xref: /dragonfly/sys/kern/kern_exec.c (revision a615f06f)
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  * $DragonFly: src/sys/kern/kern_exec.c,v 1.64 2008/10/26 04:29:19 sephe Exp $
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/sysproto.h>
33 #include <sys/kernel.h>
34 #include <sys/mount.h>
35 #include <sys/filedesc.h>
36 #include <sys/fcntl.h>
37 #include <sys/acct.h>
38 #include <sys/exec.h>
39 #include <sys/imgact.h>
40 #include <sys/imgact_elf.h>
41 #include <sys/kern_syscall.h>
42 #include <sys/wait.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sfbuf.h>
50 #include <sys/sysent.h>
51 #include <sys/shm.h>
52 #include <sys/sysctl.h>
53 #include <sys/vnode.h>
54 #include <sys/vmmeter.h>
55 #include <sys/aio.h>
56 #include <sys/libkern.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
69 
70 #include <sys/user.h>
71 #include <sys/reg.h>
72 
73 #include <sys/thread2.h>
74 
75 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
76 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
77 
78 static register_t *exec_copyout_strings (struct image_params *);
79 
80 /* XXX This should be vm_size_t. */
81 static u_long ps_strings = PS_STRINGS;
82 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
83 
84 /* XXX This should be vm_size_t. */
85 static u_long usrstack = USRSTACK;
86 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
87 
88 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
89 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
90     &ps_arg_cache_limit, 0, "");
91 
92 int ps_argsopen = 1;
93 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
94 
95 void print_execve_args(struct image_args *args);
96 int debug_execve_args = 0;
97 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
98     0, "");
99 
100 /*
101  * Exec arguments object cache
102  */
103 static struct objcache *exec_objcache;
104 
105 static
106 void
107 exec_objcache_init(void *arg __unused)
108 {
109 	int cluster_limit;
110 
111 	cluster_limit = 16;	/* up to this many objects */
112 	exec_objcache = objcache_create_mbacked(
113 					M_EXECARGS, PATH_MAX + ARG_MAX,
114 					&cluster_limit,
115 					2,	/* minimal magazine capacity */
116 					NULL, NULL, NULL);
117 }
118 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
119 
120 /*
121  * stackgap_random specifies if the stackgap should have a random size added
122  * to it.  It must be a power of 2.  If non-zero, the stack gap will be
123  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
124  */
125 static int stackgap_random = 1024;
126 static int
127 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
128 {
129 	int error, new_val;
130 	new_val = stackgap_random;
131 	error = sysctl_handle_int(oidp, &new_val, 0, req);
132 	if (error != 0 || req->newptr == NULL)
133 		return (error);
134 	if ((new_val < 0) || (new_val > 16 * PAGE_SIZE) || ! powerof2(new_val))
135 		return (EINVAL);
136 	stackgap_random = new_val;
137 
138 	return(0);
139 }
140 
141 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_UINT,
142 	0, 0, sysctl_kern_stackgap, "IU", "Max random stack gap (power of 2)");
143 
144 void
145 print_execve_args(struct image_args *args)
146 {
147 	char *cp;
148 	int ndx;
149 
150 	cp = args->begin_argv;
151 	for (ndx = 0; ndx < args->argc; ndx++) {
152 		kprintf("\targv[%d]: %s\n", ndx, cp);
153 		while (*cp++ != '\0');
154 	}
155 	for (ndx = 0; ndx < args->envc; ndx++) {
156 		kprintf("\tenvv[%d]: %s\n", ndx, cp);
157 		while (*cp++ != '\0');
158 	}
159 }
160 
161 /*
162  * Each of the items is a pointer to a `const struct execsw', hence the
163  * double pointer here.
164  */
165 static const struct execsw **execsw;
166 
167 /*
168  * Replace current vmspace with a new binary.
169  * Returns 0 on success, > 0 on recoverable error (use as errno).
170  * Returns -1 on lethal error which demands killing of the current
171  * process!
