xref: /dragonfly/sys/kern/kern_exec.c (revision 337acc44)
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmsg.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
69 
70 #include <sys/reg.h>
71 
72 #include <sys/objcache.h>
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <vm/vm_page2.h>
76 
77 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
78 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
79 
80 enum exec_path_segflg {
81 	PATH_SYSSPACE,
82 	PATH_USERSPACE,
83 };
84 
85 static register_t *exec_copyout_strings(struct image_params *);
86 static int	exec_copyin_args(struct image_args *, char *,
87 				 enum exec_path_segflg, char **, char **);
88 static void	exec_free_args(struct image_args *);
89 static void	print_execve_args(struct image_args *args);
90 
91 /* XXX This should be vm_size_t. */
92 __read_mostly static u_long ps_strings = PS_STRINGS;
93 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
94 
95 /* XXX This should be vm_size_t. */
96 __read_mostly static u_long usrstack = USRSTACK;
97 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
98 
99 __read_mostly u_long ps_arg_cache_limit = PAGE_SIZE / 16;
100 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
101     &ps_arg_cache_limit, 0, "");
102 
103 __read_mostly int ps_argsopen = 1;
104 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
105 
106 __read_mostly static int ktrace_suid = 0;
107 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
108 
109 __read_mostly static int debug_execve_args = 0;
110 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
111     0, "");
112 
113 /*
114  * Exec arguments object cache
115  */
116 __read_mostly static struct objcache *exec_objcache;
117 
118 static
119 void
120 exec_objcache_init(void *arg __unused)
121 {
122 	int cluster_limit;
123 	size_t limsize;
124 
125 	/*
126 	 * Maximum number of concurrent execs.  This can be limiting on
127 	 * systems with a lot of cpu cores but it also eats a significant
128 	 * amount of memory.
129 	 */
130 	cluster_limit = (ncpus < 16) ? 16 : ncpus;
131 	limsize = kmem_lim_size();
132 	if (limsize > 7 * 1024)
133 		cluster_limit *= 2;
134 	if (limsize > 15 * 1024)
135 		cluster_limit *= 2;
136 
137 	exec_objcache = objcache_create_mbacked(
138 					M_EXECARGS, PATH_MAX + ARG_MAX,
139 					cluster_limit, 8,
140 					NULL, NULL, NULL);
141 }
142 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
143 
144 /*
145  * stackgap_random specifies if the stackgap should have a random size added
146  * to it.  It must be a power of 2.  If non-zero, the stack gap will be
147  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
148  */
149 __read_mostly static int stackgap_random = 1024;
150 
151 static int
152 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
153 {
154 	int error, new_val;
155 	new_val = stackgap_random;
156 	error = sysctl_handle_int(oidp, &new_val, 0, req);
157 	if (error != 0 || req->newptr == NULL)
158 		return (error);
159 	if (new_val > 0 && ((new_val > 16 * PAGE_SIZE) || !powerof2(new_val)))
160 		return (EINVAL);
161 	stackgap_random = new_val;
162 
163 	return(0);
164 }
165 
166 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_INT,
167 	0, 0, sysctl_kern_stackgap, "I",
168 	"Max random stack gap (power of 2), static gap if negative");
169 
170 static void
171 print_execve_args(struct image_args *args)
172 {
173 	char *cp;
174 	int ndx;
175 
176 	cp = args->begin_argv;
177 	for (ndx = 0; ndx < args->argc; ndx++) {
178 		kprintf("\targv[%d]: %s\n", ndx, cp);
179 		while (*cp++ != '\0');
180 	}
181 	for (ndx = 0; ndx < args->envc; ndx++) {
182 		kprintf("\tenvv[%d]: %s\n", ndx, cp);
183 		while (*cp++ != '\0');
184 	}
185 }
186 
187 /*
188  * Each of the items is a pointer to a `const struct execsw', hence the
189  * double pointer here.
190  */
191 __read_mostly static const struct execsw **execsw;
192 
193 /*
194  * Replace current vmspace with a new binary.
195  * Returns 0 on success, > 0 on recoverable error (use as errno).
196  * Returns -1 on lethal error which demands killing of the current
197  * process!
198  */
199 int
200 kern_execve(struct nlookupdata *nd, struct file *fp,
201 	    struct image_args *args)
202 {
203 	static const char *proctitle = "(execve)";
204 	register_t *stack_base;
205 	struct thread *td = curthread;
206 	struct lwp *lp = td->td_lwp;
207 	struct proc *p = td->td_proc;
208 	struct vnode *ovp;
209 	struct pargs *pa;
210 	struct sigacts *ops;
211 	struct sigacts *nps;
212 	struct image_params image_params, *imgp;
213 	struct filedesc *fds;
214 	struct nchandle *nch;
215 	struct nlookupdata nd_interpreter;
216 	struct vattr_lite lva;
217 	int error, len, i;
218 	int (*img_first) (struct image_params *);
219 
220 	if (debug_execve_args) {
221 		kprintf("%s()\n", __func__);
222 		print_execve_args(args);
223 	}
224 
225 	KKASSERT(p);
226 	lwkt_gettoken(&p->p_token);
227 	imgp = &image_params;
228 
229 	/*
230 	 * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
231 	 * no modifications to the process at all until we get there.
232 	 *
233 	 * Note that multiple threads may be trying to exec at the same
234 	 * time.  exec_new_vmspace() handles that too.
