
958 						ustimeout = kq_sleep_threshold /
959 							    1000;
960 					} else if (atx.tv_sec < 60) {
961 						ustimeout =
962 							atx.tv_sec * 1000000 +
963 							atx.tv_nsec / 1000;
964 					} else {
965 						ustimeout = 60 * 1000000;
966 					}
967 					if (ustimeout == 0)
968 						ustimeout = 1;
969 					timeout = 0;
970 				} else if (atx.tv_sec > 60 * 60) {
971 					timeout = 60 * 60 * hz;
972 					ustimeout = 0;
973 				} else {
974 					timeout = tstohz_high(&atx);
975 					ustimeout = 0;
976 				}
977 			}
978 
979 			lwkt_gettoken(tok);
980 			if (kq->kq_count == 0) {
981 				kq->kq_sleep_cnt++;
982 				if (__predict_false(kq->kq_sleep_cnt == 0)) {
983 					/*
984 					 * Guard against possible wrapping.  And
985 					 * set it to 2, so that kqueue_wakeup()
986 					 * can wake everyone up.
987 					 */
988 					kq->kq_sleep_cnt = 2;
989 				}
990 				if (flags & KEVENT_TIMEOUT_PRECISE) {
991 					error = precise_sleep(kq, PCATCH,
992 							"kqread", ustimeout);
993 				} else {
994 					error = tsleep(kq, PCATCH,
995 							"kqread", timeout);
996 				}
997 
998 				/* don't restart after signals... */
999 				if (error == ERESTART)
1000 					error = EINTR;
1001 				if (error == EWOULDBLOCK)
1002 					error = 0;
1003 				if (error) {
1004 					lwkt_reltoken(tok);
1005 					break;
1006 				}
1007 				scan_flags = KEVENT_SCAN_RELOAD_MARKER;
1008 			}
1009 			lwkt_reltoken(tok);
1010 		}
1011 
1012 		/*
1013 		 * Deal with an edge case where spurious events can cause
1014 		 * a loop to occur without moving the marker.  This can
1015 		 * prevent kqueue_scan() from picking up new events which
1016 		 * race us.  We must be sure to move the marker for this
1017 		 * case.
1018 		 *
1019 		 * NOTE: We do not want to move the marker if events
1020 		 *	 were scanned because normal kqueue operations
1021 		 *	 may reactivate events.  Moving the marker in
1022 		 *	 that case could result in duplicates for the
1023 		 *	 same event.
1024 		 */
1025 		if (i == 0)
1026 			scan_flags = KEVENT_SCAN_RELOAD_MARKER;
1027 	}
1028 
1029 	/*
1030 	 * Remove the marker
1031 	 */
1032 	if (scan_flags != KEVENT_SCAN_INSERT_MARKER) {
1033 		lwkt_gettoken(tok);
1034 		TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
1035 		lwkt_reltoken(tok);
1036 	}
1037 
1038 	/* Timeouts do not return EWOULDBLOCK. */
1039 	if (error == EWOULDBLOCK)
1040 		error = 0;
1041 	return error;
1042 }
1043 
1044 /*
1045  * MPALMOSTSAFE
1046  */
1047 int
1048 sys_kevent(struct kevent_args *uap)
1049 {
1050 	struct thread *td = curthread;
1051 	struct timespec ts, *tsp;
1052 	struct kqueue *kq;
1053 	struct file *fp = NULL;
1054 	struct kevent_copyin_args *kap, ka;
1055 	int error;
1056 
1057 	if (uap->timeout) {
1058 		error = copyin(uap->timeout, &ts, sizeof(ts));
1059 		if (error)
1060 			return (error);
1061 		tsp = &ts;
1062 	} else {
1063 		tsp = NULL;
1064 	}
1065 	fp = holdfp(td, uap->fd, -1);
1066 	if (fp == NULL)
1067 		return (EBADF);
1068 	if (fp->f_type != DTYPE_KQUEUE) {
1069 		fdrop(fp);
1070 		return (EBADF);
1071 	}
1072 
1073 	kq = (struct kqueue *)fp->f_data;
1074 
1075 	kap = &ka;
1076 	kap->ka = uap;
1077 	kap->pchanges = 0;
1078 
1079 	error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap,
1080 			    kevent_copyin, kevent_copyout, tsp, 0);
1081 
1082 	dropfp(td, uap->fd, fp);
1083 
1084 	return (error);
1085 }
1086 
1087 /*
1088  * Efficiently load multiple file pointers.  This significantly reduces
1089  * threaded overhead.  When doing simple polling we can depend on the
1090  * per-thread (fd,fp) cache.  With more descriptors, we batch.
