xref: /dragonfly/sys/kern/kern_exec.c (revision 3074866b)
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysproto.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
69 
70 #include <sys/reg.h>
71 
72 #include <sys/objcache.h>
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <vm/vm_page2.h>
76 
77 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
78 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
79 
80 static register_t *exec_copyout_strings (struct image_params *);
81 
82 /* XXX This should be vm_size_t. */
83 static u_long ps_strings = PS_STRINGS;
84 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
85 
86 /* XXX This should be vm_size_t. */
87 static u_long usrstack = USRSTACK;
88 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
89 
90 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
91 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
92     &ps_arg_cache_limit, 0, "");
93 
94 int ps_argsopen = 1;
95 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
96 
97 static int ktrace_suid = 0;
98 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
99 
100 void print_execve_args(struct image_args *args);
101 int debug_execve_args = 0;
102 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
103     0, "");
104 
105 /*
106  * Exec arguments object cache
107  */
108 static struct objcache *exec_objcache;
109 
110 static
111 void
112 exec_objcache_init(void *arg __unused)
113 {
114 	int cluster_limit;
115 	size_t limsize;
116 
117 	/*
118 	 * Maximum number of concurrent execs.  This can be limiting on
119 	 * systems with a lot of cpu cores but it also eats a significant
120 	 * amount of memory.
121 	 */
122 	cluster_limit = (ncpus < 16) ? 16 : ncpus;
123 	limsize = kmem_lim_size();
124 	if (limsize > 7 * 1024)
125 		cluster_limit *= 2;
126 	if (limsize > 15 * 1024)
127 		cluster_limit *= 2;
128 
129 	exec_objcache = objcache_create_mbacked(
130 					M_EXECARGS, PATH_MAX + ARG_MAX,
131 					cluster_limit, 8,
132 					NULL, NULL, NULL);
133 }
134 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
135 
136 /*
137  * stackgap_random specifies if the stackgap should have a random size added
138  * to it.  It must be a power of 2.  If non-zero, the stack gap will be
139  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
140  */
141 static int stackgap_random = 1024;
142 static int
143 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
144 {
145 	int error, new_val;
146 	new_val = stackgap_random;
147 	error = sysctl_handle_int(oidp, &new_val, 0, req);
148 	if (error != 0 || req->newptr == NULL)
149 		return (error);
150 	if (new_val > 0 && ((new_val > 16 * PAGE_SIZE) || !powerof2(new_val)))
151 		return (EINVAL);
152 	stackgap_random = new_val;
153 
154 	return(0);
155 }
156 
157 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_INT,
158 	0, 0, sysctl_kern_stackgap, "I",
159 	"Max random stack gap (power of 2), static gap if negative");
160 
161 void
162 print_execve_args(struct image_args *args)
163 {
164 	char *cp;
165 	int ndx;
166 
167 	cp = args->begin_argv;
168 	for (ndx = 0; ndx < args->argc; ndx++) {
169 		kprintf("\targv[%d]: %s\n", ndx, cp);
170 		while (*cp++ != '\0');
171 	}
172 	for (ndx = 0; ndx < args->envc; ndx++) {
173 		kprintf("\tenvv[%d]: %s\n", ndx, cp);
174 		while (*cp++ != '\0');
175 	}
176 }
177 
178 /*
179  * Each of the items is a pointer to a `const struct execsw', hence the
180  * double pointer here.
181  */
182 static const struct execsw **execsw;
183 
184 /*
185  * Replace current vmspace with a new binary.
186  * Returns 0 on success, > 0 on recoverable error (use as errno).
187  * Returns -1 on lethal error which demands killing of the current
188  * process!
189  */
190 int
191 kern_execve(struct nlookupdata *nd, struct image_args *args)
192 {
193 	struct thread *td = curthread;
194 	struct lwp *lp = td->td_lwp;
195 	struct proc *p = td->td_proc;
196 	struct vnode *ovp;
197 	register_t *stack_base;
198 	struct pargs *pa;
199 	struct sigacts *ops;
200 	struct sigacts *nps;
201 	int error, len, i;
202 	struct image_params image_params, *imgp;
203 	struct vattr attr;
204 	int (*img_first) (struct image_params *);
205 
206 	if (debug_execve_args) {
207 		kprintf("%s()\n", __func__);
208 		print_execve_args(args);
209 	}
210 
211 	KKASSERT(p);
212 	lwkt_gettoken(&p->p_token);
213 	imgp = &image_params;
214 
215 	/*
216 	 * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
217 	 * no modifications to the process at all until we get there.
218 	 *
219 	 * Note that multiple threads may be trying to exec at the same
220 	 * time.  exec_new_vmspace() handles that too.