172  */
173 int
174 kern_execve(struct nlookupdata *nd, struct image_args *args)
175 {
176 	struct thread *td = curthread;
177 	struct lwp *lp = td->td_lwp;
178 	struct proc *p = td->td_proc;
179 	register_t *stack_base;
180 	int error, len, i;
181 	struct image_params image_params, *imgp;
182 	struct vattr attr;
183 	int (*img_first) (struct image_params *);
184 
185 	if (debug_execve_args) {
186 		kprintf("%s()\n", __func__);
187 		print_execve_args(args);
188 	}
189 
190 	KKASSERT(p);
191 	imgp = &image_params;
192 
193 	/*
194 	 * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
195 	 * no modifications to the process at all until we get there.
196 	 *
197 	 * Note that multiple threads may be trying to exec at the same
198 	 * time.  exec_new_vmspace() handles that too.
199 	 */
200 
201 	/*
202 	 * Initialize part of the common data
203 	 */
204 	imgp->proc = p;
205 	imgp->args = args;
206 	imgp->attr = &attr;
207 	imgp->entry_addr = 0;
208 	imgp->resident = 0;
209 	imgp->vmspace_destroyed = 0;
210 	imgp->interpreted = 0;
211 	imgp->interpreter_name[0] = 0;
212 	imgp->auxargs = NULL;
213 	imgp->vp = NULL;
214 	imgp->firstpage = NULL;
215 	imgp->ps_strings = 0;
216 	imgp->image_header = NULL;
217 
218 interpret:
219 
220 	/*
221 	 * Translate the file name to a vnode.  Unlock the cache entry to
222 	 * improve parallelism for programs exec'd in parallel.
223 	 */
224 	if ((error = nlookup(nd)) != 0)
225 		goto exec_fail;
226 	error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_EXCLUSIVE, &imgp->vp);
227 	KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
228 	nd->nl_flags &= ~NLC_NCPISLOCKED;
229 	cache_unlock(&nd->nl_nch);
230 	if (error)
231 		goto exec_fail;
232 
233 	/*
234 	 * Check file permissions (also 'opens' file)
235 	 */
236 	error = exec_check_permissions(imgp);
237 	if (error) {
238 		vn_unlock(imgp->vp);
239 		goto exec_fail_dealloc;
240 	}
241 
242 	error = exec_map_first_page(imgp);
243 	vn_unlock(imgp->vp);
244 	if (error)
245 		goto exec_fail_dealloc;
246 
247 	if (debug_execve_args && imgp->interpreted) {
248 		kprintf("    target is interpreted -- recursive pass\n");
249 		kprintf("    interpreter: %s\n", imgp->interpreter_name);
250 		print_execve_args(args);
251 	}
252 
253 	/*
254 	 *	If the current process has a special image activator it
255 	 *	wants to try first, call it.   For example, emulating shell
256 	 *	scripts differently.
257 	 */
258 	error = -1;
259 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
260 		error = img_first(imgp);
261 
262 	/*
263 	 *	If the vnode has a registered vmspace, exec the vmspace
264 	 */
265 	if (error == -1 && imgp->vp->v_resident) {
266 		error = exec_resident_imgact(imgp);
267 	}
268 
269 	/*
270 	 *	Loop through the list of image activators, calling each one.
271 	 *	An activator returns -1 if there is no match, 0 on success,
272 	 *	and an error otherwise.
273 	 */
274 	for (i = 0; error == -1 && execsw[i]; ++i) {
275 		if (execsw[i]->ex_imgact == NULL ||
276 		    execsw[i]->ex_imgact == img_first) {
277 			continue;
278 		}
279 		error = (*execsw[i]->ex_imgact)(imgp);
280 	}
281 
282 	if (error) {
283 		if (error == -1)
284 			error = ENOEXEC;
285 		goto exec_fail_dealloc;
286 	}
287 
288 	/*
289 	 * Special interpreter operation, cleanup and loop up to try to
290 	 * activate the interpreter.
291 	 */
292 	if (imgp->interpreted) {
293 		exec_unmap_first_page(imgp);
294 		nlookup_done(nd);
295 		vrele(imgp->vp);
296 		imgp->vp = NULL;
297 		error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
298 					NLC_FOLLOW);
299 		if (error)
300 			goto exec_fail;
301 		goto interpret;
302 	}
303 
304 	/*
305 	 * Copy out strings (args and env) and initialize stack base
306 	 */
307 	stack_base = exec_copyout_strings(imgp);
308 	p->p_vmspace->vm_minsaddr = (char *)stack_base;
309 
310 	/*
311 	 * If custom stack fixup routine present for this process
312 	 * let it do the stack setup.  If we are running a resident
313 	 * image there is no auxinfo or other image activator context
314 	 * so don't try to add fixups to the stack.