235 	 */
236 
237 	/*
238 	 * Initialize part of the common data
239 	 */
240 	imgp->proc = p;
241 	imgp->args = args;
242 	imgp->lvap = &lva;
243 	imgp->entry_addr = 0;
244 	imgp->resident = 0;
245 	imgp->vmspace_destroyed = 0;
246 	imgp->interpreted = 0;
247 	imgp->interpreter_name[0] = 0;
248 	imgp->auxargs = NULL;
249 	imgp->vp = NULL;
250 	imgp->firstpage = NULL;
251 	imgp->ps_strings = 0;
252 	imgp->execpath = imgp->freepath = NULL;
253 	imgp->execpathp = 0;
254 	imgp->image_header = NULL;
255 
256 interpret:
257 
258 	if (nd) {
259 		/*
260 		 * Translate the file name to a vnode.  Unlock the cache
261 		 * entry to improve parallelism for programs exec'd in
262 		 * parallel.
263 		 */
264 		nch = &nd->nl_nch;
265 		nd->nl_flags |= NLC_SHAREDLOCK;
266 		if ((error = nlookup(nd)) != 0)
267 			goto failed;
268 
269 		error = cache_vget(nch, nd->nl_cred, LK_SHARED, &imgp->vp);
270 		KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
271 		nd->nl_flags &= ~NLC_NCPISLOCKED;
272 		cache_unlock(nch);
273 	} else {
274 		nch = &fp->f_nchandle;
275 		imgp->vp = fp->f_data;
276 		error = vget(imgp->vp, LK_SHARED);
277 	}
278 	if (error) {
279 		imgp->vp = NULL;
280 		goto failed;
281 	}
282 
283 	/*
284 	 * Check file permissions (also 'opens' file).
285 	 * Include also the top level mount in the check.
286 	 */
287 	error = exec_check_permissions(imgp, nch->mount);
288 	if (error) {
289 		vn_unlock(imgp->vp);
290 		goto failed;
291 	}
292 
293 	error = exec_map_first_page(imgp);
294 	vn_unlock(imgp->vp);
295 	if (error)
296 		goto failed;
297 
298 	imgp->proc->p_osrel = 0;
299 
300 	if (debug_execve_args && imgp->interpreted) {
301 		kprintf("    target is interpreted -- recursive pass\n");
302 		kprintf("    interpreter: %s\n", imgp->interpreter_name);
303 		print_execve_args(args);
304 	}
305 
306 	/*
307 	 *	If the current process has a special image activator it
308 	 *	wants to try first, call it.  For example, emulating shell
309 	 *	scripts differently.
310 	 */
311 	error = -1;
312 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
313 		error = img_first(imgp);
314 
315 	/*
316 	 *	If the vnode has a registered vmspace, exec the vmspace
317 	 */
318 	if (error == -1 && imgp->vp->v_resident)
319 		error = exec_resident_imgact(imgp);
320 
321 	/*
322 	 *	Loop through the list of image activators, calling each one.
323 	 *	An activator returns -1 if there is no match, 0 on success,
324 	 *	and an error otherwise.
325 	 */
326 	for (i = 0; error == -1 && execsw[i]; ++i) {
327 		if (execsw[i]->ex_imgact == NULL ||
328 		    execsw[i]->ex_imgact == img_first) {
329 			continue;
330 		}
331 		error = (*execsw[i]->ex_imgact)(imgp);
332 	}
333 
334 	if (error) {
335 		if (error == -1)
336 			error = ENOEXEC;
337 		goto failed;
338 	}
339 
340 	/*
341 	 * Special interpreter operation, cleanup and loop up to try to
342 	 * activate the interpreter.
343 	 */
344 	if (imgp->interpreted) {
345 		exec_unmap_first_page(imgp);
346 		vrele(imgp->vp);
347 		imgp->vp = NULL;
348 
349 		nd = &nd_interpreter;
350 		error = nlookup_init(nd, imgp->interpreter_name,
351 				     UIO_SYSSPACE, NLC_FOLLOW);
352 		if (error)
353 			goto failed;
354 
355 		goto interpret;
356 	}
357 
358 	/*
359 	 * Do the best to calculate the full path to the image file
360 	 */
361 	if (imgp->auxargs != NULL &&
362 	    ((args->fname != NULL && args->fname[0] == '/') ||
363 	     vn_fullpath(imgp->proc, imgp->vp, &imgp->execpath,
364 			 &imgp->freepath, 0) != 0))
365 	{
366 		imgp->execpath = args->fname;
367 	}
368 
369 	/*
370 	 * Copy out strings (args and env) and initialize stack base
371 	 */
372 	stack_base = exec_copyout_strings(imgp);
373 	p->p_vmspace->vm_minsaddr = (char *)stack_base;
374 
375 	/*
376 	 * If custom stack fixup routine present for this process
377 	 * let it do the stack setup.  If we are running a resident
378 	 * image there is no auxinfo or other image activator context
379 	 * so don't try to add fixups to the stack.
380 	 *
381 	 * Else stuff argument count as first item on stack
382 	 */
383 	if (p->p_sysent->sv_fixup && imgp->resident == 0)
384 		(*p->p_sysent->sv_fixup)(&stack_base, imgp);
385 	else
386 		suword64(--stack_base, imgp->args->argc);
387 
388 	/*
389 	 * For security and other reasons, the file descriptor table cannot
390 	 * be shared after an exec.