221 	 */
222 
223 	/*
224 	 * Initialize part of the common data
225 	 */
226 	imgp->proc = p;
227 	imgp->args = args;
228 	imgp->attr = &attr;
229 	imgp->entry_addr = 0;
230 	imgp->resident = 0;
231 	imgp->vmspace_destroyed = 0;
232 	imgp->interpreted = 0;
233 	imgp->interpreter_name[0] = 0;
234 	imgp->auxargs = NULL;
235 	imgp->vp = NULL;
236 	imgp->firstpage = NULL;
237 	imgp->ps_strings = 0;
238 	imgp->execpath = imgp->freepath = NULL;
239 	imgp->execpathp = 0;
240 	imgp->image_header = NULL;
241 
242 interpret:
243 
244 	/*
245 	 * Translate the file name to a vnode.  Unlock the cache entry to
246 	 * improve parallelism for programs exec'd in parallel.
247 	 */
248 	nd->nl_flags |= NLC_SHAREDLOCK;
249 	if ((error = nlookup(nd)) != 0)
250 		goto exec_fail;
251 	error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_SHARED, &imgp->vp);
252 	KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
253 	nd->nl_flags &= ~NLC_NCPISLOCKED;
254 	cache_unlock(&nd->nl_nch);
255 	if (error)
256 		goto exec_fail;
257 
258 	/*
259 	 * Check file permissions (also 'opens' file).
260 	 * Include also the top level mount in the check.
261 	 */
262 	error = exec_check_permissions(imgp, nd->nl_nch.mount);
263 	if (error) {
264 		vn_unlock(imgp->vp);
265 		goto exec_fail_dealloc;
266 	}
267 
268 	error = exec_map_first_page(imgp);
269 	vn_unlock(imgp->vp);
270 	if (error)
271 		goto exec_fail_dealloc;
272 
273 	imgp->proc->p_osrel = 0;
274 
275 	if (debug_execve_args && imgp->interpreted) {
276 		kprintf("    target is interpreted -- recursive pass\n");
277 		kprintf("    interpreter: %s\n", imgp->interpreter_name);
278 		print_execve_args(args);
279 	}
280 
281 	/*
282 	 *	If the current process has a special image activator it
283 	 *	wants to try first, call it.   For example, emulating shell
284 	 *	scripts differently.
285 	 */
286 	error = -1;
287 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
288 		error = img_first(imgp);
289 
290 	/*
291 	 *	If the vnode has a registered vmspace, exec the vmspace
292 	 */
293 	if (error == -1 && imgp->vp->v_resident) {
294 		error = exec_resident_imgact(imgp);
295 	}
296 
297 	/*
298 	 *	Loop through the list of image activators, calling each one.
299 	 *	An activator returns -1 if there is no match, 0 on success,
300 	 *	and an error otherwise.
301 	 */
302 	for (i = 0; error == -1 && execsw[i]; ++i) {
303 		if (execsw[i]->ex_imgact == NULL ||
304 		    execsw[i]->ex_imgact == img_first) {
305 			continue;
306 		}
307 		error = (*execsw[i]->ex_imgact)(imgp);
308 	}
309 
310 	if (error) {
311 		if (error == -1)
312 			error = ENOEXEC;
313 		goto exec_fail_dealloc;
314 	}
315 
316 	/*
317 	 * Special interpreter operation, cleanup and loop up to try to
318 	 * activate the interpreter.
319 	 */
320 	if (imgp->interpreted) {
321 		exec_unmap_first_page(imgp);
322 		nlookup_done(nd);
323 		vrele(imgp->vp);
324 		imgp->vp = NULL;
325 		error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
326 					NLC_FOLLOW);
327 		if (error)
328 			goto exec_fail;
329 		goto interpret;
330 	}
331 
332 	/*
333 	 * Do the best to calculate the full path to the image file
334 	 */
335 	if (imgp->auxargs != NULL &&
336 	   ((args->fname != NULL && args->fname[0] == '/') ||
337 	    vn_fullpath(imgp->proc,
338 			imgp->vp,
339 			&imgp->execpath,
340 			&imgp->freepath,
341 			0) != 0))
342 		imgp->execpath = args->fname;
343 
344 	/*
345 	 * Copy out strings (args and env) and initialize stack base
346 	 */
347 	stack_base = exec_copyout_strings(imgp);
348 	p->p_vmspace->vm_minsaddr = (char *)stack_base;
349 
350 	/*
351 	 * If custom stack fixup routine present for this process
352 	 * let it do the stack setup.  If we are running a resident
353 	 * image there is no auxinfo or other image activator context
354 	 * so don't try to add fixups to the stack.
355 	 *
356 	 * Else stuff argument count as first item on stack
357 	 */
358 	if (p->p_sysent->sv_fixup && imgp->resident == 0)
359 		(*p->p_sysent->sv_fixup)(&stack_base, imgp);
360 	else
361 		suword64(--stack_base, imgp->args->argc);
362 
363 	/*
364 	 * For security and other reasons, the file descriptor table cannot
365 	 * be shared after an exec.
