xref: /dragonfly/sys/kern/kern_exec.c (revision 631c21f2)
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmsg.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
69 
70 #include <sys/reg.h>
71 
72 #include <sys/objcache.h>
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <vm/vm_page2.h>
76 
77 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
78 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
79 
80 enum exec_path_segflg {
81 	PATH_SYSSPACE,
82 	PATH_USERSPACE,
83 };
84 
85 static register_t *exec_copyout_strings(struct image_params *);
86 static int	exec_copyin_args(struct image_args *, char *,
87 				 enum exec_path_segflg, char **, char **);
88 static void	exec_free_args(struct image_args *);
89 static void	print_execve_args(struct image_args *args);
90 
91 /* XXX This should be vm_size_t. */
92 __read_mostly static u_long ps_strings = PS_STRINGS;
93 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
94 
95 /* XXX This should be vm_size_t. */
96 __read_mostly static u_long usrstack = USRSTACK;
97 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
98 
99 __read_mostly u_long ps_arg_cache_limit = PAGE_SIZE / 16;
100 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
101     &ps_arg_cache_limit, 0, "");
102 
103 __read_mostly int ps_argsopen = 1;
104 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
105 
106 __read_mostly static int ktrace_suid = 0;
107 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
108 
109 __read_mostly static int debug_execve_args = 0;
110 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
111     0, "");
112 
113 /*
114  * Exec arguments object cache
115  */
116 __read_mostly static struct objcache *exec_objcache;
117 
118 static
119 void
120 exec_objcache_init(void *arg __unused)
121 {
122 	int cluster_limit;
123 	size_t limsize;
124 
125 	/*
126 	 * Maximum number of concurrent execs.  This can be limiting on
127 	 * systems with a lot of cpu cores but it also eats a significant
128 	 * amount of memory.
129 	 */
130 	cluster_limit = (ncpus < 16) ? 16 : ncpus;
131 	limsize = kmem_lim_size();
132 	if (limsize > 7 * 1024)
133 		cluster_limit *= 2;
134 	if (limsize > 15 * 1024)
135 		cluster_limit *= 2;
136 
137 	exec_objcache = objcache_create_mbacked(
138 					M_EXECARGS, PATH_MAX + ARG_MAX,
139 					cluster_limit, 8,
140 					NULL, NULL, NULL);
141 }
142 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
143 
144 /*
145  * stackgap_random specifies if the stackgap should have a random size added
146  * to it.  It must be a power of 2.  If non-zero, the stack gap will be
147  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
148  */
149 __read_mostly static int stackgap_random = 1024;
150 
151 static int
152 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
153 {
154 	int error, new_val;
155 	new_val = stackgap_random;
156 	error = sysctl_handle_int(oidp, &new_val, 0, req);
157 	if (error != 0 || req->newptr == NULL)
158 		return (error);
159 	if (new_val > 0 && ((new_val > 16 * PAGE_SIZE) || !powerof2(new_val)))
160 		return (EINVAL);
161 	stackgap_random = new_val;
162 
163 	return(0);
164 }
165 
166 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_INT,
167 	0, 0, sysctl_kern_stackgap, "I",
168 	"Max random stack gap (power of 2), static gap if negative");
169 
170 static void
171 print_execve_args(struct image_args *args)
172 {
173 	char *cp;
174 	int ndx;
175 
176 	cp = args->begin_argv;
177 	for (ndx = 0; ndx < args->argc; ndx++) {
178 		kprintf("\targv[%d]: %s\n", ndx, cp);
179 		while (*cp++ != '\0');
180 	}
181 	for (ndx = 0; ndx < args->envc; ndx++) {
182 		kprintf("\tenvv[%d]: %s\n", ndx, cp);
183 		while (*cp++ != '\0');
184 	}
185 }
186 
187 /*
188  * Each of the items is a pointer to a `const struct execsw', hence the
189  * double pointer here.
190  */
191 __read_mostly static const struct execsw **execsw;
192 
193 /*
194  * Replace current vmspace with a new binary.
195  * Returns 0 on success, > 0 on recoverable error (use as errno).
196  * Returns -1 on lethal error which demands killing of the current
197  * process!
198  */
199 int
200 kern_execve(struct nlookupdata *nd, struct file *fp, char fileflags,
201 	    struct image_args *args)
202 {
203 	static const char *proctitle = "(execve)";
204 	register_t *stack_base;
205 	struct thread *td = curthread;
206 	struct lwp *lp = td->td_lwp;
207 	struct proc *p = td->td_proc;
208 	struct vnode *ovp;
209 	struct pargs *pa;
210 	struct sigacts *ops;
211 	struct sigacts *nps;
212 	struct image_params image_params, *imgp;
213 	struct filedesc *fds;
214 	struct nchandle *nch;
215 	struct nlookupdata nd_interpreter;
216 	struct vattr_lite lva;
217 	int error, len, i;
218 	int (*img_first) (struct image_params *);
219 
220 	if (debug_execve_args) {
221 		kprintf("%s()\n", __func__);
222 		print_execve_args(args);
223 	}
224 
225 	KKASSERT(p);
226 	lwkt_gettoken(&p->p_token);
227 	imgp = &image_params;
228 
229 	/*
230 	 * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
231 	 * no modifications to the process at all until we get there.
232 	 *
233 	 * Note that multiple threads may be trying to exec at the same
234 	 * time.  exec_new_vmspace() handles that too.
