xref: /dragonfly/sys/kern/kern_exec.c (revision 62dc643e)
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysproto.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
69 
70 #include <sys/user.h>
71 #include <sys/reg.h>
72 
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <vm/vm_page2.h>
76 
77 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
78 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
79 
80 static register_t *exec_copyout_strings (struct image_params *);
81 
82 /* XXX This should be vm_size_t. */
83 static u_long ps_strings = PS_STRINGS;
84 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
85 
86 /* XXX This should be vm_size_t. */
87 static u_long usrstack = USRSTACK;
88 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
89 
90 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
91 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
92     &ps_arg_cache_limit, 0, "");
93 
94 int ps_argsopen = 1;
95 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
96 
97 static int ktrace_suid = 0;
98 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
99 
100 void print_execve_args(struct image_args *args);
101 int debug_execve_args = 0;
102 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
103     0, "");
104 
105 /*
106  * Exec arguments object cache
107  */
108 static struct objcache *exec_objcache;
109 
110 static
111 void
112 exec_objcache_init(void *arg __unused)
113 {
114 	int cluster_limit;
115 	size_t limsize;
116 
117 	/*
118 	 * Maximum number of concurrent execs.  This can be limiting on
119 	 * systems with a lot of cpu cores but it also eats a significant
120 	 * amount of memory.
121 	 */
122 	cluster_limit = (ncpus < 16) ? 16 : ncpus;
123 	limsize = kmem_lim_size();
124 	if (limsize > 7 * 1024)
125 		cluster_limit *= 2;
126 	if (limsize > 15 * 1024)
127 		cluster_limit *= 2;
128 
129 	exec_objcache = objcache_create_mbacked(
130 					M_EXECARGS, PATH_MAX + ARG_MAX,
131 					cluster_limit, 8,
132 					NULL, NULL, NULL);
133 }
134 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
135 
136 /*
137  * stackgap_random specifies if the stackgap should have a random size added
138  * to it.  It must be a power of 2.  If non-zero, the stack gap will be
139  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
140  */
141 static int stackgap_random = 1024;
142 static int
143 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
144 {
145 	int error, new_val;
146 	new_val = stackgap_random;
147 	error = sysctl_handle_int(oidp, &new_val, 0, req);
148 	if (error != 0 || req->newptr == NULL)
149 		return (error);
150 	if (new_val > 0 && ((new_val > 16 * PAGE_SIZE) || !powerof2(new_val)))
151 		return (EINVAL);
152 	stackgap_random = new_val;
153 
154 	return(0);
155 }
156 
157 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_INT,
158 	0, 0, sysctl_kern_stackgap, "I",
159 	"Max random stack gap (power of 2), static gap if negative");
160 
161 void
162 print_execve_args(struct image_args *args)
163 {
164 	char *cp;
165 	int ndx;
166 
167 	cp = args->begin_argv;
168 	for (ndx = 0; ndx < args->argc; ndx++) {
169 		kprintf("\targv[%d]: %s\n", ndx, cp);
170 		while (*cp++ != '\0');
171 	}
172 	for (ndx = 0; ndx < args->envc; ndx++) {
173 		kprintf("\tenvv[%d]: %s\n", ndx, cp);
174 		while (*cp++ != '\0');
175 	}
176 }
177 
178 /*
179  * Each of the items is a pointer to a `const struct execsw', hence the
180  * double pointer here.
181  */
182 static const struct execsw **execsw;
183 
184 /*
185  * Replace current vmspace with a new binary.
186  * Returns 0 on success, > 0 on recoverable error (use as errno).
187  * Returns -1 on lethal error which demands killing of the current
188  * process!
189  */
190 int
191 kern_execve(struct nlookupdata *nd, struct image_args *args)
192 {
193 	struct thread *td = curthread;
194 	struct lwp *lp = td->td_lwp;
195 	struct proc *p = td->td_proc;
196 	struct vnode *ovp;
197 	register_t *stack_base;
198 	struct pargs *pa;
199 	struct sigacts *ops;
200 	struct sigacts *nps;
201 	int error, len, i;
202 	struct image_params image_params, *imgp;
203 	struct vattr attr;
204 	int (*img_first) (struct image_params *);
205 
206 	if (debug_execve_args) {
207 		kprintf("%s()\n", __func__);
208 		print_execve_args(args);
209 	}
210 
211 	KKASSERT(p);
212 	lwkt_gettoken(&p->p_token);
213 	imgp = &image_params;
214 
215 	/*
216 	 * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
217 	 * no modifications to the process at all until we get there.
218 	 *
219 	 * Note that multiple threads may be trying to exec at the same
220 	 * time.  exec_new_vmspace() handles that too.
