xref: /dragonfly/sys/kern/kern_exec.c (revision 2b3f93ea)
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmsg.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/caps.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
69 
70 #include <sys/reg.h>
71 
72 #include <sys/objcache.h>
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <vm/vm_page2.h>
76 
77 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
78 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
79 
80 enum exec_path_segflg {
81 	PATH_SYSSPACE,
82 	PATH_USERSPACE,
83 };
84 
85 static register_t *exec_copyout_strings(struct image_params *);
86 static int	exec_copyin_args(struct image_args *, char *,
87 				 enum exec_path_segflg, char **, char **);
88 static void	exec_free_args(struct image_args *);
89 static void	print_execve_args(struct image_args *args);
90 
91 /* XXX This should be vm_size_t. */
92 __read_mostly static u_long ps_strings = PS_STRINGS;
93 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
94 
95 /* XXX This should be vm_size_t. */
96 __read_mostly static u_long usrstack = USRSTACK;
97 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
98 
99 __read_mostly u_long ps_arg_cache_limit = PAGE_SIZE / 16;
100 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
101     &ps_arg_cache_limit, 0, "");
102 
103 __read_mostly int ps_argsopen = 1;
104 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
105 
106 __read_mostly static int ktrace_suid = 0;
107 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
108 
109 __read_mostly static int debug_execve_args = 0;
110 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
111     0, "");
112 
113 /*
114  * Exec arguments object cache
115  */
116 __read_mostly static struct objcache *exec_objcache;
117 
118 static
119 void
exec_objcache_init(void * arg __unused)120 exec_objcache_init(void *arg __unused)
121 {
122 	int cluster_limit;
123 	size_t limsize;
124 
125 	/*
126 	 * Maximum number of concurrent execs.  This can be limiting on
127 	 * systems with a lot of cpu cores but it also eats a significant
128 	 * amount of memory.
129 	 */
130 	cluster_limit = (ncpus < 16) ? 16 : ncpus;
131 	limsize = kmem_lim_size();
132 	if (limsize > 7 * 1024)
133 		cluster_limit *= 2;
134 	if (limsize > 15 * 1024)
135 		cluster_limit *= 2;
136 
137 	exec_objcache = objcache_create_mbacked(
138 					M_EXECARGS, PATH_MAX + ARG_MAX,
139 					cluster_limit, 8,
140 					NULL, NULL, NULL);
141 }
142 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
143 
144 /*
145  * stackgap_random specifies if the stackgap should have a random size added
146  * to it.  It must be a power of 2.  If non-zero, the stack gap will be
147  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
148  */
149 __read_mostly static int stackgap_random = 1024;
150 
151 static int
sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)152 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
153 {
154 	int error, new_val;
155 	new_val = stackgap_random;
156 	error = sysctl_handle_int(oidp, &new_val, 0, req);
157 	if (error != 0 || req->newptr == NULL)
158 		return (error);
159 	if (new_val > 0 && ((new_val > 16 * PAGE_SIZE) || !powerof2(new_val)))
160 		return (EINVAL);
161 	stackgap_random = new_val;
162 
163 	return(0);
164 }
165 
166 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_INT,
167 	0, 0, sysctl_kern_stackgap, "I",
168 	"Max random stack gap (power of 2), static gap if negative");
169 
170 static void
print_execve_args(struct image_args * args)171 print_execve_args(struct image_args *args)
172 {
173 	char *cp;
174 	int ndx;
175 
176 	cp = args->begin_argv;
177 	for (ndx = 0; ndx < args->argc; ndx++) {
178 		kprintf("\targv[%d]: %s\n", ndx, cp);
179 		while (*cp++ != '\0');
180 	}
181 	for (ndx = 0; ndx < args->envc; ndx++) {
182 		kprintf("\tenvv[%d]: %s\n", ndx, cp);
183 		while (*cp++ != '\0');
184 	}
185 }
186 
187 /*
188  * Each of the items is a pointer to a `const struct execsw', hence the
189  * double pointer here.
190  */
191 __read_mostly static const struct execsw **execsw;
192 
193 /*
194  * Replace current vmspace with a new binary.
195  * Returns 0 on success, > 0 on recoverable error (use as errno).
196  * Returns -1 on lethal error which demands killing of the current
197  * process!
198  */
199 int
kern_execve(struct nlookupdata * nd,struct file * fp,char fileflags,struct image_args * args)200 kern_execve(struct nlookupdata *nd, struct file *fp, char fileflags,
201 	    struct image_args *args)
202 {
203 	static const char *proctitle = "(execve)";
204 	register_t *stack_base;
205 	struct thread *td = curthread;
206 	struct lwp *lp = td->td_lwp;
207 	struct proc *p = td->td_proc;
208 	struct vnode *ovp;
209 	struct pargs *pa;
210 	struct sigacts *ops;
211 	struct sigacts *nps;
212 	struct image_params image_params, *imgp;
213 	struct filedesc *fds;
214 	struct nchandle *nch;
215 	struct nlookupdata nd_interpreter;
216 	struct vattr_lite lva;
217 	int error, len, i;
218 	int (*img_first) (struct image_params *);
219 
220 	if (debug_execve_args) {
221 		kprintf("%s()\n", __func__);
222 		print_execve_args(args);
223 	}
224 
225 	KKASSERT(p);
226 	lwkt_gettoken(&p->p_token);
227 	imgp = &image_params;
228 
229 	/*
230 	 * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
231 	 * no modifications to the process at all until we get there.
232 	 *
233 	 * Note that multiple threads may be trying to exec at the same
234 	 * time.  exec_new_vmspace() handles that too.