391 	 */
392 	if (p->p_fd->fd_refcnt > 1) {
393 		if ((error = fdcopy(p, &fds)) != 0)
394 			goto failed;
395 
396 		fdfree(p, fds);
397 	}
398 
399 	/*
400 	 * For security and other reasons, signal handlers cannot
401 	 * be shared after an exec. The new proces gets a copy of the old
402 	 * handlers. In execsigs(), the new process will have its signals
403 	 * reset.
404 	 */
405 	ops = p->p_sigacts;
406 	if (ops->ps_refcnt > 1) {
407 		nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
408 		bcopy(ops, nps, sizeof(*nps));
409 		refcount_init(&nps->ps_refcnt, 1);
410 		p->p_sigacts = nps;
411 		if (refcount_release(&ops->ps_refcnt)) {
412 			kfree(ops, M_SUBPROC);
413 			ops = NULL;
414 		}
415 	}
416 
417 	/*
418 	 * Clean up shared pages, the new program will allocate fresh
419 	 * copies as needed.  This is also for security purposes and
420 	 * to ensure (for example) that things like sys_lpmap->blockallsigs
421 	 * state is properly reset on exec.
422 	 */
423 	lwp_userunmap(lp);
424 	proc_userunmap(p);
425 
426 	/*
427 	 * For security and other reasons virtual kernels cannot be
428 	 * inherited by an exec.  This also allows a virtual kernel
429 	 * to fork/exec unrelated applications.
430 	 */
431 	if (p->p_vkernel)
432 		vkernel_exit(p);
433 
434 	/* Stop profiling */
435 	stopprofclock(p);
436 
437 	/* close files on exec */
438 	fdcloseexec(p);
439 
440 	/* reset caught signals */
441 	execsigs(p);
442 
443 	/* name this process */
444 	if (nch->ncp) {
445 		len = min(nch->ncp->nc_nlen, MAXCOMLEN);
446 		bcopy(nch->ncp->nc_name, p->p_comm, len);
447 	} else {
448 		len = sizeof(proctitle) - 1;
449 		bcopy(proctitle, p->p_comm, len);
450 	}
451 	p->p_comm[len] = 0;
452 	bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
453 
454 	/*
455 	 * mark as execed, wakeup the process that vforked (if any) and tell
456 	 * it that it now has its own resources back
457 	 *
458 	 * We are using the P_PPWAIT as an interlock so an atomic op is
459 	 * necessary to synchronize with the parent's cpu.
460 	 */
461 	p->p_flags |= P_EXEC;
462 	if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
463 		if (p->p_pptr->p_upmap)
464 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
465 		atomic_clear_int(&p->p_flags, P_PPWAIT);
466 		wakeup(p->p_pptr);
467 	}
468 
469 	/*
470 	 * Implement image setuid/setgid.
471 	 *
472 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
473 	 * the process is being traced.
474 	 */
475 	if ((((lva.va_mode & VSUID) && p->p_ucred->cr_uid != lva.va_uid) ||
476 	     ((lva.va_mode & VSGID) && p->p_ucred->cr_gid != lva.va_gid)) &&
477 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
478 	    (p->p_flags & P_TRACED) == 0) {
479 		/*
480 		 * Turn off syscall tracing for set-id programs, except for
481 		 * root.  Record any set-id flags first to make sure that
482 		 * we do not regain any tracing during a possible block.
483 		 */
484 		setsugid();
485 		if (p->p_tracenode && ktrace_suid == 0 &&
486 		    priv_check(td, PRIV_ROOT) != 0) {
487 			ktrdestroy(&p->p_tracenode);
488 			p->p_traceflag = 0;
489 		}
490 
491 		/* Clear any PROC_PDEATHSIG_CTL setting */
492 		p->p_deathsig = 0;
493 
494 		/* Close any file descriptors 0..2 that reference procfs */
495 		setugidsafety(p);
496 		/* Make sure file descriptors 0..2 are in use. */
497 		error = fdcheckstd(lp);
498 		if (error != 0)
499 			goto failed;
500 
501 		/*
502 		 * Set the new credentials.
503 		 */
504 		cratom_proc(p);
505 		if (lva.va_mode & VSUID)
506 			change_euid(lva.va_uid);
507 		if (lva.va_mode & VSGID)
508 			p->p_ucred->cr_gid = lva.va_gid;
509 
510 		/* Clear local varsym variables */
511 		varsymset_clean(&p->p_varsymset);
512 	} else {
513 		if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
514 		    p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
515 			p->p_flags &= ~P_SUGID;
516 	}
517 
518 	/*
519 	 * Implement correct POSIX saved-id behavior.
520 	 */
521 	if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
522 	    p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
523 		cratom_proc(p);
524 		p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
525 		p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
526 	}
527 
528 	/*
529 	 * Store the vp for use in procfs.  Be sure to keep p_textvp
530 	 * consistent if we block during the switch-over.
531 	 */
532 	ovp = p->p_textvp;
533 	vref(imgp->vp);			/* ref new vp */
534 	p->p_textvp = imgp->vp;
535 	if (ovp)			/* release old vp */
536 		vrele(ovp);
537 
538 	/* Release old namecache handle to text file */
539 	if (p->p_textnch.ncp)
540 		cache_drop(&p->p_textnch);
541 	if (nch->mount)
542 		cache_copy(nch, &p->p_textnch);
543 
544         /*
545          * Notify others that we exec'd, and clear the P_INEXEC flag
546          * as we're now a bona fide freshly-execed process.
