xref: /dragonfly/sys/kern/kern_exec.c (revision c9c5aa9e)
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmsg.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
69 
70 #include <sys/reg.h>
71 
72 #include <sys/objcache.h>
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <vm/vm_page2.h>
76 
77 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
78 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
79 
80 static register_t *exec_copyout_strings (struct image_params *);
81 
82 /* XXX This should be vm_size_t. */
83 __read_mostly static u_long ps_strings = PS_STRINGS;
84 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
85 
86 /* XXX This should be vm_size_t. */
87 __read_mostly static u_long usrstack = USRSTACK;
88 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
89 
90 __read_mostly u_long ps_arg_cache_limit = PAGE_SIZE / 16;
91 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
92     &ps_arg_cache_limit, 0, "");
93 
94 __read_mostly int ps_argsopen = 1;
95 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
96 
97 __read_mostly static int ktrace_suid = 0;
98 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
99 
100 void print_execve_args(struct image_args *args);
101 __read_mostly int debug_execve_args = 0;
102 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
103     0, "");
104 
105 /*
106  * Exec arguments object cache
107  */
108 __read_mostly static struct objcache *exec_objcache;
109 
110 static
111 void
112 exec_objcache_init(void *arg __unused)
113 {
114 	int cluster_limit;
115 	size_t limsize;
116 
117 	/*
118 	 * Maximum number of concurrent execs.  This can be limiting on
119 	 * systems with a lot of cpu cores but it also eats a significant
120 	 * amount of memory.
121 	 */
122 	cluster_limit = (ncpus < 16) ? 16 : ncpus;
123 	limsize = kmem_lim_size();
124 	if (limsize > 7 * 1024)
125 		cluster_limit *= 2;
126 	if (limsize > 15 * 1024)
127 		cluster_limit *= 2;
128 
129 	exec_objcache = objcache_create_mbacked(
130 					M_EXECARGS, PATH_MAX + ARG_MAX,
131 					cluster_limit, 8,
132 					NULL, NULL, NULL);
133 }
134 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
135 
136 /*
137  * stackgap_random specifies if the stackgap should have a random size added
138  * to it.  It must be a power of 2.  If non-zero, the stack gap will be
139  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
140  */
141 __read_mostly static int stackgap_random = 1024;
142 
143 static int
144 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
145 {
146 	int error, new_val;
147 	new_val = stackgap_random;
148 	error = sysctl_handle_int(oidp, &new_val, 0, req);
149 	if (error != 0 || req->newptr == NULL)
150 		return (error);
151 	if (new_val > 0 && ((new_val > 16 * PAGE_SIZE) || !powerof2(new_val)))
152 		return (EINVAL);
153 	stackgap_random = new_val;
154 
155 	return(0);
156 }
157 
158 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_INT,
159 	0, 0, sysctl_kern_stackgap, "I",
160 	"Max random stack gap (power of 2), static gap if negative");
161 
162 void
163 print_execve_args(struct image_args *args)
164 {
165 	char *cp;
166 	int ndx;
167 
168 	cp = args->begin_argv;
169 	for (ndx = 0; ndx < args->argc; ndx++) {
170 		kprintf("\targv[%d]: %s\n", ndx, cp);
171 		while (*cp++ != '\0');
172 	}
173 	for (ndx = 0; ndx < args->envc; ndx++) {
174 		kprintf("\tenvv[%d]: %s\n", ndx, cp);
175 		while (*cp++ != '\0');
176 	}
177 }
178 
179 /*
180  * Each of the items is a pointer to a `const struct execsw', hence the
181  * double pointer here.
182  */
183 __read_mostly static const struct execsw **execsw;
184 
185 /*
186  * Replace current vmspace with a new binary.
187  * Returns 0 on success, > 0 on recoverable error (use as errno).
188  * Returns -1 on lethal error which demands killing of the current
189  * process!
190  */
191 int
192 kern_execve(struct nlookupdata *nd, struct image_args *args)
193 {
194 	struct thread *td = curthread;
195 	struct lwp *lp = td->td_lwp;
196 	struct proc *p = td->td_proc;
197 	struct vnode *ovp;
198 	register_t *stack_base;
199 	struct pargs *pa;
200 	struct sigacts *ops;
201 	struct sigacts *nps;
202 	int error, len, i;
203 	struct image_params image_params, *imgp;
204 	struct vattr_lite lva;
205 	int (*img_first) (struct image_params *);
206 
207 	if (debug_execve_args) {
208 		kprintf("%s()\n", __func__);
209 		print_execve_args(args);
210 	}
211 
212 	KKASSERT(p);
213 	lwkt_gettoken(&p->p_token);
214 	imgp = &image_params;
215 
216 	/*
217 	 * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
218 	 * no modifications to the process at all until we get there.
219 	 *
220 	 * Note that multiple threads may be trying to exec at the same
221 	 * time.  exec_new_vmspace() handles that too.