235 	 */
236 
237 	/*
238 	 * Initialize part of the common data
239 	 */
240 	imgp->proc = p;
241 	imgp->args = args;
242 	imgp->lvap = &lva;
243 	imgp->entry_addr = 0;
244 	imgp->resident = 0;
245 	imgp->vmspace_destroyed = 0;
246 	imgp->interpreted = 0;
247 	imgp->interpreter_name[0] = 0;
248 	imgp->auxargs = NULL;
249 	imgp->vp = NULL;
250 	imgp->firstpage = NULL;
251 	imgp->ps_strings = 0;
252 	imgp->execpath = imgp->freepath = NULL;
253 	imgp->execpathp = 0;
254 	imgp->image_header = NULL;
255 
256 interpret:
257 
258 	if (nd) {
259 		/*
260 		 * Translate the file name to a vnode.  Unlock the cache
261 		 * entry to improve parallelism for programs exec'd in
262 		 * parallel.
263 		 */
264 		nch = &nd->nl_nch;
265 		nd->nl_flags |= NLC_SHAREDLOCK;
266 		if ((error = nlookup(nd)) != 0)
267 			goto failed;
268 
269 		error = cache_vget(nch, nd->nl_cred, LK_SHARED, &imgp->vp);
270 		KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
271 		nd->nl_flags &= ~NLC_NCPISLOCKED;
272 		cache_unlock(nch);
273 	} else {
274 		nch = &fp->f_nchandle;
275 		imgp->vp = fp->f_data;
276 		error = vget(imgp->vp, LK_SHARED);
277 	}
278 	if (error) {
279 		imgp->vp = NULL;
280 		goto failed;
281 	}
282 
283 	/*
284 	 * Check file permissions (also 'opens' file).
285 	 * Include also the top level mount in the check.
286 	 */
287 	error = exec_check_permissions(imgp, nch->mount);
288 	if (error) {
289 		vn_unlock(imgp->vp);
290 		goto failed;
291 	}
292 
293 	error = exec_map_first_page(imgp);
294 	vn_unlock(imgp->vp);
295 	if (error)
296 		goto failed;
297 
298 	imgp->proc->p_osrel = 0;
299 
300 	if (debug_execve_args && imgp->interpreted) {
301 		kprintf("    target is interpreted -- recursive pass\n");
302 		kprintf("    interpreter: %s\n", imgp->interpreter_name);
303 		print_execve_args(args);
304 	}
305 
306 	/*
307 	 *	If the current process has a special image activator it
308 	 *	wants to try first, call it.  For example, emulating shell
309 	 *	scripts differently.
310 	 */
311 	error = -1;
312 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
313 		error = img_first(imgp);
314 
315 	/*
316 	 *	If the vnode has a registered vmspace, exec the vmspace
317 	 */
318 	if (error == -1 && imgp->vp->v_resident)
319 		error = exec_resident_imgact(imgp);
320 
321 	/*
322 	 *	Loop through the list of image activators, calling each one.
323 	 *	An activator returns -1 if there is no match, 0 on success,
324 	 *	and an error otherwise.
325 	 */
326 	for (i = 0; error == -1 && execsw[i]; ++i) {
327 		if (execsw[i]->ex_imgact == NULL ||
328 		    execsw[i]->ex_imgact == img_first) {
329 			continue;
330 		}
331 		error = (*execsw[i]->ex_imgact)(imgp);
332 	}
333 
334 	if (error) {
335 		if (error == -1)
336 			error = ENOEXEC;
337 		goto failed;
338 	}
339 
340 	/*
341 	 * Special interpreter operation, cleanup and loop up to try to
342 	 * activate the interpreter.
343 	 */
344 	if (imgp->interpreted) {
345 		exec_unmap_first_page(imgp);
346 		vrele(imgp->vp);
347 		imgp->vp = NULL;
348 
349 		nd = &nd_interpreter;
350 		error = nlookup_init(nd, imgp->interpreter_name,
351 				     UIO_SYSSPACE, NLC_FOLLOW);
352 		if (error)
353 			goto failed;
354 
355 		if (fp && (fileflags & UF_EXCLOSE)) {
356 			/*
357 			 * Fexecve'ing an interpreted file opened with
358 			 * O_CLOEXEC flag, return ENOENT.
359 			 */
360 			error = ENOENT;
361 			goto failed;
362 		}
363 
364 		goto interpret;
365 	}
366 
367 	/*
368 	 * Do the best to calculate the full path to the image file
369 	 */
370 	if (imgp->auxargs != NULL &&
371 	    ((args->fname != NULL && args->fname[0] == '/') ||
372 	     vn_fullpath(imgp->proc, imgp->vp, &imgp->execpath,
373 			 &imgp->freepath, 0) != 0))
374 	{
375 		imgp->execpath = args->fname;
376 	}
377 
378 	/*
379 	 * Copy out strings (args and env) and initialize stack base
380 	 */
381 	stack_base = exec_copyout_strings(imgp);
382 	p->p_vmspace->vm_minsaddr = (char *)stack_base;
383 
384 	/*
385 	 * If custom stack fixup routine present for this process
386 	 * let it do the stack setup.  If we are running a resident
387 	 * image there is no auxinfo or other image activator context
388 	 * so don't try to add fixups to the stack.
389 	 *
390 	 * Else stuff argument count as first item on stack
391 	 */
392 	if (p->p_sysent->sv_fixup && imgp->resident == 0)
393 		(*p->p_sysent->sv_fixup)(&stack_base, imgp);
394 	else
395 		suword64(--stack_base, imgp->args->argc);
396 
397 	/*
398 	 * For security and other reasons, the file descriptor table cannot
399 	 * be shared after an exec.