547          */
548 	KNOTE(&p->p_klist, NOTE_EXEC);
549 	p->p_flags &= ~P_INEXEC;
550 	if (p->p_stops)
551 		wakeup(&p->p_stype);
552 
553 	/*
554 	 * If tracing the process, trap to debugger so breakpoints
555 	 * 	can be set before the program executes.
556 	 */
557 	STOPEVENT(p, S_EXEC, 0);
558 
559 	if (p->p_flags & P_TRACED)
560 		ksignal(p, SIGTRAP);
561 
562 	/* clear "fork but no exec" flag, as we _are_ execing */
563 	p->p_acflag &= ~AFORK;
564 
565 	/* Set values passed into the program in registers. */
566 	exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
567 		     imgp->ps_strings);
568 
569 	/* Set the access time on the vnode */
570 	vn_mark_atime(imgp->vp, td);
571 
572 	/*
573 	 * Free any previous argument cache
574 	 */
575 	pa = p->p_args;
576 	p->p_args = NULL;
577 	if (pa && refcount_release(&pa->ar_ref)) {
578 		kfree(pa, M_PARGS);
579 		pa = NULL;
580 	}
581 
582 	/*
583 	 * Cache arguments if they fit inside our allowance
584 	 */
585 	i = imgp->args->begin_envv - imgp->args->begin_argv;
586 	if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
587 		pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
588 		refcount_init(&pa->ar_ref, 1);
589 		pa->ar_length = i;
590 		bcopy(imgp->args->begin_argv, pa->ar_args, i);
591 		KKASSERT(p->p_args == NULL);
592 		p->p_args = pa;
593 	}
594 
595 failed:
596 
597 	/*
598 	 * free various allocated resources
599 	 */
600 	if (imgp->firstpage)
601 		exec_unmap_first_page(imgp);
602 	if (imgp->vp)
603 		vrele(imgp->vp);
604 	if (imgp->freepath)
605 		kfree(imgp->freepath, M_TEMP);
606 	if (nd == &nd_interpreter)
607 		nlookup_done(nd);
608 
609 	if (error == 0) {
610 		++mycpu->gd_cnt.v_exec;
611 		lwkt_reltoken(&p->p_token);
612 		return (0);
613 	}
614 
615 	/*
616 	 * we're done here, clear P_INEXEC if we were the ones that
617 	 * set it.  Otherwise if vmspace_destroyed is still set we
618 	 * raced another thread and that thread is responsible for
619 	 * clearing it.
620 	 */
621 	if (imgp->vmspace_destroyed & 2) {
622 		p->p_flags &= ~P_INEXEC;
623 		if (p->p_stops)
624 			wakeup(&p->p_stype);
625 	}
626 	lwkt_reltoken(&p->p_token);
627 	if (imgp->vmspace_destroyed) {
628 		/*
629 		 * Sorry, no more process anymore. exit gracefully.
630 		 * However we can't die right here, because our
631 		 * caller might have to clean up, so indicate a
632 		 * lethal error by returning -1.
633 		 */
634 		return (-1);
635 	} else {
636 		return (error);
637 	}
638 }
639 
640 /*
641  * execve() system call.
642  */
643 int
644 sys_execve(struct sysmsg *sysmsg, const struct execve_args *uap)
645 {
646 	struct nlookupdata nd;
647 	struct image_args args;
648 	int error;
649 
650 	bzero(&args, sizeof(args));
651 
652 	error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
653 	if (error == 0) {
654 		error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
655 					 uap->argv, uap->envv);
656 	}
657 	if (error == 0)
658 		error = kern_execve(&nd, NULL, &args);
659 	nlookup_done(&nd);
660 	exec_free_args(&args);
661 
662 	if (error < 0) {
663 		/* We hit a lethal error condition.  Let's die now. */
664 		exit1(W_EXITCODE(0, SIGABRT));
665 		/* NOTREACHED */
666 	}
667 
668 	/*
669 	 * The syscall result is returned in registers to the new program.
670 	 * Linux will register %edx as an atexit function and we must be
671 	 * sure to set it to 0.  XXX
672 	 */
673 	if (error == 0)
674 		sysmsg->sysmsg_result64 = 0;
675 
676 	return (error);
677 }
678 
679 /*
680  * fexecve() system call.
681  */
682 int
683 sys_fexecve(struct sysmsg *sysmsg, const struct fexecve_args *uap)
684 {
685 	struct image_args args;
686 	struct thread *td = curthread;
687 	struct file *fp;
688 	char fname[32]; /* "/dev/fd/xxx" */
689 	int error;
690 
691 	if ((error = holdvnode(td, uap->fd, &fp)) != 0)
692 		return (error);
693 
694 	/*
695 	 * Require a descriptor opened only with O_RDONLY or O_EXEC.
696 	 * XXX: missing O_EXEC support
697 	 */
698 	if ((fp->f_flag & FWRITE) != 0 || (fp->f_flag & FREAD) == 0) {
699 		error = EBADF;
700 		goto done;
701 	}
702 
703 	/*
704 	 * The 'fname' argument is required when executing an
705 	 * interpreted program because the interpreter must know
706 	 * the script path.  Supply it with '/dev/fd/xxx'.