235 	 */
236 
237 	/*
238 	 * Initialize part of the common data
239 	 */
240 	imgp->proc = p;
241 	imgp->args = args;
242 	imgp->lvap = &lva;
243 	imgp->entry_addr = 0;
244 	imgp->resident = 0;
245 	imgp->vmspace_destroyed = 0;
246 	imgp->interpreted = 0;
247 	imgp->interpreter_name[0] = 0;
248 	imgp->auxargs = NULL;
249 	imgp->vp = NULL;
250 	imgp->firstpage = NULL;
251 	imgp->ps_strings = 0;
252 	imgp->execpath = imgp->freepath = NULL;
253 	imgp->execpathp = 0;
254 	imgp->image_header = NULL;
255 
256 interpret:
257 
258 	if (nd) {
259 		/*
260 		 * Translate the file name to a vnode.  Unlock the cache
261 		 * entry to improve parallelism for programs exec'd in
262 		 * parallel.
263 		 */
264 		nch = &nd->nl_nch;
265 		nd->nl_flags |= NLC_SHAREDLOCK;
266 		if ((error = nlookup(nd)) != 0)
267 			goto failed;
268 
269 		error = cache_vget(nch, nd->nl_cred, LK_SHARED, &imgp->vp);
270 		KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
271 		nd->nl_flags &= ~NLC_NCPISLOCKED;
272 		cache_unlock(nch);
273 	} else {
274 		nch = &fp->f_nchandle;
275 		imgp->vp = fp->f_data;
276 		error = vget(imgp->vp, LK_SHARED);
277 	}
278 	if (error) {
279 		imgp->vp = NULL;
280 		goto failed;
281 	}
282 
283 	/*
284 	 * Check file permissions (also 'opens' file).
285 	 * Include also the top level mount in the check.
286 	 */
287 	error = exec_check_permissions(imgp, nch->mount);
288 	if (error) {
289 		vn_unlock(imgp->vp);
290 		goto failed;
291 	}
292 
293 	error = exec_map_first_page(imgp);
294 	vn_unlock(imgp->vp);
295 	if (error)
296 		goto failed;
297 
298 	imgp->proc->p_osrel = 0;
299 
300 	if (debug_execve_args && imgp->interpreted) {
301 		kprintf("    target is interpreted -- recursive pass\n");
302 		kprintf("    interpreter: %s\n", imgp->interpreter_name);
303 		print_execve_args(args);
304 	}
305 
306 	/*
307 	 *	If the current process has a special image activator it
308 	 *	wants to try first, call it.  For example, emulating shell
309 	 *	scripts differently.
310 	 */
311 	error = -1;
312 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
313 		error = img_first(imgp);
314 
315 	/*
316 	 *	If the vnode has a registered vmspace, exec the vmspace
317 	 */
318 	if (error == -1 && imgp->vp->v_resident)
319 		error = exec_resident_imgact(imgp);
320 
321 	/*
322 	 *	Loop through the list of image activators, calling each one.
323 	 *	An activator returns -1 if there is no match, 0 on success,
324 	 *	and an error otherwise.
325 	 */
326 	for (i = 0; error == -1 && execsw[i]; ++i) {
327 		if (execsw[i]->ex_imgact == NULL ||
328 		    execsw[i]->ex_imgact == img_first) {
329 			continue;
330 		}
331 		error = (*execsw[i]->ex_imgact)(imgp);
332 	}
333 
334 	if (error) {
335 		if (error == -1)
336 			error = ENOEXEC;
337 		goto failed;
338 	}
339 
340 	/*
341 	 * Special interpreter operation, cleanup and loop up to try to
342 	 * activate the interpreter.
343 	 */
344 	if (imgp->interpreted) {
345 		exec_unmap_first_page(imgp);
346 		vrele(imgp->vp);
347 		imgp->vp = NULL;
348 
349 		nd = &nd_interpreter;
350 		error = nlookup_init(nd, imgp->interpreter_name,
351 				     UIO_SYSSPACE, NLC_FOLLOW);
352 		if (error)
353 			goto failed;
354 
355 		if (fp && (fileflags & UF_EXCLOSE)) {
356 			/*
357 			 * Fexecve'ing an interpreted file opened with
358 			 * O_CLOEXEC flag, return ENOENT.
359 			 */
360 			error = ENOENT;
361 			goto failed;
362 		}
363 
364 		goto interpret;
365 	}
366 
367 	/*
368 	 * Do the best to calculate the full path to the image file
369 	 */
370 	if (imgp->auxargs != NULL &&
371 	    ((args->fname != NULL && args->fname[0] == '/') ||
372 	     vn_fullpath(imgp->proc, imgp->vp, &imgp->execpath,
373 			 &imgp->freepath, 0) != 0))
374 	{
375 		imgp->execpath = args->fname;
376 	}
377 
378 	/*
379 	 * Copy out strings (args and env) and initialize stack base
380 	 */
381 	stack_base = exec_copyout_strings(imgp);
382 	p->p_vmspace->vm_minsaddr = (char *)stack_base;
383 
384 	/*
385 	 * If custom stack fixup routine present for this process
386 	 * let it do the stack setup.  If we are running a resident
387 	 * image there is no auxinfo or other image activator context
388 	 * so don't try to add fixups to the stack.