222 	 */
223 
224 	/*
225 	 * Initialize part of the common data
226 	 */
227 	imgp->proc = p;
228 	imgp->args = args;
229 	imgp->lvap = &lva;
230 	imgp->entry_addr = 0;
231 	imgp->resident = 0;
232 	imgp->vmspace_destroyed = 0;
233 	imgp->interpreted = 0;
234 	imgp->interpreter_name[0] = 0;
235 	imgp->auxargs = NULL;
236 	imgp->vp = NULL;
237 	imgp->firstpage = NULL;
238 	imgp->ps_strings = 0;
239 	imgp->execpath = imgp->freepath = NULL;
240 	imgp->execpathp = 0;
241 	imgp->image_header = NULL;
242 
243 interpret:
244 
245 	/*
246 	 * Translate the file name to a vnode.  Unlock the cache entry to
247 	 * improve parallelism for programs exec'd in parallel.
248 	 */
249 	nd->nl_flags |= NLC_SHAREDLOCK;
250 	if ((error = nlookup(nd)) != 0)
251 		goto exec_fail;
252 	error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_SHARED, &imgp->vp);
253 	KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
254 	nd->nl_flags &= ~NLC_NCPISLOCKED;
255 	cache_unlock(&nd->nl_nch);
256 	if (error)
257 		goto exec_fail;
258 
259 	/*
260 	 * Check file permissions (also 'opens' file).
261 	 * Include also the top level mount in the check.
262 	 */
263 	error = exec_check_permissions(imgp, nd->nl_nch.mount);
264 	if (error) {
265 		vn_unlock(imgp->vp);
266 		goto exec_fail_dealloc;
267 	}
268 
269 	error = exec_map_first_page(imgp);
270 	vn_unlock(imgp->vp);
271 	if (error)
272 		goto exec_fail_dealloc;
273 
274 	imgp->proc->p_osrel = 0;
275 
276 	if (debug_execve_args && imgp->interpreted) {
277 		kprintf("    target is interpreted -- recursive pass\n");
278 		kprintf("    interpreter: %s\n", imgp->interpreter_name);
279 		print_execve_args(args);
280 	}
281 
282 	/*
283 	 *	If the current process has a special image activator it
284 	 *	wants to try first, call it.   For example, emulating shell
285 	 *	scripts differently.
286 	 */
287 	error = -1;
288 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
289 		error = img_first(imgp);
290 
291 	/*
292 	 *	If the vnode has a registered vmspace, exec the vmspace
293 	 */
294 	if (error == -1 && imgp->vp->v_resident) {
295 		error = exec_resident_imgact(imgp);
296 	}
297 
298 	/*
299 	 *	Loop through the list of image activators, calling each one.
300 	 *	An activator returns -1 if there is no match, 0 on success,
301 	 *	and an error otherwise.
302 	 */
303 	for (i = 0; error == -1 && execsw[i]; ++i) {
304 		if (execsw[i]->ex_imgact == NULL ||
305 		    execsw[i]->ex_imgact == img_first) {
306 			continue;
307 		}
308 		error = (*execsw[i]->ex_imgact)(imgp);
309 	}
310 
311 	if (error) {
312 		if (error == -1)
313 			error = ENOEXEC;
314 		goto exec_fail_dealloc;
315 	}
316 
317 	/*
318 	 * Special interpreter operation, cleanup and loop up to try to
319 	 * activate the interpreter.
320 	 */
321 	if (imgp->interpreted) {
322 		exec_unmap_first_page(imgp);
323 		nlookup_done(nd);
324 		vrele(imgp->vp);
325 		imgp->vp = NULL;
326 		error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
327 					NLC_FOLLOW);
328 		if (error)
329 			goto exec_fail;
330 		goto interpret;
331 	}
332 
333 	/*
334 	 * Do the best to calculate the full path to the image file
335 	 */
336 	if (imgp->auxargs != NULL &&
337 	   ((args->fname != NULL && args->fname[0] == '/') ||
338 	    vn_fullpath(imgp->proc,
339 			imgp->vp,
340 			&imgp->execpath,
341 			&imgp->freepath,
342 			0) != 0))
343 		imgp->execpath = args->fname;
344 
345 	/*
346 	 * Copy out strings (args and env) and initialize stack base
347 	 */
348 	stack_base = exec_copyout_strings(imgp);
349 	p->p_vmspace->vm_minsaddr = (char *)stack_base;
350 
351 	/*
352 	 * If custom stack fixup routine present for this process
353 	 * let it do the stack setup.  If we are running a resident
354 	 * image there is no auxinfo or other image activator context
355 	 * so don't try to add fixups to the stack.
356 	 *
357 	 * Else stuff argument count as first item on stack
358 	 */
359 	if (p->p_sysent->sv_fixup && imgp->resident == 0)
360 		(*p->p_sysent->sv_fixup)(&stack_base, imgp);
361 	else
362 		suword64(--stack_base, imgp->args->argc);
363 
364 	/*
365 	 * For security and other reasons, the file descriptor table cannot
366 	 * be shared after an exec.