221 	 */
222 
223 	/*
224 	 * Initialize part of the common data
225 	 */
226 	imgp->proc = p;
227 	imgp->args = args;
228 	imgp->attr = &attr;
229 	imgp->entry_addr = 0;
230 	imgp->resident = 0;
231 	imgp->vmspace_destroyed = 0;
232 	imgp->interpreted = 0;
233 	imgp->interpreter_name[0] = 0;
234 	imgp->auxargs = NULL;
235 	imgp->vp = NULL;
236 	imgp->firstpage = NULL;
237 	imgp->ps_strings = 0;
238 	imgp->execpath = imgp->freepath = NULL;
239 	imgp->execpathp = 0;
240 	imgp->image_header = NULL;
241 
242 interpret:
243 
244 	/*
245 	 * Translate the file name to a vnode.  Unlock the cache entry to
246 	 * improve parallelism for programs exec'd in parallel.
247 	 */
248 	nd->nl_flags |= NLC_SHAREDLOCK;
249 	if ((error = nlookup(nd)) != 0)
250 		goto exec_fail;
251 	error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_SHARED, &imgp->vp);
252 	KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
253 	nd->nl_flags &= ~NLC_NCPISLOCKED;
254 	cache_unlock(&nd->nl_nch);
255 	if (error)
256 		goto exec_fail;
257 
258 	/*
259 	 * Check file permissions (also 'opens' file).
260 	 * Include also the top level mount in the check.
261 	 */
262 	error = exec_check_permissions(imgp, nd->nl_nch.mount);
263 	if (error) {
264 		vn_unlock(imgp->vp);
265 		goto exec_fail_dealloc;
266 	}
267 
268 	error = exec_map_first_page(imgp);
269 	vn_unlock(imgp->vp);
270 	if (error)
271 		goto exec_fail_dealloc;
272 
273 	imgp->proc->p_osrel = 0;
274 
275 	if (debug_execve_args && imgp->interpreted) {
276 		kprintf("    target is interpreted -- recursive pass\n");
277 		kprintf("    interpreter: %s\n", imgp->interpreter_name);
278 		print_execve_args(args);
279 	}
280 
281 	/*
282 	 *	If the current process has a special image activator it
283 	 *	wants to try first, call it.   For example, emulating shell
284 	 *	scripts differently.
285 	 */
286 	error = -1;
287 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
288 		error = img_first(imgp);
289 
290 	/*
291 	 *	If the vnode has a registered vmspace, exec the vmspace
292 	 */
293 	if (error == -1 && imgp->vp->v_resident) {
294 		error = exec_resident_imgact(imgp);
295 	}
296 
297 	/*
298 	 *	Loop through the list of image activators, calling each one.
299 	 *	An activator returns -1 if there is no match, 0 on success,
300 	 *	and an error otherwise.
301 	 */
302 	for (i = 0; error == -1 && execsw[i]; ++i) {
303 		if (execsw[i]->ex_imgact == NULL ||
304 		    execsw[i]->ex_imgact == img_first) {
305 			continue;
306 		}
307 		error = (*execsw[i]->ex_imgact)(imgp);
308 	}
309 
310 	if (error) {
311 		if (error == -1)
312 			error = ENOEXEC;
313 		goto exec_fail_dealloc;
314 	}
315 
316 	/*
317 	 * Special interpreter operation, cleanup and loop up to try to
318 	 * activate the interpreter.
319 	 */
320 	if (imgp->interpreted) {
321 		exec_unmap_first_page(imgp);
322 		nlookup_done(nd);
323 		vrele(imgp->vp);
324 		imgp->vp = NULL;
325 		error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
326 					NLC_FOLLOW);
327 		if (error)
328 			goto exec_fail;
329 		goto interpret;
330 	}
331 
332 	/*
333 	 * Do the best to calculate the full path to the image file
334 	 */
335 	if (imgp->auxargs != NULL &&
336 	   ((args->fname != NULL && args->fname[0] == '/') ||
337 	    vn_fullpath(imgp->proc,
338 			imgp->vp,
339 			&imgp->execpath,
340 			&imgp->freepath,
341 			0) != 0))
342 		imgp->execpath = args->fname;
343 
344 	/*
345 	 * Copy out strings (args and env) and initialize stack base
346 	 */
347 	stack_base = exec_copyout_strings(imgp);
348 	p->p_vmspace->vm_minsaddr = (char *)stack_base;
349 
350 	/*
351 	 * If custom stack fixup routine present for this process
352 	 * let it do the stack setup.  If we are running a resident
353 	 * image there is no auxinfo or other image activator context
354 	 * so don't try to add fixups to the stack.
355 	 *
356 	 * Else stuff argument count as first item on stack
357 	 */
358 	if (p->p_sysent->sv_fixup && imgp->resident == 0)
359 		(*p->p_sysent->sv_fixup)(&stack_base, imgp);
360 	else
361 		suword64(--stack_base, imgp->args->argc);
362 
363 	/*
364 	 * For security and other reasons, the file descriptor table cannot
365 	 * be shared after an exec.