1091  */
1092 static
1093 void
1094 floadkevfps(thread_t td, struct filedesc *fdp, struct kevent *kev,
1095 	    struct file **fp, int climit)
1096 {
1097 	struct filterops *fops;
1098 	int tdcache;
1099 
1100 	if (climit <= 2 && td->td_proc && td->td_proc->p_fd == fdp) {
1101 		tdcache = 1;
1102 	} else {
1103 		tdcache = 0;
1104 		spin_lock_shared(&fdp->fd_spin);
1105 	}
1106 
1107 	while (climit) {
1108 		*fp = NULL;
1109 		if (kev->filter < 0 &&
1110 		    kev->filter + EVFILT_SYSCOUNT >= 0) {
1111 			fops = sysfilt_ops[~kev->filter];
1112 			if (fops->f_flags & FILTEROP_ISFD) {
1113 				if (tdcache) {
1114 					*fp = holdfp(td, kev->ident, -1);
1115 				} else {
1116 					*fp = holdfp_fdp_locked(fdp,
1117 								kev->ident, -1);
1118 				}
1119 			}
1120 		}
1121 		--climit;
1122 		++fp;
1123 		++kev;
1124 	}
1125 	if (tdcache == 0)
1126 		spin_unlock_shared(&fdp->fd_spin);
1127 }
1128 
1129 /*
1130  * Register up to *countp kev's.  Always registers at least 1.
1131  *
1132  * The number registered is returned in *countp.
1133  *
1134  * If an error occurs or a kev is flagged EV_RECEIPT, it is
1135  * processed and included in *countp, and processing then
1136  * stops.
1137  */
1138 int
1139 kqueue_register(struct kqueue *kq, struct kevent *kev, int *countp)
1140 {
1141 	struct filedesc *fdp = kq->kq_fdp;
1142 	struct klist *list = NULL;
1143 	struct filterops *fops;
1144 	struct file *fp[KQ_NEVENTS];
1145 	struct knote *kn = NULL;
1146 	struct thread *td;
1147 	int error;
1148 	int count;
1149 	int climit;
1150 	int closedcounter;
1151 	struct knote_cache_list *cache_list;
1152 
1153 	td = curthread;
1154 	climit = *countp;
1155 	if (climit > KQ_NEVENTS)
1156 		climit = KQ_NEVENTS;
1157 	closedcounter = fdp->fd_closedcounter;
1158 	floadkevfps(td, fdp, kev, fp, climit);
1159 
1160 	lwkt_getpooltoken(kq);
1161 	count = 0;
1162 
1163 	/*
1164 	 * To avoid races, only one thread can register events on this
1165 	 * kqueue at a time.
1166 	 */
1167 	while (__predict_false(kq->kq_regtd != NULL && kq->kq_regtd != td)) {
1168 		kq->kq_state |= KQ_REGWAIT;
1169 		tsleep(&kq->kq_regtd, 0, "kqreg", 0);
1170 	}
1171 	if (__predict_false(kq->kq_regtd != NULL)) {
1172 		/* Recursive calling of kqueue_register() */
1173 		td = NULL;
1174 	} else {
1175 		/* Owner of the kq_regtd, i.e. td != NULL */
1176 		kq->kq_regtd = td;
1177 	}
1178 
1179 loop:
1180 	if (kev->filter < 0) {
1181 		if (kev->filter + EVFILT_SYSCOUNT < 0) {
1182 			error = EINVAL;
1183 			++count;
1184 			goto done;
1185 		}
1186 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
1187 	} else {
1188 		/*
1189 		 * XXX
1190 		 * filter attach routine is responsible for insuring that
1191 		 * the identifier can be attached to it.
1192 		 */
1193 		error = EINVAL;
1194 		++count;
1195 		goto done;
1196 	}
1197 
1198 	if (fops->f_flags & FILTEROP_ISFD) {
1199 		/* validate descriptor */
1200 		if (fp[count] == NULL) {
1201 			error = EBADF;
1202 			++count;
1203 			goto done;
1204 		}
1205 	}
1206 
1207 	cache_list = &knote_cache_lists[mycpuid];
1208 	if (SLIST_EMPTY(&cache_list->knote_cache)) {
1209 		struct knote *new_kn;
1210 
1211 		new_kn = knote_alloc();
1212 		crit_enter();
1213 		SLIST_INSERT_HEAD(&cache_list->knote_cache, new_kn, kn_link);
1214 		cache_list->knote_cache_cnt++;
1215 		crit_exit();
1216 	}
1217 
1218 	if (fp[count] != NULL) {
1219 		list = &fp[count]->f_klist;
1220 	} else if (kq->kq_knhashmask) {
1221 		list = &kq->kq_knhash[
1222 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1223 	}
1224 	if (list != NULL) {
1225 		lwkt_getpooltoken(list);
1226 again:
1227 		SLIST_FOREACH(kn, list, kn_link) {
1228 			if (kn->kn_kq == kq &&
1229 			    kn->kn_filter == kev->filter &&
1230 			    kn->kn_id == kev->ident) {
1231 				if (knote_acquire(kn) == 0)
1232 					goto again;
1233 				break;
1234 			}
1235 		}
1236 		lwkt_relpooltoken(list);
1237 	}
1238 
1239 	/*
1240 	 * NOTE: At this point if kn is non-NULL we will have acquired
1241 	 *	 it and set KN_PROCESSING.