367 	 */
368 	if (p->p_fd->fd_refcnt > 1) {
369 		struct filedesc *tmp;
370 
371 		error = fdcopy(p, &tmp);
372 		if (error != 0)
373 			goto exec_fail;
374 		fdfree(p, tmp);
375 	}
376 
377 	/*
378 	 * For security and other reasons, signal handlers cannot
379 	 * be shared after an exec. The new proces gets a copy of the old
380 	 * handlers. In execsigs(), the new process will have its signals
381 	 * reset.
382 	 */
383 	ops = p->p_sigacts;
384 	if (ops->ps_refcnt > 1) {
385 		nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
386 		bcopy(ops, nps, sizeof(*nps));
387 		refcount_init(&nps->ps_refcnt, 1);
388 		p->p_sigacts = nps;
389 		if (refcount_release(&ops->ps_refcnt)) {
390 			kfree(ops, M_SUBPROC);
391 			ops = NULL;
392 		}
393 	}
394 
395 	/*
396 	 * Clean up shared pages, the new program will allocate fresh
397 	 * copies as needed.  This is also for security purposes and
398 	 * to ensure (for example) that things like sys_lpmap->blockallsigs
399 	 * state is properly reset on exec.
400 	 */
401 	lwp_userunmap(lp);
402 	proc_userunmap(p);
403 
404 	/*
405 	 * For security and other reasons virtual kernels cannot be
406 	 * inherited by an exec.  This also allows a virtual kernel
407 	 * to fork/exec unrelated applications.
408 	 */
409 	if (p->p_vkernel)
410 		vkernel_exit(p);
411 
412 	/* Stop profiling */
413 	stopprofclock(p);
414 
415 	/* close files on exec */
416 	fdcloseexec(p);
417 
418 	/* reset caught signals */
419 	execsigs(p);
420 
421 	/* name this process - nameiexec(p, ndp) */
422 	len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
423 	bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
424 	p->p_comm[len] = 0;
425 	bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
426 
427 	/*
428 	 * mark as execed, wakeup the process that vforked (if any) and tell
429 	 * it that it now has its own resources back
430 	 *
431 	 * We are using the P_PPWAIT as an interlock so an atomic op is
432 	 * necessary to synchronize with the parent's cpu.
433 	 */
434 	p->p_flags |= P_EXEC;
435 	if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
436 		if (p->p_pptr->p_upmap)
437 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
438 		atomic_clear_int(&p->p_flags, P_PPWAIT);
439 		wakeup(p->p_pptr);
440 	}
441 
442 	/*
443 	 * Implement image setuid/setgid.
444 	 *
445 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
446 	 * the process is being traced.
447 	 */
448 	if ((((lva.va_mode & VSUID) && p->p_ucred->cr_uid != lva.va_uid) ||
449 	     ((lva.va_mode & VSGID) && p->p_ucred->cr_gid != lva.va_gid)) &&
450 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
451 	    (p->p_flags & P_TRACED) == 0) {
452 		/*
453 		 * Turn off syscall tracing for set-id programs, except for
454 		 * root.  Record any set-id flags first to make sure that
455 		 * we do not regain any tracing during a possible block.
456 		 */
457 		setsugid();
458 		if (p->p_tracenode && ktrace_suid == 0 &&
459 		    priv_check(td, PRIV_ROOT) != 0) {
460 			ktrdestroy(&p->p_tracenode);
461 			p->p_traceflag = 0;
462 		}
463 
464 		/* Clear any PROC_PDEATHSIG_CTL setting */
465 		p->p_deathsig = 0;
466 
467 		/* Close any file descriptors 0..2 that reference procfs */
468 		setugidsafety(p);
469 		/* Make sure file descriptors 0..2 are in use. */
470 		error = fdcheckstd(lp);
471 		if (error != 0)
472 			goto exec_fail_dealloc;
473 		/*
474 		 * Set the new credentials.
475 		 */
476 		cratom_proc(p);
477 		if (lva.va_mode & VSUID)
478 			change_euid(lva.va_uid);
479 		if (lva.va_mode & VSGID)
480 			p->p_ucred->cr_gid = lva.va_gid;
481 
482 		/*
483 		 * Clear local varsym variables
484 		 */
485 		varsymset_clean(&p->p_varsymset);
486 	} else {
487 		if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
488 		    p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
489 			p->p_flags &= ~P_SUGID;
490 	}
491 
492 	/*
493 	 * Implement correct POSIX saved-id behavior.
494 	 */
495 	if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
496 	    p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
497 		cratom_proc(p);
498 		p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
499 		p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
500 	}
501 
502 	/*
503 	 * Store the vp for use in procfs.  Be sure to keep p_textvp
504 	 * consistent if we block during the switch-over.