400 	 */
401 	if (p->p_fd->fd_refcnt > 1) {
402 		if ((error = fdcopy(p, &fds)) != 0)
403 			goto failed;
404 
405 		fdfree(p, fds);
406 	}
407 
408 	/*
409 	 * For security and other reasons, signal handlers cannot
410 	 * be shared after an exec. The new proces gets a copy of the old
411 	 * handlers. In execsigs(), the new process will have its signals
412 	 * reset.
413 	 */
414 	ops = p->p_sigacts;
415 	if (ops->ps_refcnt > 1) {
416 		nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
417 		bcopy(ops, nps, sizeof(*nps));
418 		refcount_init(&nps->ps_refcnt, 1);
419 		p->p_sigacts = nps;
420 		if (refcount_release(&ops->ps_refcnt)) {
421 			kfree(ops, M_SUBPROC);
422 			ops = NULL;
423 		}
424 	}
425 
426 	/*
427 	 * Clean up shared pages, the new program will allocate fresh
428 	 * copies as needed.  This is also for security purposes and
429 	 * to ensure (for example) that things like sys_lpmap->blockallsigs
430 	 * state is properly reset on exec.
431 	 */
432 	lwp_userunmap(lp);
433 	proc_userunmap(p);
434 
435 	/*
436 	 * For security and other reasons virtual kernels cannot be
437 	 * inherited by an exec.  This also allows a virtual kernel
438 	 * to fork/exec unrelated applications.
439 	 */
440 	if (p->p_vkernel)
441 		vkernel_exit(p);
442 
443 	/* Stop profiling */
444 	stopprofclock(p);
445 
446 	/* close files on exec */
447 	fdcloseexec(p);
448 
449 	/* reset caught signals */
450 	execsigs(p);
451 
452 	/* name this process */
453 	if (nch->ncp) {
454 		len = min(nch->ncp->nc_nlen, MAXCOMLEN);
455 		bcopy(nch->ncp->nc_name, p->p_comm, len);
456 	} else {
457 		len = sizeof(proctitle) - 1;
458 		bcopy(proctitle, p->p_comm, len);
459 	}
460 	p->p_comm[len] = 0;
461 	bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
462 
463 	/*
464 	 * mark as execed, wakeup the process that vforked (if any) and tell
465 	 * it that it now has its own resources back
466 	 *
467 	 * We are using the P_PPWAIT as an interlock so an atomic op is
468 	 * necessary to synchronize with the parent's cpu.
469 	 */
470 	p->p_flags |= P_EXEC;
471 	if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
472 		if (p->p_pptr->p_upmap)
473 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
474 		atomic_clear_int(&p->p_flags, P_PPWAIT);
475 		wakeup(p->p_pptr);
476 	}
477 
478 	/*
479 	 * Implement image setuid/setgid.
480 	 *
481 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
482 	 * the process is being traced.
483 	 */
484 	if ((((lva.va_mode & VSUID) && p->p_ucred->cr_uid != lva.va_uid) ||
485 	     ((lva.va_mode & VSGID) && p->p_ucred->cr_gid != lva.va_gid)) &&
486 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
487 	    (p->p_flags & P_TRACED) == 0) {
488 		/*
489 		 * Turn off syscall tracing for set-id programs, except for
490 		 * root.  Record any set-id flags first to make sure that
491 		 * we do not regain any tracing during a possible block.
492 		 */
493 		setsugid();
494 		if (p->p_tracenode && ktrace_suid == 0 &&
495 		    caps_priv_check_td(td, SYSCAP_RESTRICTEDROOT) != 0)
496 		{
497 			ktrdestroy(&p->p_tracenode);
498 			p->p_traceflag = 0;
499 		}
500 
501 		/* Clear any PROC_PDEATHSIG_CTL setting */
502 		p->p_deathsig = 0;
503 
504 		/* Close any file descriptors 0..2 that reference procfs */
505 		setugidsafety(p);
506 		/* Make sure file descriptors 0..2 are in use. */
507 		error = fdcheckstd(lp);
508 		if (error != 0)
509 			goto failed;
510 
511 		/*
512 		 * Set the new credentials.
513 		 */
514 		cratom_proc(p);
515 		if (lva.va_mode & VSUID)
516 			change_euid(lva.va_uid);
517 		if (lva.va_mode & VSGID)
518 			p->p_ucred->cr_gid = lva.va_gid;
519 
520 		/* Clear local varsym variables */
521 		varsymset_clean(&p->p_varsymset);
522 	} else {
523 		if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
524 		    p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
525 			p->p_flags &= ~P_SUGID;
526 	}
527 
528 	/*
529 	 * Implement correct POSIX saved-id behavior.
530 	 */
531 	if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
532 	    p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
533 		cratom_proc(p);
534 		p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
535 		p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
536 	}
537 
538 	/*
539 	 * Store the vp for use in procfs.  Be sure to keep p_textvp
540 	 * consistent if we block during the switch-over.
541 	 */
542 	ovp = p->p_textvp;
543 	vref(imgp->vp);			/* ref new vp */
544 	p->p_textvp = imgp->vp;
545 	if (ovp)			/* release old vp */
546 		vrele(ovp);
547 
548 	/* Release old namecache handle to text file */
549 	if (p->p_textnch.ncp)
550 		cache_drop(&p->p_textnch);
551 	if (nch->mount)
552 		cache_copy(nch, &p->p_textnch);
553 
554 	/*
555 	 * Adjust capabilities in ucred if necessasry
556 	 */
557 	caps_exec(p);
558 
559         /*
560          * Notify others that we exec'd, and clear the P_INEXEC flag
561          * as we're now a bona fide freshly-execed process.