707 	 */
708 	ksnprintf(fname, sizeof(fname), "/dev/fd/%d", uap->fd);
709 	bzero(&args, sizeof(args));
710 	error = exec_copyin_args(&args, fname, PATH_SYSSPACE,
711 				 uap->argv, uap->envv);
712 	if (error == 0)
713 		error = kern_execve(NULL, fp, &args);
714 	exec_free_args(&args);
715 
716 	if (error < 0) {
717 		/* We hit a lethal error condition.  Let's die now. */
718 		exit1(W_EXITCODE(0, SIGABRT));
719 		/* NOTREACHED */
720 	}
721 
722 	/*
723 	 * The syscall result is returned in registers to the new program.
724 	 * Linux will register %edx as an atexit function and we must be
725 	 * sure to set it to 0.  XXX
726 	 */
727 	if (error == 0)
728 		sysmsg->sysmsg_result64 = 0;
729 
730 done:
731 	fdrop(fp);
732 	return (error);
733 }
734 
735 int
736 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
737 	      struct lwbuf **plwb, const char **pdata)
738 {
739 	int rv;
740 	vm_page_t ma;
741 	vm_page_t m;
742 	vm_object_t object;
743 
744 	/*
745 	 * The file has to be mappable.
746 	 */
747 	if ((object = imgp->vp->v_object) == NULL)
748 		return (EIO);
749 
750 	if (pageno >= object->size)
751 		return (EIO);
752 
753 	/*
754 	 * Shortcut using shared locks, improve concurrent execs.
755 	 */
756 	vm_object_hold_shared(object);
757 	m = vm_page_lookup(object, pageno);
758 	if (m) {
759 		if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
760 			vm_page_hold(m);
761 			vm_page_sleep_busy(m, FALSE, "execpg");
762 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
763 			    m->object == object && m->pindex == pageno) {
764 				vm_object_drop(object);
765 				goto done;
766 			}
767 			vm_page_unhold(m);
768 		}
769 	}
770 	vm_object_drop(object);
771 
772 	/*
773 	 * Do it the hard way
774 	 */
775 	vm_object_hold(object);
776 	m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
777 	while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
778 		ma = m;
779 
780 		/*
781 		 * get_pages unbusies all the requested pages except the
782 		 * primary page (at index 0 in this case).  The primary
783 		 * page may have been wired during the pagein (e.g. by
784 		 * the buffer cache) so vnode_pager_freepage() must be
785 		 * used to properly release it.
786 		 */
787 		rv = vm_pager_get_page(object, pageno, &ma, 1);
788 		m = vm_page_lookup(object, pageno);
789 
790 		if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
791 			if (m) {
792 				vm_page_protect(m, VM_PROT_NONE);
793 				vnode_pager_freepage(m);
794 			}
795 			vm_object_drop(object);
796 			return EIO;
797 		}
798 	}
799 	vm_page_hold(m);
800 	vm_page_wakeup(m);	/* unbusy the page */
801 	vm_object_drop(object);
802 
803 done:
804 	*plwb = lwbuf_alloc(m, *plwb);
805 	*pdata = (void *)lwbuf_kva(*plwb);
806 
807 	return (0);
808 }
809 
810 /*
811  * Map the first page of an executable image.
812  *
813  * NOTE: If the mapping fails we have to NULL-out firstpage which may
814  *	 still be pointing to our supplied lwp structure.
815  */
816 int
817 exec_map_first_page(struct image_params *imgp)
818 {
819 	int err;
820 
821 	if (imgp->firstpage)
822 		exec_unmap_first_page(imgp);
823 
824 	imgp->firstpage = &imgp->firstpage_cache;
825 	err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
826 
827 	if (err) {
828 		imgp->firstpage = NULL;
829 		return err;
830 	}
831 
832 	return 0;
833 }
834 
835 void
836 exec_unmap_page(struct lwbuf *lwb)
837 {
838 	vm_page_t m;
839 
840 	crit_enter();
841 	if (lwb != NULL) {
842 		m = lwbuf_page(lwb);
843 		lwbuf_free(lwb);
844 		vm_page_unhold(m);
845 	}
846 	crit_exit();
847 }
848 
849 void
850 exec_unmap_first_page(struct image_params *imgp)
851 {
852 	exec_unmap_page(imgp->firstpage);
853 	imgp->firstpage = NULL;
854 	imgp->image_header = NULL;
855 }
856 
857 /*
858  * Destroy old address space, and allocate a new stack
859  *	The new stack is only SGROWSIZ large because it is grown
860  *	automatically in trap.c.
861  *
862  * This is the point of no return.
863  */
864 int
865 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
866 {
867 	struct vmspace *vmspace = imgp->proc->p_vmspace;
868 	vm_offset_t stack_addr = USRSTACK - maxssiz;
869 	struct lwp *lp;
870 	struct proc *p;
871 	vm_map_t map;
872 	int error;
873 
874 	/*
875 	 * Indicate that we cannot gracefully error out any more, kill
876 	 * any other threads present, and set P_INEXEC to indicate that
877 	 * we are now messing with the process structure proper.
878 	 *
879 	 * If killalllwps() races return an error which coupled with
880 	 * vmspace_destroyed will cause us to exit.  This is what we
881 	 * want since another thread is patiently waiting for us to exit
882 	 * in that case.