389 	 *
390 	 * Else stuff argument count as first item on stack
391 	 */
392 	if (p->p_sysent->sv_fixup && imgp->resident == 0)
393 		(*p->p_sysent->sv_fixup)(&stack_base, imgp);
394 	else
395 		suword64(--stack_base, imgp->args->argc);
396 
397 	/*
398 	 * For security and other reasons, the file descriptor table cannot
399 	 * be shared after an exec.
400 	 */
401 	if (p->p_fd->fd_refcnt > 1) {
402 		if ((error = fdcopy(p, &fds)) != 0)
403 			goto failed;
404 
405 		fdfree(p, fds);
406 	}
407 
408 	/*
409 	 * For security and other reasons, signal handlers cannot
410 	 * be shared after an exec. The new proces gets a copy of the old
411 	 * handlers. In execsigs(), the new process will have its signals
412 	 * reset.
413 	 */
414 	ops = p->p_sigacts;
415 	if (ops->ps_refcnt > 1) {
416 		nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
417 		bcopy(ops, nps, sizeof(*nps));
418 		refcount_init(&nps->ps_refcnt, 1);
419 		p->p_sigacts = nps;
420 		if (refcount_release(&ops->ps_refcnt)) {
421 			kfree(ops, M_SUBPROC);
422 			ops = NULL;
423 		}
424 	}
425 
426 	/*
427 	 * Clean up shared pages, the new program will allocate fresh
428 	 * copies as needed.  This is also for security purposes and
429 	 * to ensure (for example) that things like sys_lpmap->blockallsigs
430 	 * state is properly reset on exec.
431 	 */
432 	lwp_userunmap(lp);
433 	proc_userunmap(p);
434 
435 	/*
436 	 * For security and other reasons virtual kernels cannot be
437 	 * inherited by an exec.  This also allows a virtual kernel
438 	 * to fork/exec unrelated applications.
439 	 */
440 	if (p->p_vkernel)
441 		vkernel_exit(p);
442 
443 	/* Stop profiling */
444 	stopprofclock(p);
445 
446 	/* close files on exec */
447 	fdcloseexec(p);
448 
449 	/* reset caught signals */
450 	execsigs(p);
451 
452 	/* name this process */
453 	if (nch->ncp) {
454 		len = min(nch->ncp->nc_nlen, MAXCOMLEN);
455 		bcopy(nch->ncp->nc_name, p->p_comm, len);
456 	} else {
457 		len = sizeof(proctitle) - 1;
458 		bcopy(proctitle, p->p_comm, len);
459 	}
460 	p->p_comm[len] = 0;
461 	bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
462 
463 	/*
464 	 * mark as execed, wakeup the process that vforked (if any) and tell
465 	 * it that it now has its own resources back
466 	 *
467 	 * We are using the P_PPWAIT as an interlock so an atomic op is
468 	 * necessary to synchronize with the parent's cpu.
469 	 */
470 	p->p_flags |= P_EXEC;
471 	if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
472 		if (p->p_pptr->p_upmap)
473 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
474 		atomic_clear_int(&p->p_flags, P_PPWAIT);
475 		wakeup(p->p_pptr);
476 	}
477 
478 	/*
479 	 * Implement image setuid/setgid.
480 	 *
481 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
482 	 * the process is being traced.
483 	 */
484 	if ((((lva.va_mode & VSUID) && p->p_ucred->cr_uid != lva.va_uid) ||
485 	     ((lva.va_mode & VSGID) && p->p_ucred->cr_gid != lva.va_gid)) &&
486 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
487 	    (p->p_flags & P_TRACED) == 0) {
488 		/*
489 		 * Turn off syscall tracing for set-id programs, except for
490 		 * root.  Record any set-id flags first to make sure that
491 		 * we do not regain any tracing during a possible block.
492 		 */
493 		setsugid();
494 		if (p->p_tracenode && ktrace_suid == 0 &&
495 		    priv_check(td, PRIV_ROOT) != 0) {
496 			ktrdestroy(&p->p_tracenode);
497 			p->p_traceflag = 0;
498 		}
499 
500 		/* Clear any PROC_PDEATHSIG_CTL setting */
501 		p->p_deathsig = 0;
502 
503 		/* Close any file descriptors 0..2 that reference procfs */
504 		setugidsafety(p);
505 		/* Make sure file descriptors 0..2 are in use. */
506 		error = fdcheckstd(lp);
507 		if (error != 0)
508 			goto failed;
509 
510 		/*
511 		 * Set the new credentials.
512 		 */
513 		cratom_proc(p);
514 		if (lva.va_mode & VSUID)
515 			change_euid(lva.va_uid);
516 		if (lva.va_mode & VSGID)
517 			p->p_ucred->cr_gid = lva.va_gid;
518 
519 		/* Clear local varsym variables */
520 		varsymset_clean(&p->p_varsymset);
521 	} else {
522 		if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
523 		    p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
524 			p->p_flags &= ~P_SUGID;
525 	}
526 
527 	/*
528 	 * Implement correct POSIX saved-id behavior.
529 	 */
530 	if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
531 	    p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
532 		cratom_proc(p);
533 		p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
534 		p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
535 	}
536 
537 	/*
538 	 * Store the vp for use in procfs.  Be sure to keep p_textvp
539 	 * consistent if we block during the switch-over.