366 	 */
367 	if (p->p_fd->fd_refcnt > 1) {
368 		struct filedesc *tmp;
369 
370 		error = fdcopy(p, &tmp);
371 		if (error != 0)
372 			goto exec_fail;
373 		fdfree(p, tmp);
374 	}
375 
376 	/*
377 	 * For security and other reasons, signal handlers cannot
378 	 * be shared after an exec. The new proces gets a copy of the old
379 	 * handlers. In execsigs(), the new process will have its signals
380 	 * reset.
381 	 */
382 	ops = p->p_sigacts;
383 	if (ops->ps_refcnt > 1) {
384 		nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
385 		bcopy(ops, nps, sizeof(*nps));
386 		refcount_init(&nps->ps_refcnt, 1);
387 		p->p_sigacts = nps;
388 		if (refcount_release(&ops->ps_refcnt)) {
389 			kfree(ops, M_SUBPROC);
390 			ops = NULL;
391 		}
392 	}
393 
394 	/*
395 	 * Clean up shared pages, the new program will allocate fresh
396 	 * copies as needed.  This is also for security purposes and
397 	 * to ensure (for example) that things like sys_lpmap->blockallsigs
398 	 * state is properly reset on exec.
399 	 */
400 	lwp_userunmap(lp);
401 	proc_userunmap(p);
402 
403 	/*
404 	 * For security and other reasons virtual kernels cannot be
405 	 * inherited by an exec.  This also allows a virtual kernel
406 	 * to fork/exec unrelated applications.
407 	 */
408 	if (p->p_vkernel)
409 		vkernel_exit(p);
410 
411 	/* Stop profiling */
412 	stopprofclock(p);
413 
414 	/* close files on exec */
415 	fdcloseexec(p);
416 
417 	/* reset caught signals */
418 	execsigs(p);
419 
420 	/* name this process - nameiexec(p, ndp) */
421 	len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
422 	bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
423 	p->p_comm[len] = 0;
424 	bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
425 
426 	/*
427 	 * mark as execed, wakeup the process that vforked (if any) and tell
428 	 * it that it now has its own resources back
429 	 *
430 	 * We are using the P_PPWAIT as an interlock so an atomic op is
431 	 * necessary to synchronize with the parent's cpu.
432 	 */
433 	p->p_flags |= P_EXEC;
434 	if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
435 		if (p->p_pptr->p_upmap)
436 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
437 		atomic_clear_int(&p->p_flags, P_PPWAIT);
438 		wakeup(p->p_pptr);
439 	}
440 
441 	/*
442 	 * Implement image setuid/setgid.
443 	 *
444 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
445 	 * the process is being traced.
446 	 */
447 	if ((((attr.va_mode & VSUID) && p->p_ucred->cr_uid != attr.va_uid) ||
448 	     ((attr.va_mode & VSGID) && p->p_ucred->cr_gid != attr.va_gid)) &&
449 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
450 	    (p->p_flags & P_TRACED) == 0) {
451 		/*
452 		 * Turn off syscall tracing for set-id programs, except for
453 		 * root.  Record any set-id flags first to make sure that
454 		 * we do not regain any tracing during a possible block.
455 		 */
456 		setsugid();
457 		if (p->p_tracenode && ktrace_suid == 0 &&
458 		    priv_check(td, PRIV_ROOT) != 0) {
459 			ktrdestroy(&p->p_tracenode);
460 			p->p_traceflag = 0;
461 		}
462 		/* Close any file descriptors 0..2 that reference procfs */
463 		setugidsafety(p);
464 		/* Make sure file descriptors 0..2 are in use. */
465 		error = fdcheckstd(lp);
466 		if (error != 0)
467 			goto exec_fail_dealloc;
468 		/*
469 		 * Set the new credentials.
470 		 */
471 		cratom_proc(p);
472 		if (attr.va_mode & VSUID)
473 			change_euid(attr.va_uid);
474 		if (attr.va_mode & VSGID)
475 			p->p_ucred->cr_gid = attr.va_gid;
476 
477 		/*
478 		 * Clear local varsym variables
479 		 */
480 		varsymset_clean(&p->p_varsymset);
481 	} else {
482 		if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
483 		    p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
484 			p->p_flags &= ~P_SUGID;
485 	}
486 
487 	/*
488 	 * Implement correct POSIX saved-id behavior.
489 	 */
490 	if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
491 	    p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
492 		cratom_proc(p);
493 		p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
494 		p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
495 	}
496 
497 	/*
498 	 * Store the vp for use in procfs.  Be sure to keep p_textvp
499 	 * consistent if we block during the switch-over.
500 	 */
501 	ovp = p->p_textvp;
502 	vref(imgp->vp);			/* ref new vp */
503 	p->p_textvp = imgp->vp;
504 	if (ovp)			/* release old vp */
505 		vrele(ovp);
506 
507 	/* Release old namecache handle to text file */
508 	if (p->p_textnch.ncp)
509 		cache_drop(&p->p_textnch);
510 
511 	if (nd->nl_nch.mount)
512 		cache_copy(&nd->nl_nch, &p->p_textnch);
513 
514         /*
515          * Notify others that we exec'd, and clear the P_INEXEC flag
516          * as we're now a bona fide freshly-execed process.