366 	 */
367 	if (p->p_fd->fd_refcnt > 1) {
368 		struct filedesc *tmp;
369 
370 		error = fdcopy(p, &tmp);
371 		if (error != 0)
372 			goto exec_fail;
373 		fdfree(p, tmp);
374 	}
375 
376 	/*
377 	 * For security and other reasons, signal handlers cannot
378 	 * be shared after an exec. The new proces gets a copy of the old
379 	 * handlers. In execsigs(), the new process will have its signals
380 	 * reset.
381 	 */
382 	ops = p->p_sigacts;
383 	if (ops->ps_refcnt > 1) {
384 		nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
385 		bcopy(ops, nps, sizeof(*nps));
386 		refcount_init(&nps->ps_refcnt, 1);
387 		p->p_sigacts = nps;
388 		if (refcount_release(&ops->ps_refcnt)) {
389 			kfree(ops, M_SUBPROC);
390 			ops = NULL;
391 		}
392 	}
393 
394 	/*
395 	 * For security and other reasons virtual kernels cannot be
396 	 * inherited by an exec.  This also allows a virtual kernel
397 	 * to fork/exec unrelated applications.
398 	 */
399 	if (p->p_vkernel)
400 		vkernel_exit(p);
401 
402 	/* Stop profiling */
403 	stopprofclock(p);
404 
405 	/* close files on exec */
406 	fdcloseexec(p);
407 
408 	/* reset caught signals */
409 	execsigs(p);
410 
411 	/* name this process - nameiexec(p, ndp) */
412 	len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
413 	bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
414 	p->p_comm[len] = 0;
415 	bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
416 
417 	/*
418 	 * mark as execed, wakeup the process that vforked (if any) and tell
419 	 * it that it now has its own resources back
420 	 *
421 	 * We are using the P_PPWAIT as an interlock so an atomic op is
422 	 * necessary to synchronize with the parent's cpu.
423 	 */
424 	p->p_flags |= P_EXEC;
425 	if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
426 		if (p->p_pptr->p_upmap)
427 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
428 		atomic_clear_int(&p->p_flags, P_PPWAIT);
429 		wakeup(p->p_pptr);
430 	}
431 
432 	/*
433 	 * Implement image setuid/setgid.
434 	 *
435 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
436 	 * the process is being traced.
437 	 */
438 	if ((((attr.va_mode & VSUID) && p->p_ucred->cr_uid != attr.va_uid) ||
439 	     ((attr.va_mode & VSGID) && p->p_ucred->cr_gid != attr.va_gid)) &&
440 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
441 	    (p->p_flags & P_TRACED) == 0) {
442 		/*
443 		 * Turn off syscall tracing for set-id programs, except for
444 		 * root.  Record any set-id flags first to make sure that
445 		 * we do not regain any tracing during a possible block.
446 		 */
447 		setsugid();
448 		if (p->p_tracenode && ktrace_suid == 0 &&
449 		    priv_check(td, PRIV_ROOT) != 0) {
450 			ktrdestroy(&p->p_tracenode);
451 			p->p_traceflag = 0;
452 		}
453 		/* Close any file descriptors 0..2 that reference procfs */
454 		setugidsafety(p);
455 		/* Make sure file descriptors 0..2 are in use. */
456 		error = fdcheckstd(lp);
457 		if (error != 0)
458 			goto exec_fail_dealloc;
459 		/*
460 		 * Set the new credentials.
461 		 */
462 		cratom_proc(p);
463 		if (attr.va_mode & VSUID)
464 			change_euid(attr.va_uid);
465 		if (attr.va_mode & VSGID)
466 			p->p_ucred->cr_gid = attr.va_gid;
467 
468 		/*
469 		 * Clear local varsym variables
470 		 */
471 		varsymset_clean(&p->p_varsymset);
472 	} else {
473 		if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
474 		    p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
475 			p->p_flags &= ~P_SUGID;
476 	}
477 
478 	/*
479 	 * Implement correct POSIX saved-id behavior.
480 	 */
481 	if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
482 	    p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
483 		cratom_proc(p);
484 		p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
485 		p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
486 	}
487 
488 	/*
489 	 * Store the vp for use in procfs.  Be sure to keep p_textvp
490 	 * consistent if we block during the switch-over.
491 	 */
492 	ovp = p->p_textvp;
493 	vref(imgp->vp);			/* ref new vp */
494 	p->p_textvp = imgp->vp;
495 	if (ovp)			/* release old vp */
496 		vrele(ovp);
497 
498 	/* Release old namecache handle to text file */
499 	if (p->p_textnch.ncp)
500 		cache_drop(&p->p_textnch);
501 
502 	if (nd->nl_nch.mount)
503 		cache_copy(&nd->nl_nch, &p->p_textnch);
504 
505         /*
506          * Notify others that we exec'd, and clear the P_INEXEC flag
507          * as we're now a bona fide freshly-execed process.