540 	 */
541 	ovp = p->p_textvp;
542 	vref(imgp->vp);			/* ref new vp */
543 	p->p_textvp = imgp->vp;
544 	if (ovp)			/* release old vp */
545 		vrele(ovp);
546 
547 	/* Release old namecache handle to text file */
548 	if (p->p_textnch.ncp)
549 		cache_drop(&p->p_textnch);
550 	if (nch->mount)
551 		cache_copy(nch, &p->p_textnch);
552 
553         /*
554          * Notify others that we exec'd, and clear the P_INEXEC flag
555          * as we're now a bona fide freshly-execed process.
556          */
557 	KNOTE(&p->p_klist, NOTE_EXEC);
558 	p->p_flags &= ~P_INEXEC;
559 	if (p->p_stops)
560 		wakeup(&p->p_stype);
561 
562 	/*
563 	 * If tracing the process, trap to debugger so breakpoints
564 	 * 	can be set before the program executes.
565 	 */
566 	STOPEVENT(p, S_EXEC, 0);
567 
568 	if (p->p_flags & P_TRACED)
569 		ksignal(p, SIGTRAP);
570 
571 	/* clear "fork but no exec" flag, as we _are_ execing */
572 	p->p_acflag &= ~AFORK;
573 
574 	/* Set values passed into the program in registers. */
575 	exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
576 		     imgp->ps_strings);
577 
578 	/* Set the access time on the vnode */
579 	vn_mark_atime(imgp->vp, td);
580 
581 	/*
582 	 * Free any previous argument cache
583 	 */
584 	pa = p->p_args;
585 	p->p_args = NULL;
586 	if (pa && refcount_release(&pa->ar_ref)) {
587 		kfree(pa, M_PARGS);
588 		pa = NULL;
589 	}
590 
591 	/*
592 	 * Cache arguments if they fit inside our allowance
593 	 */
594 	i = imgp->args->begin_envv - imgp->args->begin_argv;
595 	if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
596 		pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
597 		refcount_init(&pa->ar_ref, 1);
598 		pa->ar_length = i;
599 		bcopy(imgp->args->begin_argv, pa->ar_args, i);
600 		KKASSERT(p->p_args == NULL);
601 		p->p_args = pa;
602 	}
603 
604 failed:
605 
606 	/*
607 	 * free various allocated resources
608 	 */
609 	if (imgp->firstpage)
610 		exec_unmap_first_page(imgp);
611 	if (imgp->vp)
612 		vrele(imgp->vp);
613 	if (imgp->freepath)
614 		kfree(imgp->freepath, M_TEMP);
615 	if (nd == &nd_interpreter)
616 		nlookup_done(nd);
617 
618 	if (error == 0) {
619 		++mycpu->gd_cnt.v_exec;
620 		lwkt_reltoken(&p->p_token);
621 		return (0);
622 	}
623 
624 	/*
625 	 * we're done here, clear P_INEXEC if we were the ones that
626 	 * set it.  Otherwise if vmspace_destroyed is still set we
627 	 * raced another thread and that thread is responsible for
628 	 * clearing it.
629 	 */
630 	if (imgp->vmspace_destroyed & 2) {
631 		p->p_flags &= ~P_INEXEC;
632 		if (p->p_stops)
633 			wakeup(&p->p_stype);
634 	}
635 	lwkt_reltoken(&p->p_token);
636 	if (imgp->vmspace_destroyed) {
637 		/*
638 		 * Sorry, no more process anymore. exit gracefully.
639 		 * However we can't die right here, because our
640 		 * caller might have to clean up, so indicate a
641 		 * lethal error by returning -1.
642 		 */
643 		return (-1);
644 	} else {
645 		return (error);
646 	}
647 }
648 
649 /*
650  * execve() system call.
651  */
652 int
653 sys_execve(struct sysmsg *sysmsg, const struct execve_args *uap)
654 {
655 	struct nlookupdata nd;
656 	struct image_args args;
657 	int error;
658 
659 	bzero(&args, sizeof(args));
660 
661 	error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
662 	if (error == 0) {
663 		error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
664 					 uap->argv, uap->envv);
665 	}
666 	if (error == 0)
667 		error = kern_execve(&nd, NULL, 0, &args);
668 	nlookup_done(&nd);
669 	exec_free_args(&args);
670 
671 	if (error < 0) {
672 		/* We hit a lethal error condition.  Let's die now. */
673 		exit1(W_EXITCODE(0, SIGABRT));
674 		/* NOTREACHED */
675 	}
676 
677 	/*
678 	 * The syscall result is returned in registers to the new program.
679 	 * Linux will register %edx as an atexit function and we must be
680 	 * sure to set it to 0.  XXX
681 	 */
682 	if (error == 0)
683 		sysmsg->sysmsg_result64 = 0;
684 
685 	return (error);
686 }
687 
688 /*
689  * fexecve() system call.
690  */
691 int
692 sys_fexecve(struct sysmsg *sysmsg, const struct fexecve_args *uap)
693 {
694 	struct image_args args;
695 	struct thread *td = curthread;
696 	struct file *fp;
697 	char fileflags;
698 	char fname[32]; /* "/dev/fd/xxx" */
699 	int error;
700 
701 	if ((error = holdvnode2(td, uap->fd, &fp, &fileflags)) != 0)
702 		return (error);
703 
704 	/*
705 	 * Require a descriptor opened only with O_RDONLY or O_EXEC.
706 	 * XXX: missing O_EXEC support
707 	 */
708 	if ((fp->f_flag & FWRITE) != 0 || (fp->f_flag & FREAD) == 0) {
709 		error = EBADF;
710 		goto done;
711 	}
712 
713 	/*
714 	 * The 'fname' argument is required when executing an
715 	 * interpreted program because the interpreter must know
716 	 * the script path.  Supply it with '/dev/fd/xxx'.