315 	 *
316 	 * Else stuff argument count as first item on stack
317 	 */
318 	if (p->p_sysent->sv_fixup && imgp->resident == 0)
319 		(*p->p_sysent->sv_fixup)(&stack_base, imgp);
320 	else
321 		suword(--stack_base, imgp->args->argc);
322 
323 	/*
324 	 * For security and other reasons, the file descriptor table cannot
325 	 * be shared after an exec.
326 	 */
327 	if (p->p_fd->fd_refcnt > 1) {
328 		struct filedesc *tmp;
329 
330 		tmp = fdcopy(p);
331 		fdfree(p);
332 		p->p_fd = tmp;
333 	}
334 
335 	/*
336 	 * For security and other reasons, signal handlers cannot
337 	 * be shared after an exec. The new proces gets a copy of the old
338 	 * handlers. In execsigs(), the new process will have its signals
339 	 * reset.
340 	 */
341 	if (p->p_sigacts->ps_refcnt > 1) {
342 		struct sigacts *newsigacts;
343 
344 		newsigacts = (struct sigacts *)kmalloc(sizeof(*newsigacts),
345 		       M_SUBPROC, M_WAITOK);
346 		bcopy(p->p_sigacts, newsigacts, sizeof(*newsigacts));
347 		p->p_sigacts->ps_refcnt--;
348 		p->p_sigacts = newsigacts;
349 		p->p_sigacts->ps_refcnt = 1;
350 	}
351 
352 	/*
353 	 * For security and other reasons virtual kernels cannot be
354 	 * inherited by an exec.  This also allows a virtual kernel
355 	 * to fork/exec unrelated applications.
356 	 */
357 	if (p->p_vkernel)
358 		vkernel_exit(p);
359 
360 	/* Stop profiling */
361 	stopprofclock(p);
362 
363 	/* close files on exec */
364 	fdcloseexec(p);
365 
366 	/* reset caught signals */
367 	execsigs(p);
368 
369 	/* name this process - nameiexec(p, ndp) */
370 	len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
371 	bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
372 	p->p_comm[len] = 0;
373 	bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
374 
375 	/*
376 	 * mark as execed, wakeup the process that vforked (if any) and tell
377 	 * it that it now has its own resources back
378 	 */
379 	p->p_flag |= P_EXEC;
380 	if (p->p_pptr && (p->p_flag & P_PPWAIT)) {
381 		p->p_flag &= ~P_PPWAIT;
382 		wakeup((caddr_t)p->p_pptr);
383 	}
384 
385 	/*
386 	 * Implement image setuid/setgid.
387 	 *
388 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
389 	 * the process is being traced.
390 	 */
391 	if ((((attr.va_mode & VSUID) && p->p_ucred->cr_uid != attr.va_uid) ||
392 	     ((attr.va_mode & VSGID) && p->p_ucred->cr_gid != attr.va_gid)) &&
393 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
394 	    (p->p_flag & P_TRACED) == 0) {
395 		/*
396 		 * Turn off syscall tracing for set-id programs, except for
397 		 * root.  Record any set-id flags first to make sure that
398 		 * we do not regain any tracing during a possible block.
399 		 */
400 		setsugid();
401 		if (p->p_tracenode && suser(td) != 0) {
402 			ktrdestroy(&p->p_tracenode);
403 			p->p_traceflag = 0;
404 		}
405 		/* Close any file descriptors 0..2 that reference procfs */
406 		setugidsafety(p);
407 		/* Make sure file descriptors 0..2 are in use. */
408 		error = fdcheckstd(p);
409 		if (error != 0)
410 			goto exec_fail_dealloc;
411 		/*
412 		 * Set the new credentials.
413 		 */
414 		cratom(&p->p_ucred);
415 		if (attr.va_mode & VSUID)
416 			change_euid(attr.va_uid);
417 		if (attr.va_mode & VSGID)
418 			p->p_ucred->cr_gid = attr.va_gid;
419 
420 		/*
421 		 * Clear local varsym variables
422 		 */
423 		varsymset_clean(&p->p_varsymset);
424 	} else {
425 		if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
426 		    p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
427 			p->p_flag &= ~P_SUGID;
428 	}
429 
430 	/*
431 	 * Implement correct POSIX saved-id behavior.