562          */
563 	KNOTE(&p->p_klist, NOTE_EXEC);
564 	p->p_flags &= ~P_INEXEC;
565 	if (p->p_stops)
566 		wakeup(&p->p_stype);
567 
568 	/*
569 	 * If tracing the process, trap to debugger so breakpoints
570 	 * 	can be set before the program executes.
571 	 */
572 	STOPEVENT(p, S_EXEC, 0);
573 
574 	if (p->p_flags & P_TRACED)
575 		ksignal(p, SIGTRAP);
576 
577 	/* clear "fork but no exec" flag, as we _are_ execing */
578 	p->p_acflag &= ~AFORK;
579 
580 	/* Set values passed into the program in registers. */
581 	exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
582 		     imgp->ps_strings);
583 
584 	/* Set the access time on the vnode */
585 	vn_mark_atime(imgp->vp, td);
586 
587 	/*
588 	 * Free any previous argument cache
589 	 */
590 	pa = p->p_args;
591 	p->p_args = NULL;
592 	if (pa && refcount_release(&pa->ar_ref)) {
593 		kfree(pa, M_PARGS);
594 		pa = NULL;
595 	}
596 
597 	/*
598 	 * Cache arguments if they fit inside our allowance
599 	 */
600 	i = imgp->args->begin_envv - imgp->args->begin_argv;
601 	if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
602 		pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
603 		refcount_init(&pa->ar_ref, 1);
604 		pa->ar_length = i;
605 		bcopy(imgp->args->begin_argv, pa->ar_args, i);
606 		KKASSERT(p->p_args == NULL);
607 		p->p_args = pa;
608 	}
609 
610 failed:
611 
612 	/*
613 	 * free various allocated resources
614 	 */
615 	if (imgp->firstpage)
616 		exec_unmap_first_page(imgp);
617 	if (imgp->vp)
618 		vrele(imgp->vp);
619 	if (imgp->freepath)
620 		kfree(imgp->freepath, M_TEMP);
621 	if (nd == &nd_interpreter)
622 		nlookup_done(nd);
623 
624 	if (error == 0) {
625 		++mycpu->gd_cnt.v_exec;
626 		lwkt_reltoken(&p->p_token);
627 		return (0);
628 	}
629 
630 	/*
631 	 * we're done here, clear P_INEXEC if we were the ones that
632 	 * set it.  Otherwise if vmspace_destroyed is still set we
633 	 * raced another thread and that thread is responsible for
634 	 * clearing it.
635 	 */
636 	if (imgp->vmspace_destroyed & 2) {
637 		p->p_flags &= ~P_INEXEC;
638 		if (p->p_stops)
639 			wakeup(&p->p_stype);
640 	}
641 	lwkt_reltoken(&p->p_token);
642 	if (imgp->vmspace_destroyed) {
643 		/*
644 		 * Sorry, no more process anymore. exit gracefully.
645 		 * However we can't die right here, because our
646 		 * caller might have to clean up, so indicate a
647 		 * lethal error by returning -1.
648 		 */
649 		return (-1);
650 	} else {
651 		return (error);
652 	}
653 }
654 
655 /*
656  * execve() system call.
657  */
658 int
sys_execve(struct sysmsg * sysmsg,const struct execve_args * uap)659 sys_execve(struct sysmsg *sysmsg, const struct execve_args *uap)
660 {
661 	struct nlookupdata nd;
662 	struct image_args args;
663 	int error;
664 
665 	/*
666 	 * General exec ok?
667 	 */
668 	if (caps_priv_check_self(SYSCAP_NOEXEC))
669 		return EACCES;
670 
671 	/*
672 	 * Exec path
673 	 */
674 	bzero(&args, sizeof(args));
675 
676 	error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
677 	if (error == 0) {
678 		error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
679 					 uap->argv, uap->envv);
680 	}
681 	if (error == 0)
682 		error = kern_execve(&nd, NULL, 0, &args);
683 	nlookup_done(&nd);
684 	exec_free_args(&args);
685 
686 	if (error < 0) {
687 		/* We hit a lethal error condition.  Let's die now. */
688 		exit1(W_EXITCODE(0, SIGABRT));
689 		/* NOTREACHED */
690 	}
691 
692 	/*
693 	 * The syscall result is returned in registers to the new program.
694 	 * Linux will register %edx as an atexit function and we must be
695 	 * sure to set it to 0.  XXX
696 	 */
697 	if (error == 0)
698 		sysmsg->sysmsg_result64 = 0;
699 
700 	return (error);
701 }
702 
703 /*
704  * fexecve() system call.
705  */
706 int
sys_fexecve(struct sysmsg * sysmsg,const struct fexecve_args * uap)707 sys_fexecve(struct sysmsg *sysmsg, const struct fexecve_args *uap)
708 {
709 	struct image_args args;
710 	struct thread *td = curthread;
711 	struct file *fp;
712 	char fileflags;
713 	char fname[32]; /* "/dev/fd/xxx" */
714 	int error;
715 
716 	/*
717 	 * General exec ok?
718 	 */
719 	if (caps_priv_check_self(SYSCAP_NOEXEC))
720 		return EACCES;
721 
722 	/*
723 	 * Exec descriptor
724 	 */
725 	if ((error = holdvnode2(td, uap->fd, &fp, &fileflags)) != 0)
726 		return (error);
727 
728 	/*
729 	 * Require a descriptor opened only with O_RDONLY or O_EXEC.
730 	 * XXX: missing O_EXEC support
731 	 */
732 	if ((fp->f_flag & FWRITE) != 0 || (fp->f_flag & FREAD) == 0) {
733 		error = EBADF;
734 		goto done;
735 	}
736 
737 	/*
738 	 * The 'fname' argument is required when executing an
739 	 * interpreted program because the interpreter must know
740 	 * the script path.  Supply it with '/dev/fd/xxx'.