1242 	 */
1243 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
1244 		error = ENOENT;
1245 		++count;
1246 		goto done;
1247 	}
1248 
1249 	/*
1250 	 * kn now contains the matching knote, or NULL if no match
1251 	 */
1252 	if (kev->flags & EV_ADD) {
1253 		if (kn == NULL) {
1254 			crit_enter();
1255 			kn = SLIST_FIRST(&cache_list->knote_cache);
1256 			if (kn == NULL) {
1257 				crit_exit();
1258 				kn = knote_alloc();
1259 			} else {
1260 				SLIST_REMOVE_HEAD(&cache_list->knote_cache,
1261 				    kn_link);
1262 				cache_list->knote_cache_cnt--;
1263 				crit_exit();
1264 			}
1265 			kn->kn_fp = fp[count];
1266 			kn->kn_kq = kq;
1267 			kn->kn_fop = fops;
1268 
1269 			/*
1270 			 * apply reference count to knote structure, and
1271 			 * do not release it at the end of this routine.
1272 			 */
1273 			fp[count] = NULL;	/* safety */
1274 
1275 			kn->kn_sfflags = kev->fflags;
1276 			kn->kn_sdata = kev->data;
1277 			kev->fflags = 0;
1278 			kev->data = 0;
1279 			kn->kn_kevent = *kev;
1280 
1281 			/*
1282 			 * KN_PROCESSING prevents the knote from getting
1283 			 * ripped out from under us while we are trying
1284 			 * to attach it, in case the attach blocks.
1285 			 */
1286 			kn->kn_status = KN_PROCESSING;
1287 			knote_attach(kn);
1288 			if ((error = filter_attach(kn)) != 0) {
1289 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1290 				knote_drop(kn);
1291 				++count;
1292 				goto done;
1293 			}
1294 
1295 			/*
1296 			 * Interlock against close races which either tried
1297 			 * to remove our knote while we were blocked or missed
1298 			 * it entirely prior to our attachment.  We do not
1299 			 * want to end up with a knote on a closed descriptor.
1300 			 */
1301 			if ((fops->f_flags & FILTEROP_ISFD) &&
1302 			    checkfdclosed(curthread, fdp, kev->ident, kn->kn_fp,
1303 					  closedcounter)) {
1304 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1305 			}
1306 		} else {
1307 			/*
1308 			 * The user may change some filter values after the
1309 			 * initial EV_ADD, but doing so will not reset any
1310 			 * filter which have already been triggered.
1311 			 */
1312 			KKASSERT(kn->kn_status & KN_PROCESSING);
1313 			if (fops == &user_filtops) {
1314 				filt_usertouch(kn, kev, EVENT_REGISTER);
1315 			} else {
1316 				kn->kn_sfflags = kev->fflags;
1317 				kn->kn_sdata = kev->data;
1318 				kn->kn_kevent.udata = kev->udata;
1319 			}
1320 		}
1321 
1322 		/*
1323 		 * Execute the filter event to immediately activate the
1324 		 * knote if necessary.  If reprocessing events are pending
1325 		 * due to blocking above we do not run the filter here
1326 		 * but instead let knote_release() do it.  Otherwise we
1327 		 * might run the filter on a deleted event.
1328 		 */
1329 		if ((kn->kn_status & KN_REPROCESS) == 0) {
1330 			if (filter_event(kn, 0))
1331 				KNOTE_ACTIVATE(kn);
1332 		}
1333 	} else if (kev->flags & EV_DELETE) {
1334 		/*
1335 		 * Delete the existing knote
1336 		 */
1337 		knote_detach_and_drop(kn);
1338 		error = 0;
1339 		++count;
1340 		goto done;
1341 	} else {
1342 		/*
1343 		 * Modify an existing event.
1344 		 *
1345 		 * The user may change some filter values after the
1346 		 * initial EV_ADD, but doing so will not reset any
1347 		 * filter which have already been triggered.
1348 		 */
1349 		KKASSERT(kn->kn_status & KN_PROCESSING);
1350 		if (fops == &user_filtops) {
1351 			filt_usertouch(kn, kev, EVENT_REGISTER);
1352 		} else {
1353 			kn->kn_sfflags = kev->fflags;
1354 			kn->kn_sdata = kev->data;
1355 			kn->kn_kevent.udata = kev->udata;
1356 		}
1357 
1358 		/*
1359 		 * Execute the filter event to immediately activate the
1360 		 * knote if necessary.  If reprocessing events are pending
1361 		 * due to blocking above we do not run the filter here
1362 		 * but instead let knote_release() do it.  Otherwise we
1363 		 * might run the filter on a deleted event.