517          */
518 	KNOTE(&p->p_klist, NOTE_EXEC);
519 	p->p_flags &= ~P_INEXEC;
520 	if (p->p_stops)
521 		wakeup(&p->p_stype);
522 
523 	/*
524 	 * If tracing the process, trap to debugger so breakpoints
525 	 * 	can be set before the program executes.
526 	 */
527 	STOPEVENT(p, S_EXEC, 0);
528 
529 	if (p->p_flags & P_TRACED)
530 		ksignal(p, SIGTRAP);
531 
532 	/* clear "fork but no exec" flag, as we _are_ execing */
533 	p->p_acflag &= ~AFORK;
534 
535 	/* Set values passed into the program in registers. */
536 	exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
537 		     imgp->ps_strings);
538 
539 	/* Set the access time on the vnode */
540 	vn_mark_atime(imgp->vp, td);
541 
542 	/*
543 	 * Free any previous argument cache
544 	 */
545 	pa = p->p_args;
546 	p->p_args = NULL;
547 	if (pa && refcount_release(&pa->ar_ref)) {
548 		kfree(pa, M_PARGS);
549 		pa = NULL;
550 	}
551 
552 	/*
553 	 * Cache arguments if they fit inside our allowance
554 	 */
555 	i = imgp->args->begin_envv - imgp->args->begin_argv;
556 	if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
557 		pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
558 		refcount_init(&pa->ar_ref, 1);
559 		pa->ar_length = i;
560 		bcopy(imgp->args->begin_argv, pa->ar_args, i);
561 		KKASSERT(p->p_args == NULL);
562 		p->p_args = pa;
563 	}
564 
565 exec_fail_dealloc:
566 
567 	/*
568 	 * free various allocated resources
569 	 */
570 	if (imgp->firstpage)
571 		exec_unmap_first_page(imgp);
572 
573 	if (imgp->vp) {
574 		vrele(imgp->vp);
575 		imgp->vp = NULL;
576 	}
577 
578 	if (imgp->freepath)
579 		kfree(imgp->freepath, M_TEMP);
580 
581 	if (error == 0) {
582 		++mycpu->gd_cnt.v_exec;
583 		lwkt_reltoken(&p->p_token);
584 		return (0);
585 	}
586 
587 exec_fail:
588 	/*
589 	 * we're done here, clear P_INEXEC if we were the ones that
590 	 * set it.  Otherwise if vmspace_destroyed is still set we
591 	 * raced another thread and that thread is responsible for
592 	 * clearing it.
593 	 */
594 	if (imgp->vmspace_destroyed & 2) {
595 		p->p_flags &= ~P_INEXEC;
596 		if (p->p_stops)
597 			wakeup(&p->p_stype);
598 	}
599 	lwkt_reltoken(&p->p_token);
600 	if (imgp->vmspace_destroyed) {
601 		/*
602 		 * Sorry, no more process anymore. exit gracefully.
603 		 * However we can't die right here, because our
604 		 * caller might have to clean up, so indicate a
605 		 * lethal error by returning -1.
606 		 */
607 		return(-1);
608 	} else {
609 		return(error);
610 	}
611 }
612 
613 /*
614  * execve() system call.
615  */
616 int
617 sys_execve(struct execve_args *uap)
618 {
619 	struct nlookupdata nd;
620 	struct image_args args;
621 	int error;
622 
623 	bzero(&args, sizeof(args));
624 
625 	error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
626 	if (error == 0) {
627 		error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
628 					uap->argv, uap->envv);
629 	}
630 	if (error == 0)
631 		error = kern_execve(&nd, &args);
632 	nlookup_done(&nd);
633 	exec_free_args(&args);
634 
635 	if (error < 0) {
636 		/* We hit a lethal error condition.  Let's die now. */
637 		exit1(W_EXITCODE(0, SIGABRT));
638 		/* NOTREACHED */
639 	}
640 
641 	/*
642 	 * The syscall result is returned in registers to the new program.
643 	 * Linux will register %edx as an atexit function and we must be
644 	 * sure to set it to 0.  XXX
645 	 */
646 	if (error == 0)
647 		uap->sysmsg_result64 = 0;
648 
649 	return (error);
650 }
651 
652 int
653 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
654 	      struct lwbuf **plwb, const char **pdata)
655 {
656 	int rv;
657 	vm_page_t ma;
658 	vm_page_t m;
659 	vm_object_t object;
660 
661 	/*
662 	 * The file has to be mappable.
663 	 */
664 	if ((object = imgp->vp->v_object) == NULL)
665 		return (EIO);
666 
667 	if (pageno >= object->size)
668 		return (EIO);
669 
670 	/*
671 	 * Shortcut using shared locks, improve concurrent execs.