432 	 */
433 	if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
434 	    p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
435 		cratom(&p->p_ucred);
436 		p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
437 		p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
438 	}
439 
440 	/*
441 	 * Store the vp for use in procfs
442 	 */
443 	if (p->p_textvp)		/* release old reference */
444 		vrele(p->p_textvp);
445 	p->p_textvp = imgp->vp;
446 	vref(p->p_textvp);
447 
448         /*
449          * Notify others that we exec'd, and clear the P_INEXEC flag
450          * as we're now a bona fide freshly-execed process.
451          */
452 	KNOTE(&p->p_klist, NOTE_EXEC);
453 	p->p_flag &= ~P_INEXEC;
454 
455 	/*
456 	 * If tracing the process, trap to debugger so breakpoints
457 	 * 	can be set before the program executes.
458 	 */
459 	STOPEVENT(p, S_EXEC, 0);
460 
461 	if (p->p_flag & P_TRACED)
462 		ksignal(p, SIGTRAP);
463 
464 	/* clear "fork but no exec" flag, as we _are_ execing */
465 	p->p_acflag &= ~AFORK;
466 
467 	/* Set values passed into the program in registers. */
468 	exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
469 	    imgp->ps_strings);
470 
471 	/* Free any previous argument cache */
472 	if (p->p_args && --p->p_args->ar_ref == 0)
473 		FREE(p->p_args, M_PARGS);
474 	p->p_args = NULL;
475 
476 	/* Cache arguments if they fit inside our allowance */
477 	i = imgp->args->begin_envv - imgp->args->begin_argv;
478 	if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
479 		MALLOC(p->p_args, struct pargs *, sizeof(struct pargs) + i,
480 		    M_PARGS, M_WAITOK);
481 		p->p_args->ar_ref = 1;
482 		p->p_args->ar_length = i;
483 		bcopy(imgp->args->begin_argv, p->p_args->ar_args, i);
484 	}
485 
486 exec_fail_dealloc:
487 
488 	/*
489 	 * free various allocated resources
490 	 */
491 	if (imgp->firstpage)
492 		exec_unmap_first_page(imgp);
493 
494 	if (imgp->vp) {
495 		vrele(imgp->vp);
496 		imgp->vp = NULL;
497 	}
498 
499 	if (error == 0) {
500 		++mycpu->gd_cnt.v_exec;
501 		return (0);
502 	}
503 
504 exec_fail:
505 	/*
506 	 * we're done here, clear P_INEXEC if we were the ones that
507 	 * set it.  Otherwise if vmspace_destroyed is still set we
508 	 * raced another thread and that thread is responsible for
509 	 * clearing it.
510 	 */
511 	if (imgp->vmspace_destroyed & 2)
512 		p->p_flag &= ~P_INEXEC;
513 	if (imgp->vmspace_destroyed) {
514 		/*
515 		 * Sorry, no more process anymore. exit gracefully.
516 		 * However we can't die right here, because our
517 		 * caller might have to clean up, so indicate a
518 		 * lethal error by returning -1.
519 		 */
520 		return(-1);
521 	} else {
522 		return(error);
523 	}
524 }
525 
526 /*
527  * execve() system call.
528  */
529 int
530 sys_execve(struct execve_args *uap)
531 {
532 	struct nlookupdata nd;
533 	struct image_args args;
534 	int error;
535 
536 	error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
537 	if (error == 0) {
538 		error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
539 					uap->argv, uap->envv);
540 	}
541 	if (error == 0)
542 		error = kern_execve(&nd, &args);
543 	nlookup_done(&nd);
544 	exec_free_args(&args);
545 
546 	if (error < 0) {
547 		/* We hit a lethal error condition.  Let's die now. */
548 		exit1(W_EXITCODE(0, SIGABRT));
549 		/* NOTREACHED */
550 	}
551 
552 	/*
553 	 * The syscall result is returned in registers to the new program.
554 	 * Linux will register %edx as an atexit function and we must be
555 	 * sure to set it to 0.  XXX
556 	 */
557 	if (error == 0)
558 		uap->sysmsg_result64 = 0;
559 
560 	return (error);
561 }
562 
563 int
564 exec_map_first_page(struct image_params *imgp)
565 {
566 	int rv, i;
567 	int initial_pagein;
568 	vm_page_t ma[VM_INITIAL_PAGEIN];
569 	vm_page_t m;
570 	vm_object_t object;
571 
572 	if (imgp->firstpage)
573 		exec_unmap_first_page(imgp);
574 
575 	/*
576 	 * The file has to be mappable.