505 	 */
506 	ovp = p->p_textvp;
507 	vref(imgp->vp);			/* ref new vp */
508 	p->p_textvp = imgp->vp;
509 	if (ovp)			/* release old vp */
510 		vrele(ovp);
511 
512 	/* Release old namecache handle to text file */
513 	if (p->p_textnch.ncp)
514 		cache_drop(&p->p_textnch);
515 
516 	if (nd->nl_nch.mount)
517 		cache_copy(&nd->nl_nch, &p->p_textnch);
518 
519         /*
520          * Notify others that we exec'd, and clear the P_INEXEC flag
521          * as we're now a bona fide freshly-execed process.
522          */
523 	KNOTE(&p->p_klist, NOTE_EXEC);
524 	p->p_flags &= ~P_INEXEC;
525 	if (p->p_stops)
526 		wakeup(&p->p_stype);
527 
528 	/*
529 	 * If tracing the process, trap to debugger so breakpoints
530 	 * 	can be set before the program executes.
531 	 */
532 	STOPEVENT(p, S_EXEC, 0);
533 
534 	if (p->p_flags & P_TRACED)
535 		ksignal(p, SIGTRAP);
536 
537 	/* clear "fork but no exec" flag, as we _are_ execing */
538 	p->p_acflag &= ~AFORK;
539 
540 	/* Set values passed into the program in registers. */
541 	exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
542 		     imgp->ps_strings);
543 
544 	/* Set the access time on the vnode */
545 	vn_mark_atime(imgp->vp, td);
546 
547 	/*
548 	 * Free any previous argument cache
549 	 */
550 	pa = p->p_args;
551 	p->p_args = NULL;
552 	if (pa && refcount_release(&pa->ar_ref)) {
553 		kfree(pa, M_PARGS);
554 		pa = NULL;
555 	}
556 
557 	/*
558 	 * Cache arguments if they fit inside our allowance
559 	 */
560 	i = imgp->args->begin_envv - imgp->args->begin_argv;
561 	if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
562 		pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
563 		refcount_init(&pa->ar_ref, 1);
564 		pa->ar_length = i;
565 		bcopy(imgp->args->begin_argv, pa->ar_args, i);
566 		KKASSERT(p->p_args == NULL);
567 		p->p_args = pa;
568 	}
569 
570 exec_fail_dealloc:
571 
572 	/*
573 	 * free various allocated resources
574 	 */
575 	if (imgp->firstpage)
576 		exec_unmap_first_page(imgp);
577 
578 	if (imgp->vp) {
579 		vrele(imgp->vp);
580 		imgp->vp = NULL;
581 	}
582 
583 	if (imgp->freepath)
584 		kfree(imgp->freepath, M_TEMP);
585 
586 	if (error == 0) {
587 		++mycpu->gd_cnt.v_exec;
588 		lwkt_reltoken(&p->p_token);
589 		return (0);
590 	}
591 
592 exec_fail:
593 	/*
594 	 * we're done here, clear P_INEXEC if we were the ones that
595 	 * set it.  Otherwise if vmspace_destroyed is still set we
596 	 * raced another thread and that thread is responsible for
597 	 * clearing it.
598 	 */
599 	if (imgp->vmspace_destroyed & 2) {
600 		p->p_flags &= ~P_INEXEC;
601 		if (p->p_stops)
602 			wakeup(&p->p_stype);
603 	}
604 	lwkt_reltoken(&p->p_token);
605 	if (imgp->vmspace_destroyed) {
606 		/*
607 		 * Sorry, no more process anymore. exit gracefully.
608 		 * However we can't die right here, because our
609 		 * caller might have to clean up, so indicate a
610 		 * lethal error by returning -1.
611 		 */
612 		return(-1);
613 	} else {
614 		return(error);
615 	}
616 }
617 
618 /*
619  * execve() system call.
620  */
621 int
622 sys_execve(struct sysmsg *sysmsg, const struct execve_args *uap)
623 {
624 	struct nlookupdata nd;
625 	struct image_args args;
626 	int error;
627 
628 	bzero(&args, sizeof(args));
629 
630 	error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
631 	if (error == 0) {
632 		error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
633 					uap->argv, uap->envv);
634 	}
635 	if (error == 0)
636 		error = kern_execve(&nd, &args);
637 	nlookup_done(&nd);
638 	exec_free_args(&args);
639 
640 	if (error < 0) {
641 		/* We hit a lethal error condition.  Let's die now. */
642 		exit1(W_EXITCODE(0, SIGABRT));
643 		/* NOTREACHED */
644 	}
645 
646 	/*
647 	 * The syscall result is returned in registers to the new program.
648 	 * Linux will register %edx as an atexit function and we must be
649 	 * sure to set it to 0.  XXX
650 	 */
651 	if (error == 0)
652 		sysmsg->sysmsg_result64 = 0;
653 
654 	return (error);
655 }
656 
657 int
658 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
659 	      struct lwbuf **plwb, const char **pdata)
660 {
661 	int rv;
662 	vm_page_t ma;
663 	vm_page_t m;
664 	vm_object_t object;
665 
666 	/*
667 	 * The file has to be mappable.
668 	 */
669 	if ((object = imgp->vp->v_object) == NULL)
670 		return (EIO);
671 
672 	if (pageno >= object->size)
673 		return (EIO);
674 
675 	/*
676 	 * Shortcut using shared locks, improve concurrent execs.