672 	 */
673 	vm_object_hold_shared(object);
674 	m = vm_page_lookup(object, pageno);
675 	if (m) {
676 		if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
677 			vm_page_hold(m);
678 			vm_page_sleep_busy(m, FALSE, "execpg");
679 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
680 			    m->object == object && m->pindex == pageno) {
681 				vm_object_drop(object);
682 				goto done;
683 			}
684 			vm_page_unhold(m);
685 		}
686 	}
687 	vm_object_drop(object);
688 
689 	/*
690 	 * Do it the hard way
691 	 */
692 	vm_object_hold(object);
693 	m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
694 	while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
695 		ma = m;
696 
697 		/*
698 		 * get_pages unbusies all the requested pages except the
699 		 * primary page (at index 0 in this case).  The primary
700 		 * page may have been wired during the pagein (e.g. by
701 		 * the buffer cache) so vnode_pager_freepage() must be
702 		 * used to properly release it.
703 		 */
704 		rv = vm_pager_get_page(object, &ma, 1);
705 		m = vm_page_lookup(object, pageno);
706 
707 		if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
708 			if (m) {
709 				vm_page_protect(m, VM_PROT_NONE);
710 				vnode_pager_freepage(m);
711 			}
712 			vm_object_drop(object);
713 			return EIO;
714 		}
715 	}
716 	vm_page_hold(m);
717 	vm_page_wakeup(m);	/* unbusy the page */
718 	vm_object_drop(object);
719 
720 done:
721 	*plwb = lwbuf_alloc(m, *plwb);
722 	*pdata = (void *)lwbuf_kva(*plwb);
723 
724 	return (0);
725 }
726 
727 /*
728  * Map the first page of an executable image.
729  *
730  * NOTE: If the mapping fails we have to NULL-out firstpage which may
731  *	 still be pointing to our supplied lwp structure.
732  */
733 int
734 exec_map_first_page(struct image_params *imgp)
735 {
736 	int err;
737 
738 	if (imgp->firstpage)
739 		exec_unmap_first_page(imgp);
740 
741 	imgp->firstpage = &imgp->firstpage_cache;
742 	err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
743 
744 	if (err) {
745 		imgp->firstpage = NULL;
746 		return err;
747 	}
748 
749 	return 0;
750 }
751 
752 void
753 exec_unmap_page(struct lwbuf *lwb)
754 {
755 	vm_page_t m;
756 
757 	crit_enter();
758 	if (lwb != NULL) {
759 		m = lwbuf_page(lwb);
760 		lwbuf_free(lwb);
761 		vm_page_unhold(m);
762 	}
763 	crit_exit();
764 }
765 
766 void
767 exec_unmap_first_page(struct image_params *imgp)
768 {
769 	exec_unmap_page(imgp->firstpage);
770 	imgp->firstpage = NULL;
771 	imgp->image_header = NULL;
772 }
773 
774 /*
775  * Destroy old address space, and allocate a new stack
776  *	The new stack is only SGROWSIZ large because it is grown
777  *	automatically in trap.c.
778  *
779  * This is the point of no return.
780  */
781 int
782 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
783 {
784 	struct vmspace *vmspace = imgp->proc->p_vmspace;
785 	vm_offset_t stack_addr = USRSTACK - maxssiz;
786 	struct lwp *lp;
787 	struct proc *p;
788 	vm_map_t map;
789 	int error;
790 
791 	/*
792 	 * Indicate that we cannot gracefully error out any more, kill
793 	 * any other threads present, and set P_INEXEC to indicate that
794 	 * we are now messing with the process structure proper.
795 	 *
796 	 * If killalllwps() races return an error which coupled with
797 	 * vmspace_destroyed will cause us to exit.  This is what we
798 	 * want since another thread is patiently waiting for us to exit
799 	 * in that case.
800 	 */
801 	lp = curthread->td_lwp;
802 	p = lp->lwp_proc;
803 	imgp->vmspace_destroyed = 1;
804 
805 	if (curthread->td_proc->p_nthreads > 1) {
806 		error = killalllwps(1);
807 		if (error)
808 			return (error);
809 	}
810 	imgp->vmspace_destroyed |= 2;	/* we are responsible for P_INEXEC */
811 	p->p_flags |= P_INEXEC;
812 
813 	/*
814 	 * Tell procfs to release its hold on the process.  It
815 	 * will return EAGAIN.
816 	 */
817 	if (p->p_stops)
818 		wakeup(&p->p_stype);
819 
820 	/*
821 	 * After setting P_INEXEC wait for any remaining references to
822 	 * the process (p) to go away.
823 	 *
824 	 * In particular, a vfork/exec sequence will replace p->p_vmspace
825 	 * and we must interlock anyone trying to access the space (aka
826 	 * procfs or sys_process.c calling procfs_domem()).
827 	 *
828 	 * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
829 	 */
830 	PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
831 
832 	/*
833 	 * Blow away entire process VM, if address space not shared,
834 	 * otherwise, create a new VM space so that other threads are
835 	 * not disrupted.  If we are execing a resident vmspace we
836 	 * create a duplicate of it and remap the stack.