577 	 */
578 	if ((object = imgp->vp->v_object) == NULL)
579 		return (EIO);
580 
581 	/*
582 	 * We shouldn't need protection for vm_page_grab() but we certainly
583 	 * need it for the lookup loop below (lookup/busy race), since
584 	 * an interrupt can unbusy and free the page before our busy check.
585 	 */
586 	crit_enter();
587 	m = vm_page_grab(object, 0, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
588 
589 	if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
590 		ma[0] = m;
591 		initial_pagein = VM_INITIAL_PAGEIN;
592 		if (initial_pagein > object->size)
593 			initial_pagein = object->size;
594 		for (i = 1; i < initial_pagein; i++) {
595 			if ((m = vm_page_lookup(object, i)) != NULL) {
596 				if ((m->flags & PG_BUSY) || m->busy)
597 					break;
598 				if (m->valid)
599 					break;
600 				vm_page_busy(m);
601 			} else {
602 				m = vm_page_alloc(object, i, VM_ALLOC_NORMAL);
603 				if (m == NULL)
604 					break;
605 			}
606 			ma[i] = m;
607 		}
608 		initial_pagein = i;
609 
610 		/*
611 		 * get_pages unbusies all the requested pages except the
612 		 * primary page (at index 0 in this case).  The primary
613 		 * page may have been wired during the pagein (e.g. by
614 		 * the buffer cache) so vnode_pager_freepage() must be
615 		 * used to properly release it.
616 		 */
617 		rv = vm_pager_get_pages(object, ma, initial_pagein, 0);
618 		m = vm_page_lookup(object, 0);
619 
620 		if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
621 			if (m) {
622 				vm_page_protect(m, VM_PROT_NONE);
623 				vnode_pager_freepage(m);
624 			}
625 			crit_exit();
626 			return EIO;
627 		}
628 	}
629 	vm_page_hold(m);
630 	vm_page_wakeup(m);	/* unbusy the page */
631 	crit_exit();
632 
633 	imgp->firstpage = sf_buf_alloc(m, SFB_CPUPRIVATE);
634 	imgp->image_header = (void *)sf_buf_kva(imgp->firstpage);
635 
636 	return 0;
637 }
638 
639 void
640 exec_unmap_first_page(struct image_params *imgp)
641 {
642 	vm_page_t m;
643 
644 	crit_enter();
645 	if (imgp->firstpage != NULL) {
646 		m = sf_buf_page(imgp->firstpage);
647 		sf_buf_free(imgp->firstpage);
648 		imgp->firstpage = NULL;
649 		imgp->image_header = NULL;
650 		vm_page_unhold(m);
651 	}
652 	crit_exit();
653 }
654 
655 /*
656  * Destroy old address space, and allocate a new stack
657  *	The new stack is only SGROWSIZ large because it is grown
658  *	automatically in trap.c.
659  *
660  * This is the point of no return.
661  */
662 int
663 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
664 {
665 	struct vmspace *vmspace = imgp->proc->p_vmspace;
666 	vm_offset_t stack_addr = USRSTACK - maxssiz;
667 	struct proc *p;
668 	vm_map_t map;
669 	int error;
670 
671 	/*
672 	 * Indicate that we cannot gracefully error out any more, kill
673 	 * any other threads present, and set P_INEXEC to indicate that
674 	 * we are now messing with the process structure proper.
675 	 *
676 	 * If killalllwps() races return an error which coupled with
677 	 * vmspace_destroyed will cause us to exit.  This is what we
678 	 * want since another thread is patiently waiting for us to exit
679 	 * in that case.
680 	 */
681 	p = curproc;
682 	imgp->vmspace_destroyed = 1;
683 
684 	if (curthread->td_proc->p_nthreads > 1) {
685 		error = killalllwps(1);
686 		if (error)
687 			return (error);
688 	}
689 	imgp->vmspace_destroyed |= 2;	/* we are responsible for P_INEXEC */
690 	p->p_flag |= P_INEXEC;
691 
692 	/*
693 	 * Prevent a pending AIO from modifying the new address space.