717 	 */
718 	ksnprintf(fname, sizeof(fname), "/dev/fd/%d", uap->fd);
719 	bzero(&args, sizeof(args));
720 	error = exec_copyin_args(&args, fname, PATH_SYSSPACE,
721 				 uap->argv, uap->envv);
722 	if (error == 0)
723 		error = kern_execve(NULL, fp, fileflags, &args);
724 	exec_free_args(&args);
725 
726 	if (error < 0) {
727 		/* We hit a lethal error condition.  Let's die now. */
728 		exit1(W_EXITCODE(0, SIGABRT));
729 		/* NOTREACHED */
730 	}
731 
732 	/*
733 	 * The syscall result is returned in registers to the new program.
734 	 * Linux will register %edx as an atexit function and we must be
735 	 * sure to set it to 0.  XXX
736 	 */
737 	if (error == 0)
738 		sysmsg->sysmsg_result64 = 0;
739 
740 done:
741 	fdrop(fp);
742 	return (error);
743 }
744 
745 int
746 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
747 	      struct lwbuf **plwb, const char **pdata)
748 {
749 	int rv;
750 	vm_page_t ma;
751 	vm_page_t m;
752 	vm_object_t object;
753 
754 	/*
755 	 * The file has to be mappable.
756 	 */
757 	if ((object = imgp->vp->v_object) == NULL)
758 		return (EIO);
759 
760 	if (pageno >= object->size)
761 		return (EIO);
762 
763 	/*
764 	 * Shortcut using shared locks, improve concurrent execs.
765 	 */
766 	vm_object_hold_shared(object);
767 	m = vm_page_lookup(object, pageno);
768 	if (m) {
769 		if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
770 			vm_page_hold(m);
771 			vm_page_sleep_busy(m, FALSE, "execpg");
772 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
773 			    m->object == object && m->pindex == pageno) {
774 				vm_object_drop(object);
775 				goto done;
776 			}
777 			vm_page_unhold(m);
778 		}
779 	}
780 	vm_object_drop(object);
781 
782 	/*
783 	 * Do it the hard way
784 	 */
785 	vm_object_hold(object);
786 	m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
787 	while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
788 		ma = m;
789 
790 		/*
791 		 * get_pages unbusies all the requested pages except the
792 		 * primary page (at index 0 in this case).  The primary
793 		 * page may have been wired during the pagein (e.g. by
794 		 * the buffer cache) so vnode_pager_freepage() must be
795 		 * used to properly release it.
796 		 */
797 		rv = vm_pager_get_page(object, pageno, &ma, 1);
798 		m = vm_page_lookup(object, pageno);
799 
800 		if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
801 			if (m) {
802 				vm_page_protect(m, VM_PROT_NONE);
803 				vnode_pager_freepage(m);
804 			}
805 			vm_object_drop(object);
806 			return EIO;
807 		}
808 	}
809 	vm_page_hold(m);
810 	vm_page_wakeup(m);	/* unbusy the page */
811 	vm_object_drop(object);
812 
813 done:
814 	*plwb = lwbuf_alloc(m, *plwb);
815 	*pdata = (void *)lwbuf_kva(*plwb);
816 
817 	return (0);
818 }
819 
820 /*
821  * Map the first page of an executable image.
822  *
823  * NOTE: If the mapping fails we have to NULL-out firstpage which may
824  *	 still be pointing to our supplied lwp structure.
825  */
826 int
827 exec_map_first_page(struct image_params *imgp)
828 {
829 	int err;
830 
831 	if (imgp->firstpage)
832 		exec_unmap_first_page(imgp);
833 
834 	imgp->firstpage = &imgp->firstpage_cache;
835 	err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
836 
837 	if (err) {
838 		imgp->firstpage = NULL;
839 		return err;
840 	}
841 
842 	return 0;
843 }
844 
845 void
846 exec_unmap_page(struct lwbuf *lwb)
847 {
848 	vm_page_t m;
849 
850 	crit_enter();
851 	if (lwb != NULL) {
852 		m = lwbuf_page(lwb);
853 		lwbuf_free(lwb);
854 		vm_page_unhold(m);
855 	}
856 	crit_exit();
857 }
858 
859 void
860 exec_unmap_first_page(struct image_params *imgp)
861 {
862 	exec_unmap_page(imgp->firstpage);
863 	imgp->firstpage = NULL;
864 	imgp->image_header = NULL;
865 }
866 
867 /*
868  * Destroy old address space, and allocate a new stack
869  *	The new stack is only SGROWSIZ large because it is grown
870  *	automatically in trap.c.
871  *
872  * This is the point of no return.
873  */
874 int
875 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
876 {
877 	struct vmspace *vmspace = imgp->proc->p_vmspace;
878 	vm_offset_t stack_addr = USRSTACK - maxssiz;
879 	struct lwp *lp;
880 	struct proc *p;
881 	vm_map_t map;
882 	int error;
883 
884 	/*
885 	 * Indicate that we cannot gracefully error out any more, kill
886 	 * any other threads present, and set P_INEXEC to indicate that
887 	 * we are now messing with the process structure proper.
888 	 *
889 	 * If killalllwps() races return an error which coupled with
890 	 * vmspace_destroyed will cause us to exit.  This is what we
891 	 * want since another thread is patiently waiting for us to exit
892 	 * in that case.