837 	 */
838 	map = &vmspace->vm_map;
839 	if (vmcopy) {
840 		vmspace_exec(imgp->proc, vmcopy);
841 		vmspace = imgp->proc->p_vmspace;
842 		pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
843 		map = &vmspace->vm_map;
844 	} else if (vmspace_getrefs(vmspace) == 1) {
845 		shmexit(vmspace);
846 		pmap_remove_pages(vmspace_pmap(vmspace),
847 				  0, VM_MAX_USER_ADDRESS);
848 		vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
849 	} else {
850 		vmspace_exec(imgp->proc, NULL);
851 		vmspace = imgp->proc->p_vmspace;
852 		map = &vmspace->vm_map;
853 	}
854 
855 	/*
856 	 * Really make sure lwp-specific and process-specific mappings
857 	 * are gone.
858 	 *
859 	 * Once we've done that, and because we are the only LWP left, with
860 	 * no TID-dependent mappings, we can reset the TID to 1 (the RB tree
861 	 * will remain consistent since it has only one entry).  This way
862 	 * the exec'd program gets a nice deterministic tid of 1.
863 	 */
864 	lwp_userunmap(lp);
865 	proc_userunmap(p);
866 	lp->lwp_tid = 1;
867 	p->p_lasttid = 1;
868 
869 	/*
870 	 * Allocate a new stack, generally make the stack non-executable
871 	 * but allow the program to adjust that (the program may desire to
872 	 * use areas of the stack for executable code).
873 	 */
874 	error = vm_map_stack(&vmspace->vm_map, &stack_addr, (vm_size_t)maxssiz,
875 			     0,
876 			     VM_PROT_READ|VM_PROT_WRITE,
877 			     VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
878 			     0);
879 	if (error)
880 		return (error);
881 
882 	/*
883 	 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
884 	 * VM_STACK case, but they are still used to monitor the size of the
885 	 * process stack so we can check the stack rlimit.
886 	 */
887 	vmspace->vm_ssize = sgrowsiz;		/* in bytes */
888 	vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
889 
890 	return(0);
891 }
892 
893 /*
894  * Copy out argument and environment strings from the old process
895  *	address space into the temporary string buffer.
896  */
897 int
898 exec_copyin_args(struct image_args *args, char *fname,
899 		enum exec_path_segflg segflg, char **argv, char **envv)
900 {
901 	char	*argp, *envp;
902 	int	error = 0;
903 	size_t	length;
904 
905 	args->buf = objcache_get(exec_objcache, M_WAITOK);
906 	if (args->buf == NULL)
907 		return (ENOMEM);
908 	args->begin_argv = args->buf;
909 	args->endp = args->begin_argv;
910 	args->space = ARG_MAX;
911 
912 	args->fname = args->buf + ARG_MAX;
913 
914 	/*
915 	 * Copy the file name.
916 	 */
917 	if (segflg == PATH_SYSSPACE) {
918 		error = copystr(fname, args->fname, PATH_MAX, &length);
919 	} else if (segflg == PATH_USERSPACE) {
920 		error = copyinstr(fname, args->fname, PATH_MAX, &length);
921 	}
922 
923 	/*
924 	 * Extract argument strings.  argv may not be NULL.  The argv
925 	 * array is terminated by a NULL entry.  We special-case the
926 	 * situation where argv[0] is NULL by passing { filename, NULL }
927 	 * to the new program to guarentee that the interpreter knows what
928 	 * file to open in case we exec an interpreted file.   Note that
929 	 * a NULL argv[0] terminates the argv[] array.
930 	 *
931 	 * XXX the special-casing of argv[0] is historical and needs to be
932 	 * revisited.
933 	 */
934 	if (argv == NULL)
935 		error = EFAULT;
936 	if (error == 0) {
937 		while ((argp = (caddr_t)(intptr_t)
938 			       fuword64((uintptr_t *)argv++)) != NULL) {
939 			if (argp == (caddr_t)-1) {
940 				error = EFAULT;
941 				break;
942 			}
943 			error = copyinstr(argp, args->endp,
944 					  args->space, &length);
945 			if (error) {
946 				if (error == ENAMETOOLONG)
947 					error = E2BIG;
948 				break;
949 			}
950 			args->space -= length;
951 			args->endp += length;
952 			args->argc++;
953 		}
954 		if (args->argc == 0 && error == 0) {
955 			length = strlen(args->fname) + 1;
956 			if (length > args->space) {
957 				error = E2BIG;
958 			} else {
959 				bcopy(args->fname, args->endp, length);
960 				args->space -= length;
961 				args->endp += length;
962 				args->argc++;
963 			}
964 		}
965 	}
966 
967 	args->begin_envv = args->endp;
968 
969 	/*
970 	 * extract environment strings.  envv may be NULL.