1364 		 */
1365 		if ((kn->kn_status & KN_REPROCESS) == 0) {
1366 			if (filter_event(kn, 0))
1367 				KNOTE_ACTIVATE(kn);
1368 		}
1369 	}
1370 
1371 	/*
1372 	 * Disablement does not deactivate a knote here.
1373 	 */
1374 	if ((kev->flags & EV_DISABLE) &&
1375 	    ((kn->kn_status & KN_DISABLED) == 0)) {
1376 		kn->kn_status |= KN_DISABLED;
1377 	}
1378 
1379 	/*
1380 	 * Re-enablement may have to immediately enqueue an active knote.
1381 	 */
1382 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
1383 		kn->kn_status &= ~KN_DISABLED;
1384 		if ((kn->kn_status & KN_ACTIVE) &&
1385 		    ((kn->kn_status & KN_QUEUED) == 0)) {
1386 			knote_enqueue(kn);
1387 		}
1388 	}
1389 
1390 	/*
1391 	 * Handle any required reprocessing
1392 	 */
1393 	knote_release(kn);
1394 	/* kn may be invalid now */
1395 
1396 	/*
1397 	 * Loop control.  We stop on errors (above), and also stop after
1398 	 * processing EV_RECEIPT, so the caller can process it.
1399 	 */
1400 	++count;
1401 	if (kev->flags & EV_RECEIPT) {
1402 		error = 0;
1403 		goto done;
1404 	}
1405 	++kev;
1406 	if (count < climit) {
1407 		if (fp[count-1])		/* drop unprocessed fp */
1408 			fdrop(fp[count-1]);
1409 		goto loop;
1410 	}
1411 
1412 	/*
1413 	 * Cleanup
1414 	 */
1415 done:
1416 	if (td != NULL) { /* Owner of the kq_regtd */
1417 		kq->kq_regtd = NULL;
1418 		if (__predict_false(kq->kq_state & KQ_REGWAIT)) {
1419 			kq->kq_state &= ~KQ_REGWAIT;
1420 			wakeup(&kq->kq_regtd);
1421 		}
1422 	}
1423 	lwkt_relpooltoken(kq);
1424 
1425 	/*
1426 	 * Drop unprocessed file pointers
1427 	 */
1428 	*countp = count;
1429 	if (count && fp[count-1])
1430 		fdrop(fp[count-1]);
1431 	while (count < climit) {
1432 		if (fp[count])
1433 			fdrop(fp[count]);
1434 		++count;
1435 	}
1436 	return (error);
1437 }
1438 
1439 /*
1440  * Scan the kqueue, return the number of active events placed in kevp up
1441  * to count.
1442  *
1443  * Continuous mode events may get recycled, do not continue scanning past
1444  * marker unless no events have been collected.
1445  */
1446 static int
1447 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
1448             struct knote *marker, int closedcounter, int scan_flags)
1449 {
1450 	struct knote *kn, local_marker;
1451 	thread_t td = curthread;
1452 	int total;
1453 
1454 	total = 0;
1455 	local_marker.kn_filter = EVFILT_MARKER;
1456 	local_marker.kn_status = KN_PROCESSING;
1457 
1458 	lwkt_getpooltoken(kq);
1459 
1460 	/*
1461 	 * Adjust marker, insert initial marker, or leave the marker alone.
1462 	 *
1463 	 * Also setup our local_marker.
1464 	 */
1465 	switch(scan_flags) {
1466 	case KEVENT_SCAN_RELOAD_MARKER:
1467 		TAILQ_REMOVE(&kq->kq_knpend, marker, kn_tqe);
1468 		/* fall through */
1469 	case KEVENT_SCAN_INSERT_MARKER:
1470 		TAILQ_INSERT_TAIL(&kq->kq_knpend, marker, kn_tqe);
1471 		break;
1472 	}
1473 	TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe);
1474 
1475 	/*
1476 	 * Collect events.
1477 	 */
1478 	while (count) {
1479 		kn = TAILQ_NEXT(&local_marker, kn_tqe);
1480 		if (kn->kn_filter == EVFILT_MARKER) {
1481 			/* Marker reached, we are done */
1482 			if (kn == marker)
1483 				break;
1484 
1485 			/* Move local marker past some other threads marker */
1486 			kn = TAILQ_NEXT(kn, kn_tqe);
1487 			TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1488 			TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe);
1489 			continue;
1490 		}
1491 
1492 		/*
1493 		 * We can't skip a knote undergoing processing, otherwise
1494 		 * we risk not returning it when the user process expects
1495 		 * it should be returned.  Sleep and retry.