741 	 */
742 	ksnprintf(fname, sizeof(fname), "/dev/fd/%d", uap->fd);
743 	bzero(&args, sizeof(args));
744 	error = exec_copyin_args(&args, fname, PATH_SYSSPACE,
745 				 uap->argv, uap->envv);
746 	if (error == 0)
747 		error = kern_execve(NULL, fp, fileflags, &args);
748 	exec_free_args(&args);
749 
750 	if (error < 0) {
751 		/* We hit a lethal error condition.  Let's die now. */
752 		exit1(W_EXITCODE(0, SIGABRT));
753 		/* NOTREACHED */
754 	}
755 
756 	/*
757 	 * The syscall result is returned in registers to the new program.
758 	 * Linux will register %edx as an atexit function and we must be
759 	 * sure to set it to 0.  XXX
760 	 */
761 	if (error == 0)
762 		sysmsg->sysmsg_result64 = 0;
763 
764 done:
765 	fdrop(fp);
766 	return (error);
767 }
768 
769 int
exec_map_page(struct image_params * imgp,vm_pindex_t pageno,struct lwbuf ** plwb,const char ** pdata)770 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
771 	      struct lwbuf **plwb, const char **pdata)
772 {
773 	int rv;
774 	vm_page_t ma;
775 	vm_page_t m;
776 	vm_object_t object;
777 
778 	/*
779 	 * The file has to be mappable.
780 	 */
781 	if ((object = imgp->vp->v_object) == NULL)
782 		return (EIO);
783 
784 	if (pageno >= object->size)
785 		return (EIO);
786 
787 	/*
788 	 * Shortcut using shared locks, improve concurrent execs.
789 	 */
790 	vm_object_hold_shared(object);
791 	m = vm_page_lookup(object, pageno);
792 	if (m) {
793 		if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
794 			vm_page_hold(m);
795 			vm_page_sleep_busy(m, FALSE, "execpg");
796 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
797 			    m->object == object && m->pindex == pageno) {
798 				vm_object_drop(object);
799 				goto done;
800 			}
801 			vm_page_unhold(m);
802 		}
803 	}
804 	vm_object_drop(object);
805 
806 	/*
807 	 * Do it the hard way
808 	 */
809 	vm_object_hold(object);
810 	m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
811 	while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
812 		ma = m;
813 
814 		/*
815 		 * get_pages unbusies all the requested pages except the
816 		 * primary page (at index 0 in this case).  The primary
817 		 * page may have been wired during the pagein (e.g. by
818 		 * the buffer cache) so vnode_pager_freepage() must be
819 		 * used to properly release it.
820 		 */
821 		rv = vm_pager_get_page(object, pageno, &ma, 1);
822 		m = vm_page_lookup(object, pageno);
823 
824 		if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
825 			if (m) {
826 				vm_page_protect(m, VM_PROT_NONE);
827 				vnode_pager_freepage(m);
828 			}
829 			vm_object_drop(object);
830 			return EIO;
831 		}
832 	}
833 	vm_page_hold(m);
834 	vm_page_wakeup(m);	/* unbusy the page */
835 	vm_object_drop(object);
836 
837 done:
838 	*plwb = lwbuf_alloc(m, *plwb);
839 	*pdata = (void *)lwbuf_kva(*plwb);
840 
841 	return (0);
842 }
843 
844 /*
845  * Map the first page of an executable image.
846  *
847  * NOTE: If the mapping fails we have to NULL-out firstpage which may
848  *	 still be pointing to our supplied lwp structure.
849  */
850 int
exec_map_first_page(struct image_params * imgp)851 exec_map_first_page(struct image_params *imgp)
852 {
853 	int err;
854 
855 	if (imgp->firstpage)
856 		exec_unmap_first_page(imgp);
857 
858 	imgp->firstpage = &imgp->firstpage_cache;
859 	err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
860 
861 	if (err) {
862 		imgp->firstpage = NULL;
863 		return err;
864 	}
865 
866 	return 0;
867 }
868 
869 void
exec_unmap_page(struct lwbuf * lwb)870 exec_unmap_page(struct lwbuf *lwb)
871 {
872 	vm_page_t m;
873 
874 	crit_enter();
875 	if (lwb != NULL) {
876 		m = lwbuf_page(lwb);
877 		lwbuf_free(lwb);
878 		vm_page_unhold(m);
879 	}
880 	crit_exit();
881 }
882 
883 void
exec_unmap_first_page(struct image_params * imgp)884 exec_unmap_first_page(struct image_params *imgp)
885 {
886 	exec_unmap_page(imgp->firstpage);
887 	imgp->firstpage = NULL;
888 	imgp->image_header = NULL;
889 }
890 
891 /*
892  * Destroy old address space, and allocate a new stack
893  *	The new stack is only SGROWSIZ large because it is grown
894  *	automatically in trap.c.
895  *
896  * This is the point of no return.
897  */
898 int
exec_new_vmspace(struct image_params * imgp,struct vmspace * vmcopy)899 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
900 {
901 	struct vmspace *vmspace = imgp->proc->p_vmspace;
902 	vm_offset_t stack_addr = USRSTACK - maxssiz;
903 	struct lwp *lp;
904 	struct proc *p;
905 	vm_map_t map;
906 	int error;
907 
908 	/*
909 	 * Indicate that we cannot gracefully error out any more, kill
910 	 * any other threads present, and set P_INEXEC to indicate that
911 	 * we are now messing with the process structure proper.
912 	 *
913 	 * If killalllwps() races return an error which coupled with
914 	 * vmspace_destroyed will cause us to exit.  This is what we
915 	 * want since another thread is patiently waiting for us to exit
916 	 * in that case.