971 	 */
972 	if (envv && error == 0) {
973 		while ((envp = (caddr_t)(intptr_t)
974 			       fuword64((uintptr_t *)envv++))) {
975 			if (envp == (caddr_t) -1) {
976 				error = EFAULT;
977 				break;
978 			}
979 			error = copyinstr(envp, args->endp,
980 					  args->space, &length);
981 			if (error) {
982 				if (error == ENAMETOOLONG)
983 					error = E2BIG;
984 				break;
985 			}
986 			args->space -= length;
987 			args->endp += length;
988 			args->envc++;
989 		}
990 	}
991 	return (error);
992 }
993 
994 void
995 exec_free_args(struct image_args *args)
996 {
997 	if (args->buf) {
998 		objcache_put(exec_objcache, args->buf);
999 		args->buf = NULL;
1000 	}
1001 }
1002 
1003 /*
1004  * Copy strings out to the new process address space, constructing
1005  * new arg and env vector tables. Return a pointer to the base
1006  * so that it can be used as the initial stack pointer.
1007  *
1008  * The format is, roughly:
1009  *
1010  *	[argv[]]			<-- vectp
1011  *	[envp[]]
1012  *	[ELF_Auxargs]
1013  *
1014  *	[args & env]			<-- destp
1015  *	[sgap]
1016  *	[SPARE_USRSPACE]
1017  *	[execpath]
1018  *	[szsigcode]   RO|NX
1019  *	[ps_strings]  RO|NX		Top of user stack
1020  *
1021  */
1022 static register_t *
1023 exec_copyout_strings(struct image_params *imgp)
1024 {
1025 	int argc, envc, sgap;
1026 	int gap;
1027 	int argsenvspace;
1028 	char **vectp;
1029 	char *stringp, *destp, *szsigbase;
1030 	register_t *stack_base;
1031 	struct ps_strings *arginfo;
1032 	size_t execpath_len;
1033 	int szsigcode;
1034 
1035 	/*
1036 	 * Calculate string base and vector table pointers.
1037 	 * Also deal with signal trampoline code for this exec type.
1038 	 */
1039 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
1040 		execpath_len = strlen(imgp->execpath) + 1;
1041 	else
1042 		execpath_len = 0;
1043 	arginfo = (struct ps_strings *)PS_STRINGS;
1044 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
1045 
1046 	argsenvspace = roundup((ARG_MAX - imgp->args->space), sizeof(char *));
1047 	gap = stackgap_random;
1048 	cpu_ccfence();
1049 	if (gap != 0) {
1050 		if (gap < 0)
1051 			sgap = ALIGN(-gap);
1052 		else
1053 			sgap = ALIGN(karc4random() & (gap - 1));
1054 	} else {
1055 		sgap = 0;
1056 	}
1057 
1058 	/*
1059 	 * Calculate destp, which points to [args & env] and above.
1060 	 */
1061 	szsigbase = (char *)(intptr_t)
1062 		    trunc_page64((intptr_t)arginfo - szsigcode);
1063 	szsigbase -= SZSIGCODE_EXTRA_BYTES;
1064 	destp = szsigbase -
1065 		roundup(execpath_len, sizeof(char *)) -
1066 		SPARE_USRSPACE -
1067 		sgap -
1068 		argsenvspace;
1069 
1070 	/*
1071 	 * install sigcode
1072 	 */
1073 	if (szsigcode)
1074 		copyout(imgp->proc->p_sysent->sv_sigcode, szsigbase, szsigcode);
1075 
1076 	/*
1077 	 * Copy the image path for the rtld
1078 	 */
1079 	if (execpath_len) {
1080 		imgp->execpathp = (uintptr_t)szsigbase -
1081 				  roundup(execpath_len, sizeof(char *));
1082 		copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
1083 	}
1084 
1085 	/*
1086 	 * Calculate base for argv[], envp[], and ELF_Auxargs.
1087 	 */
1088 	vectp = (char **)destp - (AT_COUNT * 2);
1089 	vectp -= imgp->args->argc + imgp->args->envc + 2;
1090 
1091 	stack_base = (register_t *)vectp;
1092 
1093 	stringp = imgp->args->begin_argv;
1094 	argc = imgp->args->argc;
1095 	envc = imgp->args->envc;
1096 
1097 	/*
1098 	 * Copy out strings - arguments and environment (at destp)
1099 	 */
1100 	copyout(stringp, destp, ARG_MAX - imgp->args->space);
1101 
1102 	/*
1103 	 * Fill in "ps_strings" struct for ps, w, etc.
1104 	 */
1105 	suword64((void *)&arginfo->ps_argvstr, (uint64_t)(intptr_t)vectp);
1106 	suword32((void *)&arginfo->ps_nargvstr, argc);
1107 
1108 	/*
1109 	 * Fill in argument portion of vector table.