1496 		 */
1497 		if (knote_acquire(kn) == 0)
1498 			continue;
1499 
1500 		/*
1501 		 * Remove the event for processing.
1502 		 *
1503 		 * WARNING!  We must leave KN_QUEUED set to prevent the
1504 		 *	     event from being KNOTE_ACTIVATE()d while
1505 		 *	     the queue state is in limbo, in case we
1506 		 *	     block.
1507 		 */
1508 		TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1509 		kq->kq_count--;
1510 
1511 		/*
1512 		 * We have to deal with an extremely important race against
1513 		 * file descriptor close()s here.  The file descriptor can
1514 		 * disappear MPSAFE, and there is a small window of
1515 		 * opportunity between that and the call to knote_fdclose().
1516 		 *
1517 		 * If we hit that window here while doselect or dopoll is
1518 		 * trying to delete a spurious event they will not be able
1519 		 * to match up the event against a knote and will go haywire.
1520 		 */
1521 		if ((kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1522 		    checkfdclosed(td, kq->kq_fdp, kn->kn_kevent.ident,
1523 				  kn->kn_fp, closedcounter)) {
1524 			kn->kn_status |= KN_DELETING | KN_REPROCESS;
1525 		}
1526 
1527 		if (kn->kn_status & KN_DISABLED) {
1528 			/*
1529 			 * If disabled we ensure the event is not queued
1530 			 * but leave its active bit set.  On re-enablement
1531 			 * the event may be immediately triggered.
1532 			 */
1533 			kn->kn_status &= ~KN_QUEUED;
1534 		} else if ((kn->kn_flags & EV_ONESHOT) == 0 &&
1535 			   (kn->kn_status & KN_DELETING) == 0 &&
1536 			   filter_event(kn, 0) == 0) {
1537 			/*
1538 			 * If not running in one-shot mode and the event
1539 			 * is no longer present we ensure it is removed
1540 			 * from the queue and ignore it.
1541 			 */
1542 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1543 		} else {
1544 			/*
1545 			 * Post the event
1546 			 */
1547 			if (kn->kn_fop == &user_filtops)
1548 				filt_usertouch(kn, kevp, EVENT_PROCESS);
1549 			else
1550 				*kevp = kn->kn_kevent;
1551 			++kevp;
1552 			++total;
1553 			--count;
1554 
1555 			if (kn->kn_flags & EV_ONESHOT) {
1556 				kn->kn_status &= ~KN_QUEUED;
1557 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1558 			} else {
1559 				if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
1560 					if (kn->kn_flags & EV_CLEAR) {
1561 						kn->kn_data = 0;
1562 						kn->kn_fflags = 0;
1563 					}
1564 					if (kn->kn_flags & EV_DISPATCH) {
1565 						kn->kn_status |= KN_DISABLED;
1566 					}
1567 					kn->kn_status &= ~(KN_QUEUED |
1568 							   KN_ACTIVE);
1569 				} else {
1570 					TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1571 					kq->kq_count++;
1572 				}
1573 			}
1574 		}
1575 
1576 		/*
1577 		 * Handle any post-processing states
1578 		 */
1579 		knote_release(kn);
1580 	}
1581 	TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1582 
1583 	lwkt_relpooltoken(kq);
1584 	return (total);
1585 }
1586 
1587 /*
1588  * XXX
1589  * This could be expanded to call kqueue_scan, if desired.
1590  *
1591  * MPSAFE
1592  */
1593 static int
1594 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1595 {
1596 	return (ENXIO);
1597 }
1598 
1599 /*
1600  * MPSAFE
1601  */
1602 static int
1603 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1604 {
1605 	return (ENXIO);
1606 }
1607 
1608 /*
1609  * MPALMOSTSAFE
1610  */
1611 static int
1612 kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
1613 	     struct ucred *cred, struct sysmsg *msg)
1614 {
1615 	struct kqueue *kq;
1616 	int error;
1617 
1618 	kq = (struct kqueue *)fp->f_data;
1619 	lwkt_getpooltoken(kq);
1620 	switch(com) {
1621 	case FIOASYNC:
1622 		if (*(int *)data)
1623 			kq->kq_state |= KQ_ASYNC;
1624 		else
1625 			kq->kq_state &= ~KQ_ASYNC;
1626 		error = 0;
1627 		break;
1628 	case FIOSETOWN:
1629 		error = fsetown(*(int *)data, &kq->kq_sigio);
1630 		break;
1631 	default:
1632 		error = ENOTTY;
1633 		break;
1634 	}
1635 	lwkt_relpooltoken(kq);
1636 	return (error);
1637 }
1638 
1639 /*
1640  * MPSAFE
1641  */
1642 static int
1643 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred)
1644 {
1645 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1646 
1647 	bzero((void *)st, sizeof(*st));
1648 	st->st_size = kq->kq_count;
1649 	st->st_blksize = sizeof(struct kevent);
1650 	st->st_mode = S_IFIFO;
1651 	return (0);
1652 }
1653 
1654 /*
1655  * MPSAFE
1656  */
1657 static int
1658 kqueue_close(struct file *fp)
1659 {
1660 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1661 
1662 	kqueue_terminate(kq);
1663 
1664 	fp->f_data = NULL;
1665 	funsetown(&kq->kq_sigio);
1666 
1667 	kfree(kq, M_KQUEUE);
1668 	return (0);
1669 }
1670 
1671 static void
1672 kqueue_wakeup(struct kqueue *kq)
1673 {
1674 	if (kq->kq_sleep_cnt) {
1675 		u_int sleep_cnt = kq->kq_sleep_cnt;
1676 
1677 		kq->kq_sleep_cnt = 0;
1678 		if (sleep_cnt == 1)
1679 			wakeup_one(kq);
1680 		else
1681 			wakeup(kq);
1682 	}
1683 	KNOTE(&kq->kq_kqinfo.ki_note, 0);
1684 }
1685 
1686 /*
1687  * Calls filterops f_attach function, acquiring mplock if filter is not
1688  * marked as FILTEROP_MPSAFE.