893 	 */
894 	lp = curthread->td_lwp;
895 	p = lp->lwp_proc;
896 	imgp->vmspace_destroyed = 1;
897 
898 	if (curthread->td_proc->p_nthreads > 1) {
899 		error = killalllwps(1);
900 		if (error)
901 			return (error);
902 	}
903 	imgp->vmspace_destroyed |= 2;	/* we are responsible for P_INEXEC */
904 	p->p_flags |= P_INEXEC;
905 
906 	/*
907 	 * Tell procfs to release its hold on the process.  It
908 	 * will return EAGAIN.
909 	 */
910 	if (p->p_stops)
911 		wakeup(&p->p_stype);
912 
913 	/*
914 	 * After setting P_INEXEC wait for any remaining references to
915 	 * the process (p) to go away.
916 	 *
917 	 * In particular, a vfork/exec sequence will replace p->p_vmspace
918 	 * and we must interlock anyone trying to access the space (aka
919 	 * procfs or sys_process.c calling procfs_domem()).
920 	 *
921 	 * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
922 	 */
923 	PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
924 
925 	/*
926 	 * Blow away entire process VM, if address space not shared,
927 	 * otherwise, create a new VM space so that other threads are
928 	 * not disrupted.  If we are execing a resident vmspace we
929 	 * create a duplicate of it and remap the stack.
930 	 */
931 	map = &vmspace->vm_map;
932 	if (vmcopy) {
933 		vmspace_exec(imgp->proc, vmcopy);
934 		vmspace = imgp->proc->p_vmspace;
935 		pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
936 		map = &vmspace->vm_map;
937 	} else if (vmspace_getrefs(vmspace) == 1) {
938 		shmexit(vmspace);
939 		pmap_remove_pages(vmspace_pmap(vmspace),
940 				  0, VM_MAX_USER_ADDRESS);
941 		vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
942 	} else {
943 		vmspace_exec(imgp->proc, NULL);
944 		vmspace = imgp->proc->p_vmspace;
945 		map = &vmspace->vm_map;
946 	}
947 
948 	/*
949 	 * Really make sure lwp-specific and process-specific mappings
950 	 * are gone.
951 	 *
952 	 * Once we've done that, and because we are the only LWP left, with
953 	 * no TID-dependent mappings, we can reset the TID to 1 (the RB tree
954 	 * will remain consistent since it has only one entry).  This way
955 	 * the exec'd program gets a nice deterministic tid of 1.
956 	 */
957 	lwp_userunmap(lp);
958 	proc_userunmap(p);
959 	lp->lwp_tid = 1;
960 	p->p_lasttid = 1;
961 
962 	/*
963 	 * Allocate a new stack, generally make the stack non-executable
964 	 * but allow the program to adjust that (the program may desire to
965 	 * use areas of the stack for executable code).
966 	 */
967 	error = vm_map_stack(&vmspace->vm_map, &stack_addr, (vm_size_t)maxssiz,
968 			     0,
969 			     VM_PROT_READ|VM_PROT_WRITE,
970 			     VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
971 			     0);
972 	if (error)
973 		return (error);
974 
975 	/*
976 	 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
977 	 * VM_STACK case, but they are still used to monitor the size of the
978 	 * process stack so we can check the stack rlimit.
979 	 */
980 	vmspace->vm_ssize = sgrowsiz;		/* in bytes */
981 	vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
982 
983 	return(0);
984 }
985 
986 /*
987  * Copy out argument and environment strings from the old process
988  *	address space into the temporary string buffer.
989  */
990 static int
991 exec_copyin_args(struct image_args *args, char *fname,
992 		 enum exec_path_segflg segflg, char **argv, char **envv)
993 {
994 	char	*argp, *envp;
995 	int	error = 0;
996 	size_t	length;
997 
998 	args->buf = objcache_get(exec_objcache, M_WAITOK);
999 	if (args->buf == NULL)
1000 		return (ENOMEM);
1001 
1002 	args->begin_argv = args->buf;
1003 	args->endp = args->begin_argv;
1004 	args->space = ARG_MAX;
1005 
1006 	args->fname = args->buf + ARG_MAX;
1007 
1008 	/*
1009 	 * Copy the file name.
1010 	 */
1011 	if (segflg == PATH_SYSSPACE)
1012 		error = copystr(fname, args->fname, PATH_MAX, &length);
1013 	else
1014 		error = copyinstr(fname, args->fname, PATH_MAX, &length);
1015 	if (error)
1016 		return (error);
1017 
1018 	/*
1019 	 * Extract argument strings.  argv may not be NULL.  The argv
1020 	 * array is terminated by a NULL entry.  We special-case the
1021 	 * situation where argv[0] is NULL by passing { filename, NULL }
1022 	 * to the new program to guarentee that the interpreter knows what
1023 	 * file to open in case we exec an interpreted file.   Note that
1024 	 * a NULL argv[0] terminates the argv[] array.
1025 	 *
1026 	 * XXX the special-casing of argv[0] is historical and needs to be
1027 	 * revisited.