917 	 */
918 	lp = curthread->td_lwp;
919 	p = lp->lwp_proc;
920 	imgp->vmspace_destroyed = 1;
921 
922 	if (curthread->td_proc->p_nthreads > 1) {
923 		error = killalllwps(1);
924 		if (error)
925 			return (error);
926 	}
927 	imgp->vmspace_destroyed |= 2;	/* we are responsible for P_INEXEC */
928 	p->p_flags |= P_INEXEC;
929 
930 	/*
931 	 * Tell procfs to release its hold on the process.  It
932 	 * will return EAGAIN.
933 	 */
934 	if (p->p_stops)
935 		wakeup(&p->p_stype);
936 
937 	/*
938 	 * After setting P_INEXEC wait for any remaining references to
939 	 * the process (p) to go away.
940 	 *
941 	 * In particular, a vfork/exec sequence will replace p->p_vmspace
942 	 * and we must interlock anyone trying to access the space (aka
943 	 * procfs or sys_process.c calling procfs_domem()).
944 	 *
945 	 * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
946 	 */
947 	PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
948 
949 	/*
950 	 * Blow away entire process VM, if address space not shared,
951 	 * otherwise, create a new VM space so that other threads are
952 	 * not disrupted.  If we are execing a resident vmspace we
953 	 * create a duplicate of it and remap the stack.
954 	 */
955 	map = &vmspace->vm_map;
956 	if (vmcopy) {
957 		vmspace_exec(imgp->proc, vmcopy);
958 		vmspace = imgp->proc->p_vmspace;
959 		pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
960 		map = &vmspace->vm_map;
961 	} else if (vmspace_getrefs(vmspace) == 1) {
962 		shmexit(vmspace);
963 		pmap_remove_pages(vmspace_pmap(vmspace),
964 				  0, VM_MAX_USER_ADDRESS);
965 		vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
966 	} else {
967 		vmspace_exec(imgp->proc, NULL);
968 		vmspace = imgp->proc->p_vmspace;
969 		map = &vmspace->vm_map;
970 	}
971 
972 	/*
973 	 * Really make sure lwp-specific and process-specific mappings
974 	 * are gone.
975 	 *
976 	 * Once we've done that, and because we are the only LWP left, with
977 	 * no TID-dependent mappings, we can reset the TID to 1 (the RB tree
978 	 * will remain consistent since it has only one entry).  This way
979 	 * the exec'd program gets a nice deterministic tid of 1.
980 	 */
981 	lwp_userunmap(lp);
982 	proc_userunmap(p);
983 	lp->lwp_tid = 1;
984 	p->p_lasttid = 1;
985 
986 	/*
987 	 * Allocate a new stack, generally make the stack non-executable
988 	 * but allow the program to adjust that (the program may desire to
989 	 * use areas of the stack for executable code).
990 	 */
991 	error = vm_map_stack(&vmspace->vm_map, &stack_addr, (vm_size_t)maxssiz,
992 			     0,
993 			     VM_PROT_READ|VM_PROT_WRITE,
994 			     VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
995 			     0);
996 	if (error)
997 		return (error);
998 
999 	/*
1000 	 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
1001 	 * VM_STACK case, but they are still used to monitor the size of the
1002 	 * process stack so we can check the stack rlimit.
1003 	 */
1004 	vmspace->vm_ssize = sgrowsiz;		/* in bytes */
1005 	vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
1006 
1007 	return(0);
1008 }
1009 
1010 /*
1011  * Copy out argument and environment strings from the old process
1012  *	address space into the temporary string buffer.
1013  */
1014 static int
exec_copyin_args(struct image_args * args,char * fname,enum exec_path_segflg segflg,char ** argv,char ** envv)1015 exec_copyin_args(struct image_args *args, char *fname,
1016 		 enum exec_path_segflg segflg, char **argv, char **envv)
1017 {
1018 	char	*argp, *envp;
1019 	int	error = 0;
1020 	size_t	length;
1021 
1022 	args->buf = objcache_get(exec_objcache, M_WAITOK);
1023 	if (args->buf == NULL)
1024 		return (ENOMEM);
1025 
1026 	args->begin_argv = args->buf;
1027 	args->endp = args->begin_argv;
1028 	args->space = ARG_MAX;
1029 
1030 	args->fname = args->buf + ARG_MAX;
1031 
1032 	/*
1033 	 * Copy the file name.
1034 	 */
1035 	if (segflg == PATH_SYSSPACE)
1036 		error = copystr(fname, args->fname, PATH_MAX, &length);
1037 	else
1038 		error = copyinstr(fname, args->fname, PATH_MAX, &length);
1039 	if (error)
1040 		return (error);
1041 
1042 	/*
1043 	 * Extract argument strings.  argv may not be NULL.  The argv
1044 	 * array is terminated by a NULL entry.  We special-case the
1045 	 * situation where argv[0] is NULL by passing { filename, NULL }
1046 	 * to the new program to guarentee that the interpreter knows what
1047 	 * file to open in case we exec an interpreted file.   Note that
1048 	 * a NULL argv[0] terminates the argv[] array.
1049 	 *
1050 	 * XXX the special-casing of argv[0] is historical and needs to be
1051 	 * revisited.