883 	 */
884 	lp = curthread->td_lwp;
885 	p = lp->lwp_proc;
886 	imgp->vmspace_destroyed = 1;
887 
888 	if (curthread->td_proc->p_nthreads > 1) {
889 		error = killalllwps(1);
890 		if (error)
891 			return (error);
892 	}
893 	imgp->vmspace_destroyed |= 2;	/* we are responsible for P_INEXEC */
894 	p->p_flags |= P_INEXEC;
895 
896 	/*
897 	 * Tell procfs to release its hold on the process.  It
898 	 * will return EAGAIN.
899 	 */
900 	if (p->p_stops)
901 		wakeup(&p->p_stype);
902 
903 	/*
904 	 * After setting P_INEXEC wait for any remaining references to
905 	 * the process (p) to go away.
906 	 *
907 	 * In particular, a vfork/exec sequence will replace p->p_vmspace
908 	 * and we must interlock anyone trying to access the space (aka
909 	 * procfs or sys_process.c calling procfs_domem()).
910 	 *
911 	 * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
912 	 */
913 	PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
914 
915 	/*
916 	 * Blow away entire process VM, if address space not shared,
917 	 * otherwise, create a new VM space so that other threads are
918 	 * not disrupted.  If we are execing a resident vmspace we
919 	 * create a duplicate of it and remap the stack.
920 	 */
921 	map = &vmspace->vm_map;
922 	if (vmcopy) {
923 		vmspace_exec(imgp->proc, vmcopy);
924 		vmspace = imgp->proc->p_vmspace;
925 		pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
926 		map = &vmspace->vm_map;
927 	} else if (vmspace_getrefs(vmspace) == 1) {
928 		shmexit(vmspace);
929 		pmap_remove_pages(vmspace_pmap(vmspace),
930 				  0, VM_MAX_USER_ADDRESS);
931 		vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
932 	} else {
933 		vmspace_exec(imgp->proc, NULL);
934 		vmspace = imgp->proc->p_vmspace;
935 		map = &vmspace->vm_map;
936 	}
937 
938 	/*
939 	 * Really make sure lwp-specific and process-specific mappings
940 	 * are gone.
941 	 *
942 	 * Once we've done that, and because we are the only LWP left, with
943 	 * no TID-dependent mappings, we can reset the TID to 1 (the RB tree
944 	 * will remain consistent since it has only one entry).  This way
945 	 * the exec'd program gets a nice deterministic tid of 1.
946 	 */
947 	lwp_userunmap(lp);
948 	proc_userunmap(p);
949 	lp->lwp_tid = 1;
950 	p->p_lasttid = 1;
951 
952 	/*
953 	 * Allocate a new stack, generally make the stack non-executable
954 	 * but allow the program to adjust that (the program may desire to
955 	 * use areas of the stack for executable code).
956 	 */
957 	error = vm_map_stack(&vmspace->vm_map, &stack_addr, (vm_size_t)maxssiz,
958 			     0,
959 			     VM_PROT_READ|VM_PROT_WRITE,
960 			     VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
961 			     0);
962 	if (error)
963 		return (error);
964 
965 	/*
966 	 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
967 	 * VM_STACK case, but they are still used to monitor the size of the
968 	 * process stack so we can check the stack rlimit.
969 	 */
970 	vmspace->vm_ssize = sgrowsiz;		/* in bytes */
971 	vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
972 
973 	return(0);
974 }
975 
976 /*
977  * Copy out argument and environment strings from the old process
978  *	address space into the temporary string buffer.
979  */
980 static int
981 exec_copyin_args(struct image_args *args, char *fname,
982 		 enum exec_path_segflg segflg, char **argv, char **envv)
983 {
984 	char	*argp, *envp;
985 	int	error = 0;
986 	size_t	length;
987 
988 	args->buf = objcache_get(exec_objcache, M_WAITOK);
989 	if (args->buf == NULL)
990 		return (ENOMEM);
991 
992 	args->begin_argv = args->buf;
993 	args->endp = args->begin_argv;
994 	args->space = ARG_MAX;
995 
996 	args->fname = args->buf + ARG_MAX;
997 
998 	/*
999 	 * Copy the file name.
1000 	 */
1001 	if (segflg == PATH_SYSSPACE)
1002 		error = copystr(fname, args->fname, PATH_MAX, &length);
1003 	else
1004 		error = copyinstr(fname, args->fname, PATH_MAX, &length);
1005 	if (error)
1006 		return (error);
1007 
1008 	/*
1009 	 * Extract argument strings.  argv may not be NULL.  The argv
1010 	 * array is terminated by a NULL entry.  We special-case the
1011 	 * situation where argv[0] is NULL by passing { filename, NULL }
1012 	 * to the new program to guarentee that the interpreter knows what
1013 	 * file to open in case we exec an interpreted file.   Note that
1014 	 * a NULL argv[0] terminates the argv[] array.
1015 	 *
1016 	 * XXX the special-casing of argv[0] is historical and needs to be
1017 	 * revisited.