1689  *
1690  * Caller must be holding the related kq token
1691  */
1692 static int
1693 filter_attach(struct knote *kn)
1694 {
1695 	int ret;
1696 
1697 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1698 		ret = kn->kn_fop->f_attach(kn);
1699 	} else {
1700 		get_mplock();
1701 		ret = kn->kn_fop->f_attach(kn);
1702 		rel_mplock();
1703 	}
1704 	return (ret);
1705 }
1706 
1707 /*
1708  * Detach the knote and drop it, destroying the knote.
1709  *
1710  * Calls filterops f_detach function, acquiring mplock if filter is not
1711  * marked as FILTEROP_MPSAFE.
1712  *
1713  * Caller must be holding the related kq token
1714  */
1715 static void
1716 knote_detach_and_drop(struct knote *kn)
1717 {
1718 	kn->kn_status |= KN_DELETING | KN_REPROCESS;
1719 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1720 		kn->kn_fop->f_detach(kn);
1721 	} else {
1722 		get_mplock();
1723 		kn->kn_fop->f_detach(kn);
1724 		rel_mplock();
1725 	}
1726 	knote_drop(kn);
1727 }
1728 
1729 /*
1730  * Calls filterops f_event function, acquiring mplock if filter is not
1731  * marked as FILTEROP_MPSAFE.
1732  *
1733  * If the knote is in the middle of being created or deleted we cannot
1734  * safely call the filter op.
1735  *
1736  * Caller must be holding the related kq token
1737  */
1738 static int
1739 filter_event(struct knote *kn, long hint)
1740 {
1741 	int ret;
1742 
1743 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1744 		ret = kn->kn_fop->f_event(kn, hint);
1745 	} else {
1746 		get_mplock();
1747 		ret = kn->kn_fop->f_event(kn, hint);
1748 		rel_mplock();
1749 	}
1750 	return (ret);
1751 }
1752 
1753 /*
1754  * Walk down a list of knotes, activating them if their event has triggered.
1755  *
1756  * If we encounter any knotes which are undergoing processing we just mark
1757  * them for reprocessing and do not try to [re]activate the knote.  However,
1758  * if a hint is being passed we have to wait and that makes things a bit
1759  * sticky.
1760  */
1761 void
1762 knote(struct klist *list, long hint)
1763 {
1764 	struct kqueue *kq;
1765 	struct knote *kn;
1766 	struct knote *kntmp;
1767 
1768 	lwkt_getpooltoken(list);
1769 restart:
1770 	SLIST_FOREACH(kn, list, kn_next) {
1771 		kq = kn->kn_kq;
1772 		lwkt_getpooltoken(kq);
1773 
1774 		/* temporary verification hack */
1775 		SLIST_FOREACH(kntmp, list, kn_next) {
1776 			if (kn == kntmp)
1777 				break;
1778 		}
1779 		if (kn != kntmp || kn->kn_kq != kq) {
1780 			lwkt_relpooltoken(kq);
1781 			goto restart;
1782 		}
1783 
1784 		if (kn->kn_status & KN_PROCESSING) {
1785 			/*
1786 			 * Someone else is processing the knote, ask the
1787 			 * other thread to reprocess it and don't mess
1788 			 * with it otherwise.
1789 			 */
1790 			if (hint == 0) {
1791 				kn->kn_status |= KN_REPROCESS;
1792 				lwkt_relpooltoken(kq);
1793 				continue;
1794 			}
1795 
1796 			/*
1797 			 * If the hint is non-zero we have to wait or risk
1798 			 * losing the state the caller is trying to update.