1052 	 */
1053 	if (argv == NULL)
1054 		error = EFAULT;
1055 	if (error == 0) {
1056 		while ((argp = (caddr_t)(intptr_t)
1057 			       fuword64((uintptr_t *)argv++)) != NULL) {
1058 			if (argp == (caddr_t)-1) {
1059 				error = EFAULT;
1060 				break;
1061 			}
1062 			error = copyinstr(argp, args->endp,
1063 					  args->space, &length);
1064 			if (error) {
1065 				if (error == ENAMETOOLONG)
1066 					error = E2BIG;
1067 				break;
1068 			}
1069 			args->space -= length;
1070 			args->endp += length;
1071 			args->argc++;
1072 		}
1073 		if (args->argc == 0 && error == 0) {
1074 			length = strlen(args->fname) + 1;
1075 			if (length > args->space) {
1076 				error = E2BIG;
1077 			} else {
1078 				bcopy(args->fname, args->endp, length);
1079 				args->space -= length;
1080 				args->endp += length;
1081 				args->argc++;
1082 			}
1083 		}
1084 	}
1085 
1086 	args->begin_envv = args->endp;
1087 
1088 	/*
1089 	 * extract environment strings.  envv may be NULL.
1090 	 */
1091 	if (envv && error == 0) {
1092 		while ((envp = (caddr_t)(intptr_t)
1093 			       fuword64((uintptr_t *)envv++))) {
1094 			if (envp == (caddr_t) -1) {
1095 				error = EFAULT;
1096 				break;
1097 			}
1098 			error = copyinstr(envp, args->endp,
1099 					  args->space, &length);
1100 			if (error) {
1101 				if (error == ENAMETOOLONG)
1102 					error = E2BIG;
1103 				break;
1104 			}
1105 			args->space -= length;
1106 			args->endp += length;
1107 			args->envc++;
1108 		}
1109 	}
1110 
1111 	return (error);
1112 }
1113 
1114 static void
exec_free_args(struct image_args * args)1115 exec_free_args(struct image_args *args)
1116 {
1117 	if (args->buf) {
1118 		objcache_put(exec_objcache, args->buf);
1119 		args->buf = NULL;
1120 	}
1121 }
1122 
1123 /*
1124  * Copy strings out to the new process address space, constructing
1125  * new arg and env vector tables. Return a pointer to the base
1126  * so that it can be used as the initial stack pointer.
1127  *
1128  * The format is, roughly:
1129  *
1130  *	[argv[]]			<-- vectp
1131  *	[envp[]]
1132  *	[ELF_Auxargs]
1133  *
1134  *	[args & env]			<-- destp
1135  *	[sgap]
1136  *	[SPARE_USRSPACE]
1137  *	[execpath]
1138  *	[szsigcode]   RO|NX
1139  *	[ps_strings]  RO|NX		Top of user stack
1140  *
1141  */
1142 static register_t *
exec_copyout_strings(struct image_params * imgp)1143 exec_copyout_strings(struct image_params *imgp)
1144 {
1145 	int argc, envc, sgap;
1146 	int gap;
1147 	int argsenvspace;
1148 	char **vectp;
1149 	char *stringp, *destp, *szsigbase;
1150 	register_t *stack_base;
1151 	struct ps_strings *arginfo;
1152 	size_t execpath_len;
1153 	int szsigcode;
1154 
1155 	/*
1156 	 * Calculate string base and vector table pointers.
1157 	 * Also deal with signal trampoline code for this exec type.
1158 	 */
1159 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
1160 		execpath_len = strlen(imgp->execpath) + 1;
1161 	else
1162 		execpath_len = 0;
1163 	arginfo = (struct ps_strings *)PS_STRINGS;
1164 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
1165 
1166 	argsenvspace = roundup((ARG_MAX - imgp->args->space), sizeof(char *));
1167 	gap = stackgap_random;
1168 	cpu_ccfence();
1169 	if (gap != 0) {
1170 		if (gap < 0)
1171 			sgap = ALIGN(-gap);
1172 		else
1173 			sgap = ALIGN(karc4random() & (gap - 1));
1174 	} else {
1175 		sgap = 0;
1176 	}
1177 
1178 	/*
1179 	 * Calculate destp, which points to [args & env] and above.
1180 	 */
1181 	szsigbase = (char *)(intptr_t)
1182 		    trunc_page64((intptr_t)arginfo - szsigcode);
1183 	szsigbase -= SZSIGCODE_EXTRA_BYTES;
1184 	destp = szsigbase -
1185 		roundup(execpath_len, sizeof(char *)) -
1186 		SPARE_USRSPACE -
1187 		sgap -
1188 		argsenvspace;
1189 
1190 	/*
1191 	 * install sigcode
1192 	 */
1193 	if (szsigcode)
1194 		copyout(imgp->proc->p_sysent->sv_sigcode, szsigbase, szsigcode);
1195 
1196 	/*
1197 	 * Copy the image path for the rtld
1198 	 */
1199 	if (execpath_len) {
1200 		imgp->execpathp = (uintptr_t)szsigbase -
1201 				  roundup(execpath_len, sizeof(char *));
1202 		copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
1203 	}
1204 
1205 	/*
1206 	 * Calculate base for argv[], envp[], and ELF_Auxargs.
1207 	 */
1208 	vectp = (char **)destp - (AT_COUNT * 2);
1209 	vectp -= imgp->args->argc + imgp->args->envc + 2;
1210 
1211 	stack_base = (register_t *)vectp;
1212 
1213 	stringp = imgp->args->begin_argv;
1214 	argc = imgp->args->argc;
1215 	envc = imgp->args->envc;
1216 
1217 	/*
1218 	 * Copy out strings - arguments and environment (at destp)
1219 	 */
1220 	copyout(stringp, destp, ARG_MAX - imgp->args->space);
1221 
1222 	/*
1223 	 * Fill in "ps_strings" struct for ps, w, etc.
1224 	 */
1225 	suword64((void *)&arginfo->ps_argvstr, (uint64_t)(intptr_t)vectp);
1226 	suword32((void *)&arginfo->ps_nargvstr, argc);
1227 
1228 	/*
1229 	 * Fill in argument portion of vector table.