694 	 */
695 	aio_proc_rundown(imgp->proc);
696 
697 	/*
698 	 * Blow away entire process VM, if address space not shared,
699 	 * otherwise, create a new VM space so that other threads are
700 	 * not disrupted.  If we are execing a resident vmspace we
701 	 * create a duplicate of it and remap the stack.
702 	 *
703 	 * The exitingcnt test is not strictly necessary but has been
704 	 * included for code sanity (to make the code more deterministic).
705 	 */
706 	map = &vmspace->vm_map;
707 	if (vmcopy) {
708 		vmspace_exec(imgp->proc, vmcopy);
709 		vmspace = imgp->proc->p_vmspace;
710 		pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
711 		map = &vmspace->vm_map;
712 	} else if (vmspace->vm_sysref.refcnt == 1 &&
713 		   vmspace->vm_exitingcnt == 0) {
714 		shmexit(vmspace);
715 		if (vmspace->vm_upcalls)
716 			upc_release(vmspace, ONLY_LWP_IN_PROC(imgp->proc));
717 		pmap_remove_pages(vmspace_pmap(vmspace),
718 			0, VM_MAX_USER_ADDRESS);
719 		vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
720 	} else {
721 		vmspace_exec(imgp->proc, NULL);
722 		vmspace = imgp->proc->p_vmspace;
723 		map = &vmspace->vm_map;
724 	}
725 
726 	/* Allocate a new stack */
727 	error = vm_map_stack(&vmspace->vm_map, stack_addr, (vm_size_t)maxssiz,
728 	    VM_PROT_ALL, VM_PROT_ALL, 0);
729 	if (error)
730 		return (error);
731 
732 	/* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
733 	 * VM_STACK case, but they are still used to monitor the size of the
734 	 * process stack so we can check the stack rlimit.
735 	 */
736 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
737 	vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
738 
739 	return(0);
740 }
741 
742 /*
743  * Copy out argument and environment strings from the old process
744  *	address space into the temporary string buffer.
745  */
746 int
747 exec_copyin_args(struct image_args *args, char *fname,
748 		enum exec_path_segflg segflg, char **argv, char **envv)
749 {
750 	char	*argp, *envp;
751 	int	error = 0;
752 	size_t	length;
753 
754 	bzero(args, sizeof(*args));
755 
756 	args->buf = objcache_get(exec_objcache, M_WAITOK);
757 	if (args->buf == NULL)
758 		return (ENOMEM);
759 	args->begin_argv = args->buf;
760 	args->endp = args->begin_argv;
761 	args->space = ARG_MAX;
762 
763 	args->fname = args->buf + ARG_MAX;
764 
765 	/*
766 	 * Copy the file name.
767 	 */
768 	if (segflg == PATH_SYSSPACE) {
769 		error = copystr(fname, args->fname, PATH_MAX, &length);
770 	} else if (segflg == PATH_USERSPACE) {
771 		error = copyinstr(fname, args->fname, PATH_MAX, &length);
772 	}
773 
774 	/*
775 	 * Extract argument strings.  argv may not be NULL.  The argv
776 	 * array is terminated by a NULL entry.  We special-case the
777 	 * situation where argv[0] is NULL by passing { filename, NULL }
778 	 * to the new program to guarentee that the interpreter knows what
779 	 * file to open in case we exec an interpreted file.   Note that
780 	 * a NULL argv[0] terminates the argv[] array.
781 	 *
782 	 * XXX the special-casing of argv[0] is historical and needs to be
783 	 * revisited.
784 	 */
785 	if (argv == NULL)
786 		error = EFAULT;
787 	if (error == 0) {
788 		while ((argp = (caddr_t)(intptr_t)fuword(argv++)) != NULL) {
789 			if (argp == (caddr_t)-1) {
790 				error = EFAULT;
791 				break;
792 			}
793 			error = copyinstr(argp, args->endp,
794 					    args->space, &length);
795 			if (error) {
796 				if (error == ENAMETOOLONG)
797 					error = E2BIG;
798 				break;
799 			}
800 			args->space -= length;
801 			args->endp += length;
802 			args->argc++;
803 		}
804 		if (args->argc == 0 && error == 0) {
805 			length = strlen(args->fname) + 1;
806 			if (length > args->space) {
807 				error = E2BIG;
808 			} else {
809 				bcopy(args->fname, args->endp, length);
810 				args->space -= length;
811 				args->endp += length;
812 				args->argc++;
813 			}
814 		}
815 	}
816 
817 	args->begin_envv = args->endp;
818 
819 	/*
820 	 * extract environment strings.  envv may be NULL.