1799 			 *
1800 			 * XXX This is a real problem, certain process
1801 			 *     and signal filters will bump kn_data for
1802 			 *     already-processed notes more than once if
1803 			 *     we restart the list scan.  FIXME.
1804 			 */
1805 			kn->kn_status |= KN_WAITING | KN_REPROCESS;
1806 			tsleep(kn, 0, "knotec", hz);
1807 			lwkt_relpooltoken(kq);
1808 			goto restart;
1809 		}
1810 
1811 		/*
1812 		 * Become the reprocessing master ourselves.
1813 		 *
1814 		 * If hint is non-zero running the event is mandatory
1815 		 * when not deleting so do it whether reprocessing is
1816 		 * set or not.
1817 		 */
1818 		kn->kn_status |= KN_PROCESSING;
1819 		if ((kn->kn_status & KN_DELETING) == 0) {
1820 			if (filter_event(kn, hint))
1821 				KNOTE_ACTIVATE(kn);
1822 		}
1823 		if (knote_release(kn)) {
1824 			lwkt_relpooltoken(kq);
1825 			goto restart;
1826 		}
1827 		lwkt_relpooltoken(kq);
1828 	}
1829 	lwkt_relpooltoken(list);
1830 }
1831 
1832 /*
1833  * Insert knote at head of klist.
1834  *
1835  * This function may only be called via a filter function and thus
1836  * kq_token should already be held and marked for processing.
1837  */
1838 void
1839 knote_insert(struct klist *klist, struct knote *kn)
1840 {
1841 	lwkt_getpooltoken(klist);
1842 	KKASSERT(kn->kn_status & KN_PROCESSING);
1843 	SLIST_INSERT_HEAD(klist, kn, kn_next);
1844 	lwkt_relpooltoken(klist);
1845 }
1846 
1847 /*
1848  * Remove knote from a klist
1849  *
1850  * This function may only be called via a filter function and thus
1851  * kq_token should already be held and marked for processing.
1852  */
1853 void
1854 knote_remove(struct klist *klist, struct knote *kn)
1855 {
1856 	lwkt_getpooltoken(klist);
1857 	KKASSERT(kn->kn_status & KN_PROCESSING);
1858 	SLIST_REMOVE(klist, kn, knote, kn_next);
1859 	lwkt_relpooltoken(klist);
1860 }
1861 
1862 void
1863 knote_assume_knotes(struct kqinfo *src, struct kqinfo *dst,
1864 		    struct filterops *ops, void *hook)
1865 {
1866 	struct kqueue *kq;
1867 	struct knote *kn;
1868 
1869 	lwkt_getpooltoken(&src->ki_note);
1870 	lwkt_getpooltoken(&dst->ki_note);
1871 	while ((kn = SLIST_FIRST(&src->ki_note)) != NULL) {
1872 		kq = kn->kn_kq;
1873 		lwkt_getpooltoken(kq);
1874 		if (SLIST_FIRST(&src->ki_note) != kn || kn->kn_kq != kq) {
1875 			lwkt_relpooltoken(kq);
1876 			continue;
1877 		}
1878 		if (knote_acquire(kn)) {
1879 			knote_remove(&src->ki_note, kn);
1880 			kn->kn_fop = ops;
1881 			kn->kn_hook = hook;
1882 			knote_insert(&dst->ki_note, kn);
1883 			knote_release(kn);
1884 			/* kn may be invalid now */
1885 		}
1886 		lwkt_relpooltoken(kq);
1887 	}
1888 	lwkt_relpooltoken(&dst->ki_note);
1889 	lwkt_relpooltoken(&src->ki_note);
1890 }
1891 
1892 /*
1893  * Remove all knotes referencing a specified fd
1894  */
1895 void
1896 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd)
1897 {
1898 	struct kqueue *kq;
1899 	struct knote *kn;
1900 	struct knote *kntmp;
1901 
1902 	lwkt_getpooltoken(&fp->f_klist);
1903 restart:
1904 	SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
1905 		if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) {
1906 			kq = kn->kn_kq;
1907 			lwkt_getpooltoken(kq);
1908 
1909 			/* temporary verification hack */
1910 			SLIST_FOREACH(kntmp, &fp->f_klist, kn_link) {
1911 				if (kn == kntmp)
1912 					break;
1913 			}
1914 			if (kn != kntmp || kn->kn_kq->kq_fdp != fdp ||
1915 			    kn->kn_id != fd || kn->kn_kq != kq) {
1916 				lwkt_relpooltoken(kq);
1917 				goto restart;
1918 			}
1919 			if (knote_acquire(kn))
1920 				knote_detach_and_drop(kn);
1921 			lwkt_relpooltoken(kq);
1922 			goto restart;
1923 		}
1924 	}
1925 	lwkt_relpooltoken(&fp->f_klist);
1926 }
1927 
1928 /*
1929  * Low level attach function.