677 	 */
678 	vm_object_hold_shared(object);
679 	m = vm_page_lookup(object, pageno);
680 	if (m) {
681 		if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) {
682 			vm_page_hold(m);
683 			vm_page_sleep_busy(m, FALSE, "execpg");
684 			if ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
685 			    m->object == object && m->pindex == pageno) {
686 				vm_object_drop(object);
687 				goto done;
688 			}
689 			vm_page_unhold(m);
690 		}
691 	}
692 	vm_object_drop(object);
693 
694 	/*
695 	 * Do it the hard way
696 	 */
697 	vm_object_hold(object);
698 	m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
699 	while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
700 		ma = m;
701 
702 		/*
703 		 * get_pages unbusies all the requested pages except the
704 		 * primary page (at index 0 in this case).  The primary
705 		 * page may have been wired during the pagein (e.g. by
706 		 * the buffer cache) so vnode_pager_freepage() must be
707 		 * used to properly release it.
708 		 */
709 		rv = vm_pager_get_page(object, pageno, &ma, 1);
710 		m = vm_page_lookup(object, pageno);
711 
712 		if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
713 			if (m) {
714 				vm_page_protect(m, VM_PROT_NONE);
715 				vnode_pager_freepage(m);
716 			}
717 			vm_object_drop(object);
718 			return EIO;
719 		}
720 	}
721 	vm_page_hold(m);
722 	vm_page_wakeup(m);	/* unbusy the page */
723 	vm_object_drop(object);
724 
725 done:
726 	*plwb = lwbuf_alloc(m, *plwb);
727 	*pdata = (void *)lwbuf_kva(*plwb);
728 
729 	return (0);
730 }
731 
732 /*
733  * Map the first page of an executable image.
734  *
735  * NOTE: If the mapping fails we have to NULL-out firstpage which may
736  *	 still be pointing to our supplied lwp structure.
737  */
738 int
739 exec_map_first_page(struct image_params *imgp)
740 {
741 	int err;
742 
743 	if (imgp->firstpage)
744 		exec_unmap_first_page(imgp);
745 
746 	imgp->firstpage = &imgp->firstpage_cache;
747 	err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
748 
749 	if (err) {
750 		imgp->firstpage = NULL;
751 		return err;
752 	}
753 
754 	return 0;
755 }
756 
757 void
758 exec_unmap_page(struct lwbuf *lwb)
759 {
760 	vm_page_t m;
761 
762 	crit_enter();
763 	if (lwb != NULL) {
764 		m = lwbuf_page(lwb);
765 		lwbuf_free(lwb);
766 		vm_page_unhold(m);
767 	}
768 	crit_exit();
769 }
770 
771 void
772 exec_unmap_first_page(struct image_params *imgp)
773 {
774 	exec_unmap_page(imgp->firstpage);
775 	imgp->firstpage = NULL;
776 	imgp->image_header = NULL;
777 }
778 
779 /*
780  * Destroy old address space, and allocate a new stack
781  *	The new stack is only SGROWSIZ large because it is grown
782  *	automatically in trap.c.
783  *
784  * This is the point of no return.
785  */
786 int
787 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
788 {
789 	struct vmspace *vmspace = imgp->proc->p_vmspace;
790 	vm_offset_t stack_addr = USRSTACK - maxssiz;
791 	struct lwp *lp;
792 	struct proc *p;
793 	vm_map_t map;
794 	int error;
795 
796 	/*
797 	 * Indicate that we cannot gracefully error out any more, kill
798 	 * any other threads present, and set P_INEXEC to indicate that
799 	 * we are now messing with the process structure proper.
800 	 *
801 	 * If killalllwps() races return an error which coupled with
802 	 * vmspace_destroyed will cause us to exit.  This is what we
803 	 * want since another thread is patiently waiting for us to exit
804 	 * in that case.
805 	 */
806 	lp = curthread->td_lwp;
807 	p = lp->lwp_proc;
808 	imgp->vmspace_destroyed = 1;
809 
810 	if (curthread->td_proc->p_nthreads > 1) {
811 		error = killalllwps(1);
812 		if (error)
813 			return (error);
814 	}
815 	imgp->vmspace_destroyed |= 2;	/* we are responsible for P_INEXEC */
816 	p->p_flags |= P_INEXEC;
817 
818 	/*
819 	 * Tell procfs to release its hold on the process.  It
820 	 * will return EAGAIN.
821 	 */
822 	if (p->p_stops)
823 		wakeup(&p->p_stype);
824 
825 	/*
826 	 * After setting P_INEXEC wait for any remaining references to
827 	 * the process (p) to go away.
828 	 *
829 	 * In particular, a vfork/exec sequence will replace p->p_vmspace
830 	 * and we must interlock anyone trying to access the space (aka
831 	 * procfs or sys_process.c calling procfs_domem()).