1028 	 */
1029 	if (argv == NULL)
1030 		error = EFAULT;
1031 	if (error == 0) {
1032 		while ((argp = (caddr_t)(intptr_t)
1033 			       fuword64((uintptr_t *)argv++)) != NULL) {
1034 			if (argp == (caddr_t)-1) {
1035 				error = EFAULT;
1036 				break;
1037 			}
1038 			error = copyinstr(argp, args->endp,
1039 					  args->space, &length);
1040 			if (error) {
1041 				if (error == ENAMETOOLONG)
1042 					error = E2BIG;
1043 				break;
1044 			}
1045 			args->space -= length;
1046 			args->endp += length;
1047 			args->argc++;
1048 		}
1049 		if (args->argc == 0 && error == 0) {
1050 			length = strlen(args->fname) + 1;
1051 			if (length > args->space) {
1052 				error = E2BIG;
1053 			} else {
1054 				bcopy(args->fname, args->endp, length);
1055 				args->space -= length;
1056 				args->endp += length;
1057 				args->argc++;
1058 			}
1059 		}
1060 	}
1061 
1062 	args->begin_envv = args->endp;
1063 
1064 	/*
1065 	 * extract environment strings.  envv may be NULL.
1066 	 */
1067 	if (envv && error == 0) {
1068 		while ((envp = (caddr_t)(intptr_t)
1069 			       fuword64((uintptr_t *)envv++))) {
1070 			if (envp == (caddr_t) -1) {
1071 				error = EFAULT;
1072 				break;
1073 			}
1074 			error = copyinstr(envp, args->endp,
1075 					  args->space, &length);
1076 			if (error) {
1077 				if (error == ENAMETOOLONG)
1078 					error = E2BIG;
1079 				break;
1080 			}
1081 			args->space -= length;
1082 			args->endp += length;
1083 			args->envc++;
1084 		}
1085 	}
1086 
1087 	return (error);
1088 }
1089 
1090 static void
1091 exec_free_args(struct image_args *args)
1092 {
1093 	if (args->buf) {
1094 		objcache_put(exec_objcache, args->buf);
1095 		args->buf = NULL;
1096 	}
1097 }
1098 
1099 /*
1100  * Copy strings out to the new process address space, constructing
1101  * new arg and env vector tables. Return a pointer to the base
1102  * so that it can be used as the initial stack pointer.
1103  *
1104  * The format is, roughly:
1105  *
1106  *	[argv[]]			<-- vectp
1107  *	[envp[]]
1108  *	[ELF_Auxargs]
1109  *
1110  *	[args & env]			<-- destp
1111  *	[sgap]
1112  *	[SPARE_USRSPACE]
1113  *	[execpath]
1114  *	[szsigcode]   RO|NX
1115  *	[ps_strings]  RO|NX		Top of user stack
1116  *
1117  */
1118 static register_t *
1119 exec_copyout_strings(struct image_params *imgp)
1120 {
1121 	int argc, envc, sgap;
1122 	int gap;
1123 	int argsenvspace;
1124 	char **vectp;
1125 	char *stringp, *destp, *szsigbase;
1126 	register_t *stack_base;
1127 	struct ps_strings *arginfo;
1128 	size_t execpath_len;
1129 	int szsigcode;
1130 
1131 	/*
1132 	 * Calculate string base and vector table pointers.
1133 	 * Also deal with signal trampoline code for this exec type.
1134 	 */
1135 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
1136 		execpath_len = strlen(imgp->execpath) + 1;
1137 	else
1138 		execpath_len = 0;
1139 	arginfo = (struct ps_strings *)PS_STRINGS;
1140 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
1141 
1142 	argsenvspace = roundup((ARG_MAX - imgp->args->space), sizeof(char *));
1143 	gap = stackgap_random;
1144 	cpu_ccfence();
1145 	if (gap != 0) {
1146 		if (gap < 0)
1147 			sgap = ALIGN(-gap);
1148 		else
1149 			sgap = ALIGN(karc4random() & (gap - 1));
1150 	} else {
1151 		sgap = 0;
1152 	}
1153 
1154 	/*
1155 	 * Calculate destp, which points to [args & env] and above.
1156 	 */
1157 	szsigbase = (char *)(intptr_t)
1158 		    trunc_page64((intptr_t)arginfo - szsigcode);
1159 	szsigbase -= SZSIGCODE_EXTRA_BYTES;
1160 	destp = szsigbase -
1161 		roundup(execpath_len, sizeof(char *)) -
1162 		SPARE_USRSPACE -
1163 		sgap -
1164 		argsenvspace;
1165 
1166 	/*
1167 	 * install sigcode
1168 	 */
1169 	if (szsigcode)
1170 		copyout(imgp->proc->p_sysent->sv_sigcode, szsigbase, szsigcode);
1171 
1172 	/*
1173 	 * Copy the image path for the rtld
1174 	 */
1175 	if (execpath_len) {
1176 		imgp->execpathp = (uintptr_t)szsigbase -
1177 				  roundup(execpath_len, sizeof(char *));
1178 		copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
1179 	}
1180 
1181 	/*
1182 	 * Calculate base for argv[], envp[], and ELF_Auxargs.
1183 	 */
1184 	vectp = (char **)destp - (AT_COUNT * 2);
1185 	vectp -= imgp->args->argc + imgp->args->envc + 2;
1186 
1187 	stack_base = (register_t *)vectp;
1188 
1189 	stringp = imgp->args->begin_argv;
1190 	argc = imgp->args->argc;
1191 	envc = imgp->args->envc;
1192 
1193 	/*
1194 	 * Copy out strings - arguments and environment (at destp)
1195 	 */
1196 	copyout(stringp, destp, ARG_MAX - imgp->args->space);
1197 
1198 	/*
1199 	 * Fill in "ps_strings" struct for ps, w, etc.