1018 	 */
1019 	if (argv == NULL)
1020 		error = EFAULT;
1021 	if (error == 0) {
1022 		while ((argp = (caddr_t)(intptr_t)
1023 			       fuword64((uintptr_t *)argv++)) != NULL) {
1024 			if (argp == (caddr_t)-1) {
1025 				error = EFAULT;
1026 				break;
1027 			}
1028 			error = copyinstr(argp, args->endp,
1029 					  args->space, &length);
1030 			if (error) {
1031 				if (error == ENAMETOOLONG)
1032 					error = E2BIG;
1033 				break;
1034 			}
1035 			args->space -= length;
1036 			args->endp += length;
1037 			args->argc++;
1038 		}
1039 		if (args->argc == 0 && error == 0) {
1040 			length = strlen(args->fname) + 1;
1041 			if (length > args->space) {
1042 				error = E2BIG;
1043 			} else {
1044 				bcopy(args->fname, args->endp, length);
1045 				args->space -= length;
1046 				args->endp += length;
1047 				args->argc++;
1048 			}
1049 		}
1050 	}
1051 
1052 	args->begin_envv = args->endp;
1053 
1054 	/*
1055 	 * extract environment strings.  envv may be NULL.
1056 	 */
1057 	if (envv && error == 0) {
1058 		while ((envp = (caddr_t)(intptr_t)
1059 			       fuword64((uintptr_t *)envv++))) {
1060 			if (envp == (caddr_t) -1) {
1061 				error = EFAULT;
1062 				break;
1063 			}
1064 			error = copyinstr(envp, args->endp,
1065 					  args->space, &length);
1066 			if (error) {
1067 				if (error == ENAMETOOLONG)
1068 					error = E2BIG;
1069 				break;
1070 			}
1071 			args->space -= length;
1072 			args->endp += length;
1073 			args->envc++;
1074 		}
1075 	}
1076 
1077 	return (error);
1078 }
1079 
1080 static void
1081 exec_free_args(struct image_args *args)
1082 {
1083 	if (args->buf) {
1084 		objcache_put(exec_objcache, args->buf);
1085 		args->buf = NULL;
1086 	}
1087 }
1088 
1089 /*
1090  * Copy strings out to the new process address space, constructing
1091  * new arg and env vector tables. Return a pointer to the base
1092  * so that it can be used as the initial stack pointer.
1093  *
1094  * The format is, roughly:
1095  *
1096  *	[argv[]]			<-- vectp
1097  *	[envp[]]
1098  *	[ELF_Auxargs]
1099  *
1100  *	[args & env]			<-- destp
1101  *	[sgap]
1102  *	[SPARE_USRSPACE]
1103  *	[execpath]
1104  *	[szsigcode]   RO|NX
1105  *	[ps_strings]  RO|NX		Top of user stack
1106  *
1107  */
1108 static register_t *
1109 exec_copyout_strings(struct image_params *imgp)
1110 {
1111 	int argc, envc, sgap;
1112 	int gap;
1113 	int argsenvspace;
1114 	char **vectp;
1115 	char *stringp, *destp, *szsigbase;
1116 	register_t *stack_base;
1117 	struct ps_strings *arginfo;
1118 	size_t execpath_len;
1119 	int szsigcode;
1120 
1121 	/*
1122 	 * Calculate string base and vector table pointers.
1123 	 * Also deal with signal trampoline code for this exec type.
1124 	 */
1125 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
1126 		execpath_len = strlen(imgp->execpath) + 1;
1127 	else
1128 		execpath_len = 0;
1129 	arginfo = (struct ps_strings *)PS_STRINGS;
1130 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
1131 
1132 	argsenvspace = roundup((ARG_MAX - imgp->args->space), sizeof(char *));
1133 	gap = stackgap_random;
1134 	cpu_ccfence();
1135 	if (gap != 0) {
1136 		if (gap < 0)
1137 			sgap = ALIGN(-gap);
1138 		else
1139 			sgap = ALIGN(karc4random() & (gap - 1));
1140 	} else {
1141 		sgap = 0;
1142 	}
1143 
1144 	/*
1145 	 * Calculate destp, which points to [args & env] and above.
1146 	 */
1147 	szsigbase = (char *)(intptr_t)
1148 		    trunc_page64((intptr_t)arginfo - szsigcode);
1149 	szsigbase -= SZSIGCODE_EXTRA_BYTES;
1150 	destp = szsigbase -
1151 		roundup(execpath_len, sizeof(char *)) -
1152 		SPARE_USRSPACE -
1153 		sgap -
1154 		argsenvspace;
1155 
1156 	/*
1157 	 * install sigcode
1158 	 */
1159 	if (szsigcode)
1160 		copyout(imgp->proc->p_sysent->sv_sigcode, szsigbase, szsigcode);
1161 
1162 	/*
1163 	 * Copy the image path for the rtld
1164 	 */
1165 	if (execpath_len) {
1166 		imgp->execpathp = (uintptr_t)szsigbase -
1167 				  roundup(execpath_len, sizeof(char *));
1168 		copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
1169 	}
1170 
1171 	/*
1172 	 * Calculate base for argv[], envp[], and ELF_Auxargs.
1173 	 */
1174 	vectp = (char **)destp - (AT_COUNT * 2);
1175 	vectp -= imgp->args->argc + imgp->args->envc + 2;
1176 
1177 	stack_base = (register_t *)vectp;
1178 
1179 	stringp = imgp->args->begin_argv;
1180 	argc = imgp->args->argc;
1181 	envc = imgp->args->envc;
1182 
1183 	/*
1184 	 * Copy out strings - arguments and environment (at destp)
1185 	 */
1186 	copyout(stringp, destp, ARG_MAX - imgp->args->space);
1187 
1188 	/*
1189 	 * Fill in "ps_strings" struct for ps, w, etc.