821 	 */
822 	if (envv && error == 0) {
823 		while ((envp = (caddr_t) (intptr_t) fuword(envv++))) {
824 			if (envp == (caddr_t) -1) {
825 				error = EFAULT;
826 				break;
827 			}
828 			error = copyinstr(envp, args->endp, args->space,
829 			    &length);
830 			if (error) {
831 				if (error == ENAMETOOLONG)
832 					error = E2BIG;
833 				break;
834 			}
835 			args->space -= length;
836 			args->endp += length;
837 			args->envc++;
838 		}
839 	}
840 	return (error);
841 }
842 
843 void
844 exec_free_args(struct image_args *args)
845 {
846 	if (args->buf) {
847 		objcache_put(exec_objcache, args->buf);
848 		args->buf = NULL;
849 	}
850 }
851 
852 /*
853  * Copy strings out to the new process address space, constructing
854  *	new arg and env vector tables. Return a pointer to the base
855  *	so that it can be used as the initial stack pointer.
856  */
857 register_t *
858 exec_copyout_strings(struct image_params *imgp)
859 {
860 	int argc, envc, sgap;
861 	char **vectp;
862 	char *stringp, *destp;
863 	register_t *stack_base;
864 	struct ps_strings *arginfo;
865 	int szsigcode;
866 
867 	/*
868 	 * Calculate string base and vector table pointers.
869 	 * Also deal with signal trampoline code for this exec type.
870 	 */
871 	arginfo = (struct ps_strings *)PS_STRINGS;
872 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
873 	if (stackgap_random != 0)
874 		sgap = ALIGN(karc4random() & (stackgap_random - 1));
875 	else
876 		sgap = 0;
877 	destp =	(caddr_t)arginfo - szsigcode - SPARE_USRSPACE - sgap -
878 	    roundup((ARG_MAX - imgp->args->space), sizeof(char *));
879 
880 	/*
881 	 * install sigcode
882 	 */
883 	if (szsigcode)
884 		copyout(imgp->proc->p_sysent->sv_sigcode,
885 		    ((caddr_t)arginfo - szsigcode), szsigcode);
886 
887 	/*
888 	 * If we have a valid auxargs ptr, prepare some room
889 	 * on the stack.
890 	 *
891 	 * The '+ 2' is for the null pointers at the end of each of the
892 	 * arg and env vector sets, and 'AT_COUNT*2' is room for the
893 	 * ELF Auxargs data.
894 	 */
895 	if (imgp->auxargs) {
896 		vectp = (char **)(destp - (imgp->args->argc +
897 			imgp->args->envc + 2 + AT_COUNT * 2) * sizeof(char*));
898 	} else {
899 		vectp = (char **)(destp - (imgp->args->argc +
900 			imgp->args->envc + 2) * sizeof(char*));
901 	}
902 
903 	/*
904 	 * NOTE: don't bother aligning the stack here for GCC 2.x, it will
905 	 * be done in crt1.o.  Note that GCC 3.x aligns the stack in main.
906 	 */
907 
908 	/*
909 	 * vectp also becomes our initial stack base
910 	 */
911 	stack_base = (register_t *)vectp;
912 
913 	stringp = imgp->args->begin_argv;
914 	argc = imgp->args->argc;
915 	envc = imgp->args->envc;
916 
917 	/*
918 	 * Copy out strings - arguments and environment.
919 	 */
920 	copyout(stringp, destp, ARG_MAX - imgp->args->space);
921 
922 	/*
923 	 * Fill in "ps_strings" struct for ps, w, etc.
924 	 */
925 	suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp);
926 	suword(&arginfo->ps_nargvstr, argc);
927 
928 	/*
929 	 * Fill in argument portion of vector table.