1200 	 */
1201 	suword64((void *)&arginfo->ps_argvstr, (uint64_t)(intptr_t)vectp);
1202 	suword32((void *)&arginfo->ps_nargvstr, argc);
1203 
1204 	/*
1205 	 * Fill in argument portion of vector table.
1206 	 */
1207 	for (; argc > 0; --argc) {
1208 		suword64((void *)vectp++, (uintptr_t)destp);
1209 		while (*stringp++ != 0)
1210 			destp++;
1211 		destp++;
1212 	}
1213 
1214 	/* a null vector table pointer separates the argp's from the envp's */
1215 	suword64((void *)vectp++, 0);
1216 
1217 	suword64((void *)&arginfo->ps_envstr, (uintptr_t)vectp);
1218 	suword32((void *)&arginfo->ps_nenvstr, envc);
1219 
1220 	/*
1221 	 * Fill in environment portion of vector table.
1222 	 */
1223 	for (; envc > 0; --envc) {
1224 		suword64((void *)vectp++, (uintptr_t)destp);
1225 		while (*stringp++ != 0)
1226 			destp++;
1227 		destp++;
1228 	}
1229 
1230 	/* end of vector table is a null pointer */
1231 	suword64((void *)vectp, 0);
1232 
1233 	/*
1234 	 * Make the signal trampoline executable and read-only.
1235 	 */
1236 	vm_map_protect(&imgp->proc->p_vmspace->vm_map,
1237 		       (vm_offset_t)szsigbase,
1238 		       (vm_offset_t)szsigbase + PAGE_SIZE,
1239 		       VM_PROT_READ|VM_PROT_EXECUTE, FALSE);
1240 
1241 	return (stack_base);
1242 }
1243 
1244 /*
1245  * Check permissions of file to execute.
1246  *	Return 0 for success or error code on failure.
1247  */
1248 int
1249 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1250 {
1251 	struct proc *p = imgp->proc;
1252 	struct vnode *vp = imgp->vp;
1253 	struct vattr_lite *lvap = imgp->lvap;
1254 	int error;
1255 
1256 	/* Get file attributes */
1257 	error = VOP_GETATTR_LITE(vp, lvap);
1258 	if (error)
1259 		return (error);
1260 
1261 	/*
1262 	 * 1) Check if file execution is disabled for the filesystem that this
1263 	 *	file resides on.
1264 	 * 2) Insure that at least one execute bit is on - otherwise root
1265 	 *	will always succeed, and we don't want to happen unless the
1266 	 *	file really is executable.
1267 	 * 3) Insure that the file is a regular file.
1268 	 */
1269 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1270 	    ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1271 	    ((lvap->va_mode & 0111) == 0) ||
1272 	    (lvap->va_type != VREG)) {
1273 		return (EACCES);
1274 	}
1275 
1276 	/*
1277 	 * Zero length files can't be exec'd
1278 	 */
1279 	if (lvap->va_size == 0)
1280 		return (ENOEXEC);
1281 
1282 	/*
1283 	 *  Check for execute permission to file based on current credentials.
1284 	 */
1285 	error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1286 	if (error)
1287 		return (error);
1288 
1289 	/*
1290 	 * Check number of open-for-writes on the file and deny execution
1291 	 * if there are any.
1292 	 */
1293 	if (vp->v_writecount)
1294 		return (ETXTBSY);
1295 
1296 	/*
1297 	 * Call filesystem specific open routine, which allows us to read,
1298 	 * write, and mmap the file.  Without the VOP_OPEN we can only
1299 	 * stat the file.
1300 	 */
1301 	error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1302 	if (error)
1303 		return (error);
1304 
1305 	return (0);
1306 }
1307 
1308 /*
1309  * Exec handler registration
1310  */
1311 int
1312 exec_register(const struct execsw *execsw_arg)
1313 {
1314 	const struct execsw **es, **xs, **newexecsw;
1315 	int count = 2;	/* New slot and trailing NULL */
1316 
1317 	if (execsw)
1318 		for (es = execsw; *es; es++)
1319 			count++;
1320 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1321 	xs = newexecsw;
1322 	if (execsw)
1323 		for (es = execsw; *es; es++)
1324 			*xs++ = *es;
1325 	*xs++ = execsw_arg;
1326 	*xs = NULL;
1327 	if (execsw)
1328 		kfree(execsw, M_TEMP);
1329 	execsw = newexecsw;
1330 	return 0;
1331 }
1332 
1333 int
1334 exec_unregister(const struct execsw *execsw_arg)
1335 {
1336 	const struct execsw **es, **xs, **newexecsw;
1337 	int count = 1;
1338 
1339 	if (execsw == NULL)
1340 		panic("unregister with no handlers left?");
1341 
1342 	for (es = execsw; *es; es++) {
1343 		if (*es == execsw_arg)
1344 			break;
1345 	}
1346 	if (*es == NULL)
1347 		return ENOENT;
1348 	for (es = execsw; *es; es++)
1349 		if (*es != execsw_arg)
1350 			count++;
1351 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1352 	xs = newexecsw;
1353 	for (es = execsw; *es; es++)
1354 		if (*es != execsw_arg)
1355 			*xs++ = *es;
1356 	*xs = NULL;
1357 	if (execsw)
1358 		kfree(execsw, M_TEMP);
1359 	execsw = newexecsw;
1360 	return 0;
1361 }
1362