1230 	 */
1231 	for (; argc > 0; --argc) {
1232 		suword64((void *)vectp++, (uintptr_t)destp);
1233 		while (*stringp++ != 0)
1234 			destp++;
1235 		destp++;
1236 	}
1237 
1238 	/* a null vector table pointer separates the argp's from the envp's */
1239 	suword64((void *)vectp++, 0);
1240 
1241 	suword64((void *)&arginfo->ps_envstr, (uintptr_t)vectp);
1242 	suword32((void *)&arginfo->ps_nenvstr, envc);
1243 
1244 	/*
1245 	 * Fill in environment portion of vector table.
1246 	 */
1247 	for (; envc > 0; --envc) {
1248 		suword64((void *)vectp++, (uintptr_t)destp);
1249 		while (*stringp++ != 0)
1250 			destp++;
1251 		destp++;
1252 	}
1253 
1254 	/* end of vector table is a null pointer */
1255 	suword64((void *)vectp, 0);
1256 
1257 	/*
1258 	 * Make the signal trampoline executable and read-only.
1259 	 */
1260 	vm_map_protect(&imgp->proc->p_vmspace->vm_map,
1261 		       (vm_offset_t)szsigbase,
1262 		       (vm_offset_t)szsigbase + PAGE_SIZE,
1263 		       VM_PROT_READ|VM_PROT_EXECUTE, FALSE);
1264 
1265 	return (stack_base);
1266 }
1267 
1268 /*
1269  * Check permissions of file to execute.
1270  *	Return 0 for success or error code on failure.
1271  */
1272 int
exec_check_permissions(struct image_params * imgp,struct mount * topmnt)1273 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1274 {
1275 	struct proc *p = imgp->proc;
1276 	struct vnode *vp = imgp->vp;
1277 	struct vattr_lite *lvap = imgp->lvap;
1278 	int error;
1279 
1280 	/* Get file attributes */
1281 	error = VOP_GETATTR_LITE(vp, lvap);
1282 	if (error)
1283 		return (error);
1284 
1285 	/*
1286 	 * 1) Check if file execution is disabled for the filesystem that this
1287 	 *	file resides on.
1288 	 * 2) Insure that at least one execute bit is on - otherwise root
1289 	 *	will always succeed, and we don't want to happen unless the
1290 	 *	file really is executable.
1291 	 * 3) Insure that the file is a regular file.
1292 	 */
1293 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1294 	    ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1295 	    ((lvap->va_mode & 0111) == 0) ||
1296 	    (lvap->va_type != VREG)) {
1297 		return (EACCES);
1298 	}
1299 
1300 	/*
1301 	 * Capability restrictions on suid or sgid exec?
1302 	 */
1303 	if ((lvap->va_mode & VSUID) && caps_priv_check_self(SYSCAP_NOEXEC_SUID))
1304 		return EACCES;
1305 	if ((lvap->va_mode & VSGID) && caps_priv_check_self(SYSCAP_NOEXEC_SGID))
1306 		return EACCES;
1307 
1308 	/*
1309 	 * Zero length files can't be exec'd
1310 	 */
1311 	if (lvap->va_size == 0)
1312 		return (ENOEXEC);
1313 
1314 	/*
1315 	 *  Check for execute permission to file based on current credentials.
1316 	 */
1317 	error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1318 	if (error)
1319 		return (error);
1320 
1321 	/*
1322 	 * Check number of open-for-writes on the file and deny execution
1323 	 * if there are any.
1324 	 */
1325 	if (vp->v_writecount)
1326 		return (ETXTBSY);
1327 
1328 	/*
1329 	 * Call filesystem specific open routine, which allows us to read,
1330 	 * write, and mmap the file.  Without the VOP_OPEN we can only
1331 	 * stat the file.
1332 	 */
1333 	error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1334 	if (error)
1335 		return (error);
1336 
1337 	return (0);
1338 }
1339 
1340 /*
1341  * Exec handler registration
1342  */
1343 int
exec_register(const struct execsw * execsw_arg)1344 exec_register(const struct execsw *execsw_arg)
1345 {
1346 	const struct execsw **es, **xs, **newexecsw;
1347 	int count = 2;	/* New slot and trailing NULL */
1348 
1349 	if (execsw)
1350 		for (es = execsw; *es; es++)
1351 			count++;
1352 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1353 	xs = newexecsw;
1354 	if (execsw)
1355 		for (es = execsw; *es; es++)
1356 			*xs++ = *es;
1357 	*xs++ = execsw_arg;
1358 	*xs = NULL;
1359 	if (execsw)
1360 		kfree(execsw, M_TEMP);
1361 	execsw = newexecsw;
1362 	return 0;
1363 }
1364 
1365 int
exec_unregister(const struct execsw * execsw_arg)1366 exec_unregister(const struct execsw *execsw_arg)
1367 {
1368 	const struct execsw **es, **xs, **newexecsw;
1369 	int count = 1;
1370 
1371 	if (execsw == NULL)
1372 		panic("unregister with no handlers left?");
1373 
1374 	for (es = execsw; *es; es++) {
1375 		if (*es == execsw_arg)
1376 			break;
1377 	}
1378 	if (*es == NULL)
1379 		return ENOENT;
1380 	for (es = execsw; *es; es++)
1381 		if (*es != execsw_arg)
1382 			count++;
1383 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1384 	xs = newexecsw;
1385 	for (es = execsw; *es; es++)
1386 		if (*es != execsw_arg)
1387 			*xs++ = *es;
1388 	*xs = NULL;
1389 	if (execsw)
1390 		kfree(execsw, M_TEMP);
1391 	execsw = newexecsw;
1392 	return 0;
1393 }
1394