832 	 *
833 	 * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
834 	 */
835 	PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
836 
837 	/*
838 	 * Blow away entire process VM, if address space not shared,
839 	 * otherwise, create a new VM space so that other threads are
840 	 * not disrupted.  If we are execing a resident vmspace we
841 	 * create a duplicate of it and remap the stack.
842 	 */
843 	map = &vmspace->vm_map;
844 	if (vmcopy) {
845 		vmspace_exec(imgp->proc, vmcopy);
846 		vmspace = imgp->proc->p_vmspace;
847 		pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
848 		map = &vmspace->vm_map;
849 	} else if (vmspace_getrefs(vmspace) == 1) {
850 		shmexit(vmspace);
851 		pmap_remove_pages(vmspace_pmap(vmspace),
852 				  0, VM_MAX_USER_ADDRESS);
853 		vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
854 	} else {
855 		vmspace_exec(imgp->proc, NULL);
856 		vmspace = imgp->proc->p_vmspace;
857 		map = &vmspace->vm_map;
858 	}
859 
860 	/*
861 	 * Really make sure lwp-specific and process-specific mappings
862 	 * are gone.
863 	 *
864 	 * Once we've done that, and because we are the only LWP left, with
865 	 * no TID-dependent mappings, we can reset the TID to 1 (the RB tree
866 	 * will remain consistent since it has only one entry).  This way
867 	 * the exec'd program gets a nice deterministic tid of 1.
868 	 */
869 	lwp_userunmap(lp);
870 	proc_userunmap(p);
871 	lp->lwp_tid = 1;
872 	p->p_lasttid = 1;
873 
874 	/*
875 	 * Allocate a new stack, generally make the stack non-executable
876 	 * but allow the program to adjust that (the program may desire to
877 	 * use areas of the stack for executable code).
878 	 */
879 	error = vm_map_stack(&vmspace->vm_map, &stack_addr, (vm_size_t)maxssiz,
880 			     0,
881 			     VM_PROT_READ|VM_PROT_WRITE,
882 			     VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
883 			     0);
884 	if (error)
885 		return (error);
886 
887 	/*
888 	 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
889 	 * VM_STACK case, but they are still used to monitor the size of the
890 	 * process stack so we can check the stack rlimit.
891 	 */
892 	vmspace->vm_ssize = sgrowsiz;		/* in bytes */
893 	vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
894 
895 	return(0);
896 }
897 
898 /*
899  * Copy out argument and environment strings from the old process
900  *	address space into the temporary string buffer.
901  */
902 int
903 exec_copyin_args(struct image_args *args, char *fname,
904 		enum exec_path_segflg segflg, char **argv, char **envv)
905 {
906 	char	*argp, *envp;
907 	int	error = 0;
908 	size_t	length;
909 
910 	args->buf = objcache_get(exec_objcache, M_WAITOK);
911 	if (args->buf == NULL)
912 		return (ENOMEM);
913 	args->begin_argv = args->buf;
914 	args->endp = args->begin_argv;
915 	args->space = ARG_MAX;
916 
917 	args->fname = args->buf + ARG_MAX;
918 
919 	/*
920 	 * Copy the file name.
921 	 */
922 	if (segflg == PATH_SYSSPACE) {
923 		error = copystr(fname, args->fname, PATH_MAX, &length);
924 	} else if (segflg == PATH_USERSPACE) {
925 		error = copyinstr(fname, args->fname, PATH_MAX, &length);
926 	}
927 
928 	/*
929 	 * Extract argument strings.  argv may not be NULL.  The argv
930 	 * array is terminated by a NULL entry.  We special-case the
931 	 * situation where argv[0] is NULL by passing { filename, NULL }
932 	 * to the new program to guarentee that the interpreter knows what
933 	 * file to open in case we exec an interpreted file.   Note that
934 	 * a NULL argv[0] terminates the argv[] array.
935 	 *
936 	 * XXX the special-casing of argv[0] is historical and needs to be
937 	 * revisited.
938 	 */
939 	if (argv == NULL)
940 		error = EFAULT;
941 	if (error == 0) {
942 		while ((argp = (caddr_t)(intptr_t)
943 			       fuword64((uintptr_t *)argv++)) != NULL) {
944 			if (argp == (caddr_t)-1) {
945 				error = EFAULT;
946 				break;
947 			}
948 			error = copyinstr(argp, args->endp,
949 					  args->space, &length);
950 			if (error) {
951 				if (error == ENAMETOOLONG)
952 					error = E2BIG;
953 				break;
954 			}
955 			args->space -= length;
956 			args->endp += length;
957 			args->argc++;
958 		}
959 		if (args->argc == 0 && error == 0) {
960 			length = strlen(args->fname) + 1;
961 			if (length > args->space) {
962 				error = E2BIG;
963 			} else {
964 				bcopy(args->fname, args->endp, length);
965 				args->space -= length;
966 				args->endp += length;
967 				args->argc++;
968 			}
969 		}
970 	}
971 
972 	args->begin_envv = args->endp;
973 
974 	/*
975 	 * extract environment strings.  envv may be NULL.