508          */
509 	KNOTE(&p->p_klist, NOTE_EXEC);
510 	p->p_flags &= ~P_INEXEC;
511 	if (p->p_stops)
512 		wakeup(&p->p_stype);
513 
514 	/*
515 	 * If tracing the process, trap to debugger so breakpoints
516 	 * 	can be set before the program executes.
517 	 */
518 	STOPEVENT(p, S_EXEC, 0);
519 
520 	if (p->p_flags & P_TRACED)
521 		ksignal(p, SIGTRAP);
522 
523 	/* clear "fork but no exec" flag, as we _are_ execing */
524 	p->p_acflag &= ~AFORK;
525 
526 	/* Set values passed into the program in registers. */
527 	exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
528 		     imgp->ps_strings);
529 
530 	/* Set the access time on the vnode */
531 	vn_mark_atime(imgp->vp, td);
532 
533 	/*
534 	 * Free any previous argument cache
535 	 */
536 	pa = p->p_args;
537 	p->p_args = NULL;
538 	if (pa && refcount_release(&pa->ar_ref)) {
539 		kfree(pa, M_PARGS);
540 		pa = NULL;
541 	}
542 
543 	/*
544 	 * Cache arguments if they fit inside our allowance
545 	 */
546 	i = imgp->args->begin_envv - imgp->args->begin_argv;
547 	if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
548 		pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
549 		refcount_init(&pa->ar_ref, 1);
550 		pa->ar_length = i;
551 		bcopy(imgp->args->begin_argv, pa->ar_args, i);
552 		KKASSERT(p->p_args == NULL);
553 		p->p_args = pa;
554 	}
555 
556 exec_fail_dealloc:
557 
558 	/*
559 	 * free various allocated resources
560 	 */
561 	if (imgp->firstpage)
562 		exec_unmap_first_page(imgp);
563 
564 	if (imgp->vp) {
565 		vrele(imgp->vp);
566 		imgp->vp = NULL;
567 	}
568 
569 	if (imgp->freepath)
570 		kfree(imgp->freepath, M_TEMP);
571 
572 	if (error == 0) {
573 		++mycpu->gd_cnt.v_exec;
574 		lwkt_reltoken(&p->p_token);
575 		return (0);
576 	}
577 
578 exec_fail:
579 	/*
580 	 * we're done here, clear P_INEXEC if we were the ones that
581 	 * set it.  Otherwise if vmspace_destroyed is still set we
582 	 * raced another thread and that thread is responsible for
583 	 * clearing it.
584 	 */
585 	if (imgp->vmspace_destroyed & 2) {
586 		p->p_flags &= ~P_INEXEC;
587 		if (p->p_stops)
588 			wakeup(&p->p_stype);
589 	}
590 	lwkt_reltoken(&p->p_token);
591 	if (imgp->vmspace_destroyed) {
592 		/*
593 		 * Sorry, no more process anymore. exit gracefully.
594 		 * However we can't die right here, because our
595 		 * caller might have to clean up, so indicate a
596 		 * lethal error by returning -1.
597 		 */
598 		return(-1);
599 	} else {
600 		return(error);
601 	}
602 }
603 
604 /*
605  * execve() system call.
606  */
607 int
608 sys_execve(struct execve_args *uap)
609 {
610 	struct nlookupdata nd;
611 	struct image_args args;
612 	int error;
613 
614 	bzero(&args, sizeof(args));
615 
616 	error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
617 	if (error == 0) {
618 		error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
619 					uap->argv, uap->envv);
620 	}
621 	if (error == 0)
622 		error = kern_execve(&nd, &args);
623 	nlookup_done(&nd);
624 	exec_free_args(&args);
625 
626 	if (error < 0) {
627 		/* We hit a lethal error condition.  Let's die now. */
628 		exit1(W_EXITCODE(0, SIGABRT));
629 		/* NOTREACHED */
630 	}
631 
632 	/*
633 	 * The syscall result is returned in registers to the new program.
634 	 * Linux will register %edx as an atexit function and we must be
635 	 * sure to set it to 0.  XXX
636 	 */
637 	if (error == 0)
638 		uap->sysmsg_result64 = 0;
639 
640 	return (error);
641 }
642 
643 int
644 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
645 	      struct lwbuf **plwb, const char **pdata)
646 {
647 	int rv;
648 	vm_page_t ma;
649 	vm_page_t m;
650 	vm_object_t object;
651 
652 	/*
653 	 * The file has to be mappable.
654 	 */
655 	if ((object = imgp->vp->v_object) == NULL)
656 		return (EIO);
657 
658 	if (pageno >= object->size)
659 		return (EIO);
660 
661 	/*
662 	 * Shortcut using shared locks, improve concurrent execs.