1110 	 */
1111 	for (; argc > 0; --argc) {
1112 		suword64((void *)vectp++, (uintptr_t)destp);
1113 		while (*stringp++ != 0)
1114 			destp++;
1115 		destp++;
1116 	}
1117 
1118 	/* a null vector table pointer separates the argp's from the envp's */
1119 	suword64((void *)vectp++, 0);
1120 
1121 	suword64((void *)&arginfo->ps_envstr, (uintptr_t)vectp);
1122 	suword32((void *)&arginfo->ps_nenvstr, envc);
1123 
1124 	/*
1125 	 * Fill in environment portion of vector table.
1126 	 */
1127 	for (; envc > 0; --envc) {
1128 		suword64((void *)vectp++, (uintptr_t)destp);
1129 		while (*stringp++ != 0)
1130 			destp++;
1131 		destp++;
1132 	}
1133 
1134 	/* end of vector table is a null pointer */
1135 	suword64((void *)vectp, 0);
1136 
1137 	/*
1138 	 * Make the signal trampoline executable and read-only.
1139 	 */
1140 	vm_map_protect(&imgp->proc->p_vmspace->vm_map,
1141 		       (vm_offset_t)szsigbase,
1142 		       (vm_offset_t)szsigbase + PAGE_SIZE,
1143 		       VM_PROT_READ|VM_PROT_EXECUTE, FALSE);
1144 
1145 	return (stack_base);
1146 }
1147 
1148 /*
1149  * Check permissions of file to execute.
1150  *	Return 0 for success or error code on failure.
1151  */
1152 int
1153 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1154 {
1155 	struct proc *p = imgp->proc;
1156 	struct vnode *vp = imgp->vp;
1157 	struct vattr *attr = imgp->attr;
1158 	int error;
1159 
1160 	/* Get file attributes */
1161 	error = VOP_GETATTR(vp, attr);
1162 	if (error)
1163 		return (error);
1164 
1165 	/*
1166 	 * 1) Check if file execution is disabled for the filesystem that this
1167 	 *	file resides on.
1168 	 * 2) Insure that at least one execute bit is on - otherwise root
1169 	 *	will always succeed, and we don't want to happen unless the
1170 	 *	file really is executable.
1171 	 * 3) Insure that the file is a regular file.
1172 	 */
1173 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1174 	    ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1175 	    ((attr->va_mode & 0111) == 0) ||
1176 	    (attr->va_type != VREG)) {
1177 		return (EACCES);
1178 	}
1179 
1180 	/*
1181 	 * Zero length files can't be exec'd
1182 	 */
1183 	if (attr->va_size == 0)
1184 		return (ENOEXEC);
1185 
1186 	/*
1187 	 *  Check for execute permission to file based on current credentials.
1188 	 */
1189 	error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1190 	if (error)
1191 		return (error);
1192 
1193 	/*
1194 	 * Check number of open-for-writes on the file and deny execution
1195 	 * if there are any.
1196 	 */
1197 	if (vp->v_writecount)
1198 		return (ETXTBSY);
1199 
1200 	/*
1201 	 * Call filesystem specific open routine, which allows us to read,
1202 	 * write, and mmap the file.  Without the VOP_OPEN we can only
1203 	 * stat the file.
1204 	 */
1205 	error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1206 	if (error)
1207 		return (error);
1208 
1209 	return (0);
1210 }
1211 
1212 /*
1213  * Exec handler registration
1214  */
1215 int
1216 exec_register(const struct execsw *execsw_arg)
1217 {
1218 	const struct execsw **es, **xs, **newexecsw;
1219 	int count = 2;	/* New slot and trailing NULL */
1220 
1221 	if (execsw)
1222 		for (es = execsw; *es; es++)
1223 			count++;
1224 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1225 	xs = newexecsw;
1226 	if (execsw)
1227 		for (es = execsw; *es; es++)
1228 			*xs++ = *es;
1229 	*xs++ = execsw_arg;
1230 	*xs = NULL;
1231 	if (execsw)
1232 		kfree(execsw, M_TEMP);
1233 	execsw = newexecsw;
1234 	return 0;
1235 }
1236 
1237 int
1238 exec_unregister(const struct execsw *execsw_arg)
1239 {
1240 	const struct execsw **es, **xs, **newexecsw;
1241 	int count = 1;
1242 
1243 	if (execsw == NULL)
1244 		panic("unregister with no handlers left?");
1245 
1246 	for (es = execsw; *es; es++) {
1247 		if (*es == execsw_arg)
1248 			break;
1249 	}
1250 	if (*es == NULL)
1251 		return ENOENT;
1252 	for (es = execsw; *es; es++)
1253 		if (*es != execsw_arg)
1254 			count++;
1255 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1256 	xs = newexecsw;
1257 	for (es = execsw; *es; es++)
1258 		if (*es != execsw_arg)
1259 			*xs++ = *es;
1260 	*xs = NULL;
1261 	if (execsw)
1262 		kfree(execsw, M_TEMP);
1263 	execsw = newexecsw;
1264 	return 0;
1265 }
1266