976 	 */
977 	if (envv && error == 0) {
978 		while ((envp = (caddr_t)(intptr_t)
979 			       fuword64((uintptr_t *)envv++))) {
980 			if (envp == (caddr_t) -1) {
981 				error = EFAULT;
982 				break;
983 			}
984 			error = copyinstr(envp, args->endp,
985 					  args->space, &length);
986 			if (error) {
987 				if (error == ENAMETOOLONG)
988 					error = E2BIG;
989 				break;
990 			}
991 			args->space -= length;
992 			args->endp += length;
993 			args->envc++;
994 		}
995 	}
996 	return (error);
997 }
998 
999 void
1000 exec_free_args(struct image_args *args)
1001 {
1002 	if (args->buf) {
1003 		objcache_put(exec_objcache, args->buf);
1004 		args->buf = NULL;
1005 	}
1006 }
1007 
1008 /*
1009  * Copy strings out to the new process address space, constructing
1010  * new arg and env vector tables. Return a pointer to the base
1011  * so that it can be used as the initial stack pointer.
1012  *
1013  * The format is, roughly:
1014  *
1015  *	[argv[]]			<-- vectp
1016  *	[envp[]]
1017  *	[ELF_Auxargs]
1018  *
1019  *	[args & env]			<-- destp
1020  *	[sgap]
1021  *	[SPARE_USRSPACE]
1022  *	[execpath]
1023  *	[szsigcode]   RO|NX
1024  *	[ps_strings]  RO|NX		Top of user stack
1025  *
1026  */
1027 static register_t *
1028 exec_copyout_strings(struct image_params *imgp)
1029 {
1030 	int argc, envc, sgap;
1031 	int gap;
1032 	int argsenvspace;
1033 	char **vectp;
1034 	char *stringp, *destp, *szsigbase;
1035 	register_t *stack_base;
1036 	struct ps_strings *arginfo;
1037 	size_t execpath_len;
1038 	int szsigcode;
1039 
1040 	/*
1041 	 * Calculate string base and vector table pointers.
1042 	 * Also deal with signal trampoline code for this exec type.
1043 	 */
1044 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
1045 		execpath_len = strlen(imgp->execpath) + 1;
1046 	else
1047 		execpath_len = 0;
1048 	arginfo = (struct ps_strings *)PS_STRINGS;
1049 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
1050 
1051 	argsenvspace = roundup((ARG_MAX - imgp->args->space), sizeof(char *));
1052 	gap = stackgap_random;
1053 	cpu_ccfence();
1054 	if (gap != 0) {
1055 		if (gap < 0)
1056 			sgap = ALIGN(-gap);
1057 		else
1058 			sgap = ALIGN(karc4random() & (gap - 1));
1059 	} else {
1060 		sgap = 0;
1061 	}
1062 
1063 	/*
1064 	 * Calculate destp, which points to [args & env] and above.
1065 	 */
1066 	szsigbase = (char *)(intptr_t)
1067 		    trunc_page64((intptr_t)arginfo - szsigcode);
1068 	szsigbase -= SZSIGCODE_EXTRA_BYTES;
1069 	destp = szsigbase -
1070 		roundup(execpath_len, sizeof(char *)) -
1071 		SPARE_USRSPACE -
1072 		sgap -
1073 		argsenvspace;
1074 
1075 	/*
1076 	 * install sigcode
1077 	 */
1078 	if (szsigcode)
1079 		copyout(imgp->proc->p_sysent->sv_sigcode, szsigbase, szsigcode);
1080 
1081 	/*
1082 	 * Copy the image path for the rtld
1083 	 */
1084 	if (execpath_len) {
1085 		imgp->execpathp = (uintptr_t)szsigbase -
1086 				  roundup(execpath_len, sizeof(char *));
1087 		copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
1088 	}
1089 
1090 	/*
1091 	 * Calculate base for argv[], envp[], and ELF_Auxargs.
1092 	 */
1093 	vectp = (char **)destp - (AT_COUNT * 2);
1094 	vectp -= imgp->args->argc + imgp->args->envc + 2;
1095 
1096 	stack_base = (register_t *)vectp;
1097 
1098 	stringp = imgp->args->begin_argv;
1099 	argc = imgp->args->argc;
1100 	envc = imgp->args->envc;
1101 
1102 	/*
1103 	 * Copy out strings - arguments and environment (at destp)
1104 	 */
1105 	copyout(stringp, destp, ARG_MAX - imgp->args->space);
1106 
1107 	/*
1108 	 * Fill in "ps_strings" struct for ps, w, etc.
1109 	 */
1110 	suword64((void *)&arginfo->ps_argvstr, (uint64_t)(intptr_t)vectp);
1111 	suword32((void *)&arginfo->ps_nargvstr, argc);
1112 
1113 	/*
1114 	 * Fill in argument portion of vector table.