663 	 */
664 	vm_object_hold_shared(object);
665 	m = vm_page_lookup(object, pageno);
666 	if (m) {
667 		if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
668 			vm_page_hold(m);
669 			vm_page_sleep_busy(m, FALSE, "execpg");
670 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
671 			    m->object == object && m->pindex == pageno) {
672 				vm_object_drop(object);
673 				goto done;
674 			}
675 			vm_page_unhold(m);
676 		}
677 	}
678 	vm_object_drop(object);
679 
680 	/*
681 	 * Do it the hard way
682 	 */
683 	vm_object_hold(object);
684 	m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
685 	while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
686 		ma = m;
687 
688 		/*
689 		 * get_pages unbusies all the requested pages except the
690 		 * primary page (at index 0 in this case).  The primary
691 		 * page may have been wired during the pagein (e.g. by
692 		 * the buffer cache) so vnode_pager_freepage() must be
693 		 * used to properly release it.
694 		 */
695 		rv = vm_pager_get_page(object, &ma, 1);
696 		m = vm_page_lookup(object, pageno);
697 
698 		if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
699 			if (m) {
700 				vm_page_protect(m, VM_PROT_NONE);
701 				vnode_pager_freepage(m);
702 			}
703 			vm_object_drop(object);
704 			return EIO;
705 		}
706 	}
707 	vm_page_hold(m);
708 	vm_page_wakeup(m);	/* unbusy the page */
709 	vm_object_drop(object);
710 
711 done:
712 	*plwb = lwbuf_alloc(m, *plwb);
713 	*pdata = (void *)lwbuf_kva(*plwb);
714 
715 	return (0);
716 }
717 
718 /*
719  * Map the first page of an executable image.
720  *
721  * NOTE: If the mapping fails we have to NULL-out firstpage which may
722  *	 still be pointing to our supplied lwp structure.
723  */
724 int
725 exec_map_first_page(struct image_params *imgp)
726 {
727 	int err;
728 
729 	if (imgp->firstpage)
730 		exec_unmap_first_page(imgp);
731 
732 	imgp->firstpage = &imgp->firstpage_cache;
733 	err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
734 
735 	if (err) {
736 		imgp->firstpage = NULL;
737 		return err;
738 	}
739 
740 	return 0;
741 }
742 
743 void
744 exec_unmap_page(struct lwbuf *lwb)
745 {
746 	vm_page_t m;
747 
748 	crit_enter();
749 	if (lwb != NULL) {
750 		m = lwbuf_page(lwb);
751 		lwbuf_free(lwb);
752 		vm_page_unhold(m);
753 	}
754 	crit_exit();
755 }
756 
757 void
758 exec_unmap_first_page(struct image_params *imgp)
759 {
760 	exec_unmap_page(imgp->firstpage);
761 	imgp->firstpage = NULL;
762 	imgp->image_header = NULL;
763 }
764 
765 /*
766  * Destroy old address space, and allocate a new stack
767  *	The new stack is only SGROWSIZ large because it is grown
768  *	automatically in trap.c.
769  *
770  * This is the point of no return.
771  */
772 int
773 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
774 {
775 	struct vmspace *vmspace = imgp->proc->p_vmspace;
776 	vm_offset_t stack_addr = USRSTACK - maxssiz;
777 	struct proc *p;
778 	vm_map_t map;
779 	int error;
780 
781 	/*
782 	 * Indicate that we cannot gracefully error out any more, kill
783 	 * any other threads present, and set P_INEXEC to indicate that
784 	 * we are now messing with the process structure proper.
785 	 *
786 	 * If killalllwps() races return an error which coupled with
787 	 * vmspace_destroyed will cause us to exit.  This is what we
788 	 * want since another thread is patiently waiting for us to exit
789 	 * in that case.
790 	 */
791 	p = curproc;
792 	imgp->vmspace_destroyed = 1;
793 
794 	if (curthread->td_proc->p_nthreads > 1) {
795 		error = killalllwps(1);
796 		if (error)
797 			return (error);
798 	}
799 	imgp->vmspace_destroyed |= 2;	/* we are responsible for P_INEXEC */
800 	p->p_flags |= P_INEXEC;
801 
802 	/*
803 	 * Tell procfs to release its hold on the process.  It
804 	 * will return EAGAIN.
805 	 */
806 	if (p->p_stops)
807 		wakeup(&p->p_stype);
808 
809 	/*
810 	 * After setting P_INEXEC wait for any remaining references to
811 	 * the process (p) to go away.
812 	 *
813 	 * In particular, a vfork/exec sequence will replace p->p_vmspace
814 	 * and we must interlock anyone trying to access the space (aka
815 	 * procfs or sys_process.c calling procfs_domem()).