1930  *
1931  * The knote should already be marked for processing.
1932  * Caller must hold the related kq token.
1933  */
1934 static void
1935 knote_attach(struct knote *kn)
1936 {
1937 	struct klist *list;
1938 	struct kqueue *kq = kn->kn_kq;
1939 
1940 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1941 		KKASSERT(kn->kn_fp);
1942 		list = &kn->kn_fp->f_klist;
1943 	} else {
1944 		if (kq->kq_knhashmask == 0)
1945 			kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1946 						 &kq->kq_knhashmask);
1947 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1948 	}
1949 	lwkt_getpooltoken(list);
1950 	SLIST_INSERT_HEAD(list, kn, kn_link);
1951 	lwkt_relpooltoken(list);
1952 	TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink);
1953 }
1954 
1955 /*
1956  * Low level drop function.
1957  *
1958  * The knote should already be marked for processing.
1959  * Caller must hold the related kq token.
1960  */
1961 static void
1962 knote_drop(struct knote *kn)
1963 {
1964 	struct kqueue *kq;
1965 	struct klist *list;
1966 
1967 	kq = kn->kn_kq;
1968 
1969 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1970 		list = &kn->kn_fp->f_klist;
1971 	else
1972 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1973 
1974 	lwkt_getpooltoken(list);
1975 	SLIST_REMOVE(list, kn, knote, kn_link);
1976 	lwkt_relpooltoken(list);
1977 	TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
1978 	if (kn->kn_status & KN_QUEUED)
1979 		knote_dequeue(kn);
1980 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1981 		fdrop(kn->kn_fp);
1982 		kn->kn_fp = NULL;
1983 	}
1984 	knote_free(kn);
1985 }
1986 
1987 /*
1988  * Low level enqueue function.
1989  *
1990  * The knote should already be marked for processing.
1991  * Caller must be holding the kq token
1992  */
1993 static void
1994 knote_enqueue(struct knote *kn)
1995 {
1996 	struct kqueue *kq = kn->kn_kq;
1997 
1998 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1999 	TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
2000 	kn->kn_status |= KN_QUEUED;
2001 	++kq->kq_count;
2002 
2003 	/*
2004 	 * Send SIGIO on request (typically set up as a mailbox signal)
2005 	 */
2006 	if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1)
2007 		pgsigio(kq->kq_sigio, SIGIO, 0);
2008 
2009 	kqueue_wakeup(kq);
2010 }
2011 
2012 /*
2013  * Low level dequeue function.
2014  *
2015  * The knote should already be marked for processing.
2016  * Caller must be holding the kq token
2017  */
2018 static void
2019 knote_dequeue(struct knote *kn)
2020 {
2021 	struct kqueue *kq = kn->kn_kq;
2022 
2023 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
2024 	TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
2025 	kn->kn_status &= ~KN_QUEUED;
2026 	kq->kq_count--;
2027 }
2028 
2029 static struct knote *
2030 knote_alloc(void)
2031 {
2032 	return kmalloc(sizeof(struct knote), M_KQUEUE, M_WAITOK);
2033 }
2034 
2035 static void
2036 knote_free(struct knote *kn)
2037 {
2038 	struct knote_cache_list *cache_list;
2039 
2040 	cache_list = &knote_cache_lists[mycpuid];
2041 	if (cache_list->knote_cache_cnt < KNOTE_CACHE_MAX) {
2042 		crit_enter();
2043 		SLIST_INSERT_HEAD(&cache_list->knote_cache, kn, kn_link);
2044 		cache_list->knote_cache_cnt++;
2045 		crit_exit();
2046 		return;
2047 	}
2048 	kfree(kn, M_KQUEUE);
2049 }
2050 
2051 struct sleepinfo {
2052 	void *ident;
2053 	int timedout;
2054 };
2055 
2056 static void
2057 precise_sleep_intr(systimer_t info, int in_ipi, struct intrframe *frame)
2058 {
2059 	struct sleepinfo *si;
2060 
2061 	si = info->data;
2062 	si->timedout = 1;
2063 	wakeup(si->ident);
2064 }
2065 
2066 static int
2067 precise_sleep(void *ident, int flags, const char *wmesg, int us)
2068 {
2069 	struct systimer info;
2070 	struct sleepinfo si = {
2071 		.ident = ident,
2072 		.timedout = 0,
2073 	};
2074 	int r;
2075 
2076 	tsleep_interlock(ident, flags);
2077 	systimer_init_oneshot(&info, precise_sleep_intr, &si, us);
2078 	r = tsleep(ident, flags | PINTERLOCKED, wmesg, 0);
2079 	systimer_del(&info);
2080 	if (si.timedout)
2081 		r = EWOULDBLOCK;
2082 
2083 	return r;
2084 }
2085