1115 	 */
1116 	for (; argc > 0; --argc) {
1117 		suword64((void *)vectp++, (uintptr_t)destp);
1118 		while (*stringp++ != 0)
1119 			destp++;
1120 		destp++;
1121 	}
1122 
1123 	/* a null vector table pointer separates the argp's from the envp's */
1124 	suword64((void *)vectp++, 0);
1125 
1126 	suword64((void *)&arginfo->ps_envstr, (uintptr_t)vectp);
1127 	suword32((void *)&arginfo->ps_nenvstr, envc);
1128 
1129 	/*
1130 	 * Fill in environment portion of vector table.
1131 	 */
1132 	for (; envc > 0; --envc) {
1133 		suword64((void *)vectp++, (uintptr_t)destp);
1134 		while (*stringp++ != 0)
1135 			destp++;
1136 		destp++;
1137 	}
1138 
1139 	/* end of vector table is a null pointer */
1140 	suword64((void *)vectp, 0);
1141 
1142 	/*
1143 	 * Make the signal trampoline executable and read-only.
1144 	 */
1145 	vm_map_protect(&imgp->proc->p_vmspace->vm_map,
1146 		       (vm_offset_t)szsigbase,
1147 		       (vm_offset_t)szsigbase + PAGE_SIZE,
1148 		       VM_PROT_READ|VM_PROT_EXECUTE, FALSE);
1149 
1150 	return (stack_base);
1151 }
1152 
1153 /*
1154  * Check permissions of file to execute.
1155  *	Return 0 for success or error code on failure.
1156  */
1157 int
1158 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1159 {
1160 	struct proc *p = imgp->proc;
1161 	struct vnode *vp = imgp->vp;
1162 	struct vattr_lite *lvap = imgp->lvap;
1163 	int error;
1164 
1165 	/* Get file attributes */
1166 	error = VOP_GETATTR_LITE(vp, lvap);
1167 	if (error)
1168 		return (error);
1169 
1170 	/*
1171 	 * 1) Check if file execution is disabled for the filesystem that this
1172 	 *	file resides on.
1173 	 * 2) Insure that at least one execute bit is on - otherwise root
1174 	 *	will always succeed, and we don't want to happen unless the
1175 	 *	file really is executable.
1176 	 * 3) Insure that the file is a regular file.
1177 	 */
1178 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1179 	    ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1180 	    ((lvap->va_mode & 0111) == 0) ||
1181 	    (lvap->va_type != VREG)) {
1182 		return (EACCES);
1183 	}
1184 
1185 	/*
1186 	 * Zero length files can't be exec'd
1187 	 */
1188 	if (lvap->va_size == 0)
1189 		return (ENOEXEC);
1190 
1191 	/*
1192 	 *  Check for execute permission to file based on current credentials.
1193 	 */
1194 	error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1195 	if (error)
1196 		return (error);
1197 
1198 	/*
1199 	 * Check number of open-for-writes on the file and deny execution
1200 	 * if there are any.
1201 	 */
1202 	if (vp->v_writecount)
1203 		return (ETXTBSY);
1204 
1205 	/*
1206 	 * Call filesystem specific open routine, which allows us to read,
1207 	 * write, and mmap the file.  Without the VOP_OPEN we can only
1208 	 * stat the file.
1209 	 */
1210 	error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1211 	if (error)
1212 		return (error);
1213 
1214 	return (0);
1215 }
1216 
1217 /*
1218  * Exec handler registration
1219  */
1220 int
1221 exec_register(const struct execsw *execsw_arg)
1222 {
1223 	const struct execsw **es, **xs, **newexecsw;
1224 	int count = 2;	/* New slot and trailing NULL */
1225 
1226 	if (execsw)
1227 		for (es = execsw; *es; es++)
1228 			count++;
1229 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1230 	xs = newexecsw;
1231 	if (execsw)
1232 		for (es = execsw; *es; es++)
1233 			*xs++ = *es;
1234 	*xs++ = execsw_arg;
1235 	*xs = NULL;
1236 	if (execsw)
1237 		kfree(execsw, M_TEMP);
1238 	execsw = newexecsw;
1239 	return 0;
1240 }
1241 
1242 int
1243 exec_unregister(const struct execsw *execsw_arg)
1244 {
1245 	const struct execsw **es, **xs, **newexecsw;
1246 	int count = 1;
1247 
1248 	if (execsw == NULL)
1249 		panic("unregister with no handlers left?");
1250 
1251 	for (es = execsw; *es; es++) {
1252 		if (*es == execsw_arg)
1253 			break;
1254 	}
1255 	if (*es == NULL)
1256 		return ENOENT;
1257 	for (es = execsw; *es; es++)
1258 		if (*es != execsw_arg)
1259 			count++;
1260 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1261 	xs = newexecsw;
1262 	for (es = execsw; *es; es++)
1263 		if (*es != execsw_arg)
1264 			*xs++ = *es;
1265 	*xs = NULL;
1266 	if (execsw)
1267 		kfree(execsw, M_TEMP);
1268 	execsw = newexecsw;
1269 	return 0;
1270 }
1271