816 	 *
817 	 * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
818 	 */
819 	PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
820 
821 	/*
822 	 * Blow away entire process VM, if address space not shared,
823 	 * otherwise, create a new VM space so that other threads are
824 	 * not disrupted.  If we are execing a resident vmspace we
825 	 * create a duplicate of it and remap the stack.
826 	 */
827 	map = &vmspace->vm_map;
828 	if (vmcopy) {
829 		vmspace_exec(imgp->proc, vmcopy);
830 		vmspace = imgp->proc->p_vmspace;
831 		pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
832 		map = &vmspace->vm_map;
833 	} else if (vmspace_getrefs(vmspace) == 1) {
834 		shmexit(vmspace);
835 		pmap_remove_pages(vmspace_pmap(vmspace),
836 				  0, VM_MAX_USER_ADDRESS);
837 		vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
838 	} else {
839 		vmspace_exec(imgp->proc, NULL);
840 		vmspace = imgp->proc->p_vmspace;
841 		map = &vmspace->vm_map;
842 	}
843 
844 	/*
845 	 * Allocate a new stack, generally make the stack non-executable
846 	 * but allow the program to adjust that (the program may desire to
847 	 * use areas of the stack for executable code).
848 	 */
849 	error = vm_map_stack(&vmspace->vm_map, stack_addr, (vm_size_t)maxssiz,
850 			     0,
851 			     VM_PROT_READ|VM_PROT_WRITE,
852 			     VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
853 			     0);
854 	if (error)
855 		return (error);
856 
857 	/* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
858 	 * VM_STACK case, but they are still used to monitor the size of the
859 	 * process stack so we can check the stack rlimit.
860 	 */
861 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
862 	vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
863 
864 	return(0);
865 }
866 
867 /*
868  * Copy out argument and environment strings from the old process
869  *	address space into the temporary string buffer.
870  */
871 int
872 exec_copyin_args(struct image_args *args, char *fname,
873 		enum exec_path_segflg segflg, char **argv, char **envv)
874 {
875 	char	*argp, *envp;
876 	int	error = 0;
877 	size_t	length;
878 
879 	args->buf = objcache_get(exec_objcache, M_WAITOK);
880 	if (args->buf == NULL)
881 		return (ENOMEM);
882 	args->begin_argv = args->buf;
883 	args->endp = args->begin_argv;
884 	args->space = ARG_MAX;
885 
886 	args->fname = args->buf + ARG_MAX;
887 
888 	/*
889 	 * Copy the file name.
890 	 */
891 	if (segflg == PATH_SYSSPACE) {
892 		error = copystr(fname, args->fname, PATH_MAX, &length);
893 	} else if (segflg == PATH_USERSPACE) {
894 		error = copyinstr(fname, args->fname, PATH_MAX, &length);
895 	}
896 
897 	/*
898 	 * Extract argument strings.  argv may not be NULL.  The argv
899 	 * array is terminated by a NULL entry.  We special-case the
900 	 * situation where argv[0] is NULL by passing { filename, NULL }
901 	 * to the new program to guarentee that the interpreter knows what
902 	 * file to open in case we exec an interpreted file.   Note that
903 	 * a NULL argv[0] terminates the argv[] array.
904 	 *
905 	 * XXX the special-casing of argv[0] is historical and needs to be
906 	 * revisited.
907 	 */
908 	if (argv == NULL)
909 		error = EFAULT;
910 	if (error == 0) {
911 		while ((argp = (caddr_t)(intptr_t)
912 			       fuword64((uintptr_t *)argv++)) != NULL) {
913 			if (argp == (caddr_t)-1) {
914 				error = EFAULT;
915 				break;
916 			}
917 			error = copyinstr(argp, args->endp,
918 					  args->space, &length);
919 			if (error) {
920 				if (error == ENAMETOOLONG)
921 					error = E2BIG;
922 				break;
923 			}
924 			args->space -= length;
925 			args->endp += length;
926 			args->argc++;
927 		}
928 		if (args->argc == 0 && error == 0) {
929 			length = strlen(args->fname) + 1;
930 			if (length > args->space) {
931 				error = E2BIG;
932 			} else {
933 				bcopy(args->fname, args->endp, length);
934 				args->space -= length;
935 				args->endp += length;
936 				args->argc++;
937 			}
938 		}
939 	}
940 
941 	args->begin_envv = args->endp;
942 
943 	/*
944 	 * extract environment strings.  envv may be NULL.