930 	 */
931 	for (; argc > 0; --argc) {
932 		suword(vectp++, (long)(intptr_t)destp);
933 		while (*stringp++ != 0)
934 			destp++;
935 		destp++;
936 	}
937 
938 	/* a null vector table pointer separates the argp's from the envp's */
939 	suword(vectp++, 0);
940 
941 	suword(&arginfo->ps_envstr, (long)(intptr_t)vectp);
942 	suword(&arginfo->ps_nenvstr, envc);
943 
944 	/*
945 	 * Fill in environment portion of vector table.
946 	 */
947 	for (; envc > 0; --envc) {
948 		suword(vectp++, (long)(intptr_t)destp);
949 		while (*stringp++ != 0)
950 			destp++;
951 		destp++;
952 	}
953 
954 	/* end of vector table is a null pointer */
955 	suword(vectp, 0);
956 
957 	return (stack_base);
958 }
959 
960 /*
961  * Check permissions of file to execute.
962  *	Return 0 for success or error code on failure.
963  */
964 int
965 exec_check_permissions(struct image_params *imgp)
966 {
967 	struct proc *p = imgp->proc;
968 	struct vnode *vp = imgp->vp;
969 	struct vattr *attr = imgp->attr;
970 	int error;
971 
972 	/* Get file attributes */
973 	error = VOP_GETATTR(vp, attr);
974 	if (error)
975 		return (error);
976 
977 	/*
978 	 * 1) Check if file execution is disabled for the filesystem that this
979 	 *	file resides on.
980 	 * 2) Insure that at least one execute bit is on - otherwise root
981 	 *	will always succeed, and we don't want to happen unless the
982 	 *	file really is executable.
983 	 * 3) Insure that the file is a regular file.
984 	 */
985 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
986 	    ((attr->va_mode & 0111) == 0) ||
987 	    (attr->va_type != VREG)) {
988 		return (EACCES);
989 	}
990 
991 	/*
992 	 * Zero length files can't be exec'd
993 	 */
994 	if (attr->va_size == 0)
995 		return (ENOEXEC);
996 
997 	/*
998 	 *  Check for execute permission to file based on current credentials.
999 	 */
1000 	error = VOP_ACCESS(vp, VEXEC, p->p_ucred);
1001 	if (error)
1002 		return (error);
1003 
1004 	/*
1005 	 * Check number of open-for-writes on the file and deny execution
1006 	 * if there are any.
1007 	 */
1008 	if (vp->v_writecount)
1009 		return (ETXTBSY);
1010 
1011 	/*
1012 	 * Call filesystem specific open routine, which allows us to read,
1013 	 * write, and mmap the file.  Without the VOP_OPEN we can only
1014 	 * stat the file.
1015 	 */
1016 	error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1017 	if (error)
1018 		return (error);
1019 
1020 	return (0);
1021 }
1022 
1023 /*
1024  * Exec handler registration
1025  */
1026 int
1027 exec_register(const struct execsw *execsw_arg)
1028 {
1029 	const struct execsw **es, **xs, **newexecsw;
1030 	int count = 2;	/* New slot and trailing NULL */
1031 
1032 	if (execsw)
1033 		for (es = execsw; *es; es++)
1034 			count++;
1035 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1036 	xs = newexecsw;
1037 	if (execsw)
1038 		for (es = execsw; *es; es++)
1039 			*xs++ = *es;
1040 	*xs++ = execsw_arg;
1041 	*xs = NULL;
1042 	if (execsw)
1043 		kfree(execsw, M_TEMP);
1044 	execsw = newexecsw;
1045 	return 0;
1046 }
1047 
1048 int
1049 exec_unregister(const struct execsw *execsw_arg)
1050 {
1051 	const struct execsw **es, **xs, **newexecsw;
1052 	int count = 1;
1053 
1054 	if (execsw == NULL)
1055 		panic("unregister with no handlers left?");
1056 
1057 	for (es = execsw; *es; es++) {
1058 		if (*es == execsw_arg)
1059 			break;
1060 	}
1061 	if (*es == NULL)
1062 		return ENOENT;
1063 	for (es = execsw; *es; es++)
1064 		if (*es != execsw_arg)
1065 			count++;
1066 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1067 	xs = newexecsw;
1068 	for (es = execsw; *es; es++)
1069 		if (*es != execsw_arg)
1070 			*xs++ = *es;
1071 	*xs = NULL;
1072 	if (execsw)
1073 		kfree(execsw, M_TEMP);
1074 	execsw = newexecsw;
1075 	return 0;
1076 }
1077