1190 	 */
1191 	suword64((void *)&arginfo->ps_argvstr, (uint64_t)(intptr_t)vectp);
1192 	suword32((void *)&arginfo->ps_nargvstr, argc);
1193 
1194 	/*
1195 	 * Fill in argument portion of vector table.
1196 	 */
1197 	for (; argc > 0; --argc) {
1198 		suword64((void *)vectp++, (uintptr_t)destp);
1199 		while (*stringp++ != 0)
1200 			destp++;
1201 		destp++;
1202 	}
1203 
1204 	/* a null vector table pointer separates the argp's from the envp's */
1205 	suword64((void *)vectp++, 0);
1206 
1207 	suword64((void *)&arginfo->ps_envstr, (uintptr_t)vectp);
1208 	suword32((void *)&arginfo->ps_nenvstr, envc);
1209 
1210 	/*
1211 	 * Fill in environment portion of vector table.
1212 	 */
1213 	for (; envc > 0; --envc) {
1214 		suword64((void *)vectp++, (uintptr_t)destp);
1215 		while (*stringp++ != 0)
1216 			destp++;
1217 		destp++;
1218 	}
1219 
1220 	/* end of vector table is a null pointer */
1221 	suword64((void *)vectp, 0);
1222 
1223 	/*
1224 	 * Make the signal trampoline executable and read-only.
1225 	 */
1226 	vm_map_protect(&imgp->proc->p_vmspace->vm_map,
1227 		       (vm_offset_t)szsigbase,
1228 		       (vm_offset_t)szsigbase + PAGE_SIZE,
1229 		       VM_PROT_READ|VM_PROT_EXECUTE, FALSE);
1230 
1231 	return (stack_base);
1232 }
1233 
1234 /*
1235  * Check permissions of file to execute.
1236  *	Return 0 for success or error code on failure.
1237  */
1238 int
1239 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1240 {
1241 	struct proc *p = imgp->proc;
1242 	struct vnode *vp = imgp->vp;
1243 	struct vattr_lite *lvap = imgp->lvap;
1244 	int error;
1245 
1246 	/* Get file attributes */
1247 	error = VOP_GETATTR_LITE(vp, lvap);
1248 	if (error)
1249 		return (error);
1250 
1251 	/*
1252 	 * 1) Check if file execution is disabled for the filesystem that this
1253 	 *	file resides on.
1254 	 * 2) Insure that at least one execute bit is on - otherwise root
1255 	 *	will always succeed, and we don't want to happen unless the
1256 	 *	file really is executable.
1257 	 * 3) Insure that the file is a regular file.
1258 	 */
1259 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1260 	    ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1261 	    ((lvap->va_mode & 0111) == 0) ||
1262 	    (lvap->va_type != VREG)) {
1263 		return (EACCES);
1264 	}
1265 
1266 	/*
1267 	 * Zero length files can't be exec'd
1268 	 */
1269 	if (lvap->va_size == 0)
1270 		return (ENOEXEC);
1271 
1272 	/*
1273 	 *  Check for execute permission to file based on current credentials.
1274 	 */
1275 	error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1276 	if (error)
1277 		return (error);
1278 
1279 	/*
1280 	 * Check number of open-for-writes on the file and deny execution
1281 	 * if there are any.
1282 	 */
1283 	if (vp->v_writecount)
1284 		return (ETXTBSY);
1285 
1286 	/*
1287 	 * Call filesystem specific open routine, which allows us to read,
1288 	 * write, and mmap the file.  Without the VOP_OPEN we can only
1289 	 * stat the file.
1290 	 */
1291 	error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1292 	if (error)
1293 		return (error);
1294 
1295 	return (0);
1296 }
1297 
1298 /*
1299  * Exec handler registration
1300  */
1301 int
1302 exec_register(const struct execsw *execsw_arg)
1303 {
1304 	const struct execsw **es, **xs, **newexecsw;
1305 	int count = 2;	/* New slot and trailing NULL */
1306 
1307 	if (execsw)
1308 		for (es = execsw; *es; es++)
1309 			count++;
1310 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1311 	xs = newexecsw;
1312 	if (execsw)
1313 		for (es = execsw; *es; es++)
1314 			*xs++ = *es;
1315 	*xs++ = execsw_arg;
1316 	*xs = NULL;
1317 	if (execsw)
1318 		kfree(execsw, M_TEMP);
1319 	execsw = newexecsw;
1320 	return 0;
1321 }
1322 
1323 int
1324 exec_unregister(const struct execsw *execsw_arg)
1325 {
1326 	const struct execsw **es, **xs, **newexecsw;
1327 	int count = 1;
1328 
1329 	if (execsw == NULL)
1330 		panic("unregister with no handlers left?");
1331 
1332 	for (es = execsw; *es; es++) {
1333 		if (*es == execsw_arg)
1334 			break;
1335 	}
1336 	if (*es == NULL)
1337 		return ENOENT;
1338 	for (es = execsw; *es; es++)
1339 		if (*es != execsw_arg)
1340 			count++;
1341 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1342 	xs = newexecsw;
1343 	for (es = execsw; *es; es++)
1344 		if (*es != execsw_arg)
1345 			*xs++ = *es;
1346 	*xs = NULL;
1347 	if (execsw)
1348 		kfree(execsw, M_TEMP);
1349 	execsw = newexecsw;
1350 	return 0;
1351 }
1352