945 	 */
946 	if (envv && error == 0) {
947 		while ((envp = (caddr_t)(intptr_t)
948 			       fuword64((uintptr_t *)envv++))) {
949 			if (envp == (caddr_t) -1) {
950 				error = EFAULT;
951 				break;
952 			}
953 			error = copyinstr(envp, args->endp,
954 					  args->space, &length);
955 			if (error) {
956 				if (error == ENAMETOOLONG)
957 					error = E2BIG;
958 				break;
959 			}
960 			args->space -= length;
961 			args->endp += length;
962 			args->envc++;
963 		}
964 	}
965 	return (error);
966 }
967 
968 void
969 exec_free_args(struct image_args *args)
970 {
971 	if (args->buf) {
972 		objcache_put(exec_objcache, args->buf);
973 		args->buf = NULL;
974 	}
975 }
976 
977 /*
978  * Copy strings out to the new process address space, constructing
979  * new arg and env vector tables. Return a pointer to the base
980  * so that it can be used as the initial stack pointer.
981  *
982  * The format is, roughly:
983  *
984  *	[argv[]]			<-- vectp
985  *	[envp[]]
986  *	[ELF_Auxargs]
987  *
988  *	[args & env]			<-- destp
989  *	[sgap]
990  *	[SPARE_USRSPACE]
991  *	[execpath]
992  *	[szsigcode]   RO|NX
993  *	[ps_strings]  RO|NX		Top of user stack
994  *
995  */
996 static register_t *
997 exec_copyout_strings(struct image_params *imgp)
998 {
999 	int argc, envc, sgap;
1000 	int gap;
1001 	int argsenvspace;
1002 	char **vectp;
1003 	char *stringp, *destp, *szsigbase;
1004 	register_t *stack_base;
1005 	struct ps_strings *arginfo;
1006 	size_t execpath_len;
1007 	int szsigcode;
1008 
1009 	/*
1010 	 * Calculate string base and vector table pointers.
1011 	 * Also deal with signal trampoline code for this exec type.
1012 	 */
1013 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
1014 		execpath_len = strlen(imgp->execpath) + 1;
1015 	else
1016 		execpath_len = 0;
1017 	arginfo = (struct ps_strings *)PS_STRINGS;
1018 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
1019 
1020 	argsenvspace = roundup((ARG_MAX - imgp->args->space), sizeof(char *));
1021 	gap = stackgap_random;
1022 	cpu_ccfence();
1023 	if (gap != 0) {
1024 		if (gap < 0)
1025 			sgap = ALIGN(-gap);
1026 		else
1027 			sgap = ALIGN(karc4random() & (gap - 1));
1028 	} else {
1029 		sgap = 0;
1030 	}
1031 
1032 	/*
1033 	 * Calculate destp, which points to [args & env] and above.
1034 	 */
1035 	szsigbase = (char *)(intptr_t)trunc_page64(
1036 					(intptr_t)arginfo - szsigcode);
1037 	destp = szsigbase -
1038 		roundup(execpath_len, sizeof(char *)) -
1039 		SPARE_USRSPACE -
1040 		sgap -
1041 		argsenvspace;
1042 
1043 	/*
1044 	 * install sigcode
1045 	 */
1046 	if (szsigcode)
1047 		copyout(imgp->proc->p_sysent->sv_sigcode, szsigbase, szsigcode);
1048 
1049 	/*
1050 	 * Copy the image path for the rtld
1051 	 */
1052 	if (execpath_len) {
1053 		imgp->execpathp = (uintptr_t)szsigbase -
1054 				  roundup(execpath_len, sizeof(char *));
1055 		copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
1056 	}
1057 
1058 	/*
1059 	 * Calculate base for argv[], envp[], and ELF_Auxargs.
1060 	 */
1061 	vectp = (char **)destp - (AT_COUNT * 2);
1062 	vectp -= imgp->args->argc + imgp->args->envc + 2;
1063 
1064 	stack_base = (register_t *)vectp;
1065 
1066 	stringp = imgp->args->begin_argv;
1067 	argc = imgp->args->argc;
1068 	envc = imgp->args->envc;
1069 
1070 	/*
1071 	 * Copy out strings - arguments and environment (at destp)
1072 	 */
1073 	copyout(stringp, destp, ARG_MAX - imgp->args->space);
1074 
1075 	/*
1076 	 * Fill in "ps_strings" struct for ps, w, etc.
1077 	 */
1078 	suword64((void *)&arginfo->ps_argvstr, (uint64_t)(intptr_t)vectp);
1079 	suword32((void *)&arginfo->ps_nargvstr, argc);
1080 
1081 	/*
1082 	 * Fill in argument portion of vector table.
1083 	 */
1084 	for (; argc > 0; --argc) {
1085 		suword64((void *)vectp++, (uintptr_t)destp);
1086 		while (*stringp++ != 0)
1087 			destp++;
1088 		destp++;
1089 	}
1090 
1091 	/* a null vector table pointer separates the argp's from the envp's */
1092 	suword64((void *)vectp++, 0);
1093 
1094 	suword64((void *)&arginfo->ps_envstr, (uintptr_t)vectp);
1095 	suword32((void *)&arginfo->ps_nenvstr, envc);
1096 
1097 	/*
1098 	 * Fill in environment portion of vector table.
1099 	 */
1100 	for (; envc > 0; --envc) {
1101 		suword64((void *)vectp++, (uintptr_t)destp);
1102 		while (*stringp++ != 0)
1103 			destp++;
1104 		destp++;
1105 	}
1106 
1107 	/* end of vector table is a null pointer */
1108 	suword64((void *)vectp, 0);
1109 
1110 	/*
1111 	 * Make the signal trampoline executable.  This also makes ps_strings
1112 	 * executable but generally speaking there should be no direct access
1113 	 * to ps_strings after the program has gotten to _main().
1114 	 *
1115 	 * At the moment the space is writable because ps_strings needs to be
1116 	 * writable.  XXX future give sigtramp its own page (maybe put it in
1117 	 * the kpmap).
1118 	 */
1119 	vm_map_protect(&imgp->proc->p_vmspace->vm_map,
1120 		       (vm_offset_t)szsigbase,
1121 		       (vm_offset_t)szsigbase + PAGE_SIZE,
1122 		       VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, FALSE);
1123 
1124 	return (stack_base);
1125 }
1126 
1127 /*
1128  * Check permissions of file to execute.
1129  *	Return 0 for success or error code on failure.
1130  */
1131 int
1132 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1133 {
1134 	struct proc *p = imgp->proc;
1135 	struct vnode *vp = imgp->vp;
1136 	struct vattr *attr = imgp->attr;
1137 	int error;
1138 
1139 	/* Get file attributes */
1140 	error = VOP_GETATTR(vp, attr);
1141 	if (error)
1142 		return (error);
1143 
1144 	/*
1145 	 * 1) Check if file execution is disabled for the filesystem that this
1146 	 *	file resides on.
1147 	 * 2) Insure that at least one execute bit is on - otherwise root
1148 	 *	will always succeed, and we don't want to happen unless the
1149 	 *	file really is executable.
1150 	 * 3) Insure that the file is a regular file.
1151 	 */
1152 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1153 	    ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1154 	    ((attr->va_mode & 0111) == 0) ||
1155 	    (attr->va_type != VREG)) {
1156 		return (EACCES);
1157 	}
1158 
1159 	/*
1160 	 * Zero length files can't be exec'd
1161 	 */
1162 	if (attr->va_size == 0)
1163 		return (ENOEXEC);
1164 
1165 	/*
1166 	 *  Check for execute permission to file based on current credentials.
1167 	 */
1168 	error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1169 	if (error)
1170 		return (error);
1171 
1172 	/*
1173 	 * Check number of open-for-writes on the file and deny execution
1174 	 * if there are any.
1175 	 */
1176 	if (vp->v_writecount)
1177 		return (ETXTBSY);
1178 
1179 	/*
1180 	 * Call filesystem specific open routine, which allows us to read,
1181 	 * write, and mmap the file.  Without the VOP_OPEN we can only
1182 	 * stat the file.
1183 	 */
1184 	error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1185 	if (error)
1186 		return (error);
1187 
1188 	return (0);
1189 }
1190 
1191 /*
1192  * Exec handler registration
1193  */
1194 int
1195 exec_register(const struct execsw *execsw_arg)
1196 {
1197 	const struct execsw **es, **xs, **newexecsw;
1198 	int count = 2;	/* New slot and trailing NULL */
1199 
1200 	if (execsw)
1201 		for (es = execsw; *es; es++)
1202 			count++;
1203 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1204 	xs = newexecsw;
1205 	if (execsw)
1206 		for (es = execsw; *es; es++)
1207 			*xs++ = *es;
1208 	*xs++ = execsw_arg;
1209 	*xs = NULL;
1210 	if (execsw)
1211 		kfree(execsw, M_TEMP);
1212 	execsw = newexecsw;
1213 	return 0;
1214 }
1215 
1216 int
1217 exec_unregister(const struct execsw *execsw_arg)
1218 {
1219 	const struct execsw **es, **xs, **newexecsw;
1220 	int count = 1;
1221 
1222 	if (execsw == NULL)
1223 		panic("unregister with no handlers left?");
1224 
1225 	for (es = execsw; *es; es++) {
1226 		if (*es == execsw_arg)
1227 			break;
1228 	}
1229 	if (*es == NULL)
1230 		return ENOENT;
1231 	for (es = execsw; *es; es++)
1232 		if (*es != execsw_arg)
1233 			count++;
1234 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1235 	xs = newexecsw;
1236 	for (es = execsw; *es; es++)
1237 		if (*es != execsw_arg)
1238 			*xs++ = *es;
1239 	*xs = NULL;
1240 	if (execsw)
1241 		kfree(execsw, M_TEMP);
1242 	execsw = newexecsw;
1243 	return 0;
1244 }
1245