xref: /dragonfly/sys/kern/kern_exec.c (revision d0d42ea0)
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysproto.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
69 
70 #include <sys/user.h>
71 #include <sys/reg.h>
72 
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/mplock2.h>
76 
77 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
78 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
79 
80 static register_t *exec_copyout_strings (struct image_params *);
81 
82 /* XXX This should be vm_size_t. */
83 static u_long ps_strings = PS_STRINGS;
84 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
85 
86 /* XXX This should be vm_size_t. */
87 static u_long usrstack = USRSTACK;
88 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
89 
90 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
91 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
92     &ps_arg_cache_limit, 0, "");
93 
94 int ps_argsopen = 1;
95 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
96 
97 static int ktrace_suid = 0;
98 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
99 
100 void print_execve_args(struct image_args *args);
101 int debug_execve_args = 0;
102 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
103     0, "");
104 
105 /*
106  * Exec arguments object cache
107  */
108 static struct objcache *exec_objcache;
109 
110 static
111 void
112 exec_objcache_init(void *arg __unused)
113 {
114 	int cluster_limit;
115 	size_t limsize;
116 
117 	/*
118 	 * Maximum number of concurrent execs.  This can be limiting on
119 	 * systems with a lot of cpu cores but it also eats a significant
120 	 * amount of memory.
121 	 */
122 	cluster_limit = 16;
123 	limsize = kmem_lim_size();
124 	if (limsize > 7 * 1024)
125 		cluster_limit *= 2;
126 	if (limsize > 15 * 1024)
127 		cluster_limit *= 2;
128 
129 	exec_objcache = objcache_create_mbacked(
130 					M_EXECARGS, PATH_MAX + ARG_MAX,
131 					&cluster_limit, 8,
132 					NULL, NULL, NULL);
133 }
134 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
135 
136 /*
137  * stackgap_random specifies if the stackgap should have a random size added
138  * to it.  It must be a power of 2.  If non-zero, the stack gap will be
139  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
140  */
141 static int stackgap_random = 1024;
142 static int
143 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
144 {
145 	int error, new_val;
146 	new_val = stackgap_random;
147 	error = sysctl_handle_int(oidp, &new_val, 0, req);
148 	if (error != 0 || req->newptr == NULL)
149 		return (error);
150 	if ((new_val < 0) || (new_val > 16 * PAGE_SIZE) || ! powerof2(new_val))
151 		return (EINVAL);
152 	stackgap_random = new_val;
153 
154 	return(0);
155 }
156 
157 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_UINT,
158 	0, 0, sysctl_kern_stackgap, "IU", "Max random stack gap (power of 2)");
159 
160 void
161 print_execve_args(struct image_args *args)
162 {
163 	char *cp;
164 	int ndx;
165 
166 	cp = args->begin_argv;
167 	for (ndx = 0; ndx < args->argc; ndx++) {
168 		kprintf("\targv[%d]: %s\n", ndx, cp);
169 		while (*cp++ != '\0');
170 	}
171 	for (ndx = 0; ndx < args->envc; ndx++) {
172 		kprintf("\tenvv[%d]: %s\n", ndx, cp);
173 		while (*cp++ != '\0');
174 	}
175 }
176 
177 /*
178  * Each of the items is a pointer to a `const struct execsw', hence the
179  * double pointer here.
180  */
181 static const struct execsw **execsw;
182 
183 /*
184  * Replace current vmspace with a new binary.
185  * Returns 0 on success, > 0 on recoverable error (use as errno).
186  * Returns -1 on lethal error which demands killing of the current
187  * process!
188  */
189 int
190 kern_execve(struct nlookupdata *nd, struct image_args *args)
191 {
192 	struct thread *td = curthread;
193 	struct lwp *lp = td->td_lwp;
194 	struct proc *p = td->td_proc;
195 	struct vnode *ovp;
196 	register_t *stack_base;
197 	struct pargs *pa;
198 	struct sigacts *ops;
199 	struct sigacts *nps;
200 	int error, len, i;
201 	struct image_params image_params, *imgp;
202 	struct vattr attr;
203 	int (*img_first) (struct image_params *);
204 
205 	if (debug_execve_args) {
206 		kprintf("%s()\n", __func__);
207 		print_execve_args(args);
208 	}
209 
210 	KKASSERT(p);
211 	lwkt_gettoken(&p->p_token);
212 	imgp = &image_params;
213 
214 	/*
215 	 * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
216 	 * no modifications to the process at all until we get there.
217 	 *
218 	 * Note that multiple threads may be trying to exec at the same
219 	 * time.  exec_new_vmspace() handles that too.
220 	 */
221 
222 	/*
223 	 * Initialize part of the common data
224 	 */
225 	imgp->proc = p;
226 	imgp->args = args;
227 	imgp->attr = &attr;
228 	imgp->entry_addr = 0;
229 	imgp->resident = 0;
230 	imgp->vmspace_destroyed = 0;
231 	imgp->interpreted = 0;
232 	imgp->interpreter_name[0] = 0;
233 	imgp->auxargs = NULL;
234 	imgp->vp = NULL;
235 	imgp->firstpage = NULL;
236 	imgp->ps_strings = 0;
237 	imgp->execpath = imgp->freepath = NULL;
238 	imgp->execpathp = 0;
239 	imgp->image_header = NULL;
240 
241 interpret:
242 
243 	/*
244 	 * Translate the file name to a vnode.  Unlock the cache entry to
245 	 * improve parallelism for programs exec'd in parallel.
246 	 */
247 	if ((error = nlookup(nd)) != 0)
248 		goto exec_fail;
249 	error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_EXCLUSIVE, &imgp->vp);
250 	KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
251 	nd->nl_flags &= ~NLC_NCPISLOCKED;
252 	cache_unlock(&nd->nl_nch);
253 	if (error)
254 		goto exec_fail;
255 
256 	/*
257 	 * Check file permissions (also 'opens' file).
258 	 * Include also the top level mount in the check.
259 	 */
260 	error = exec_check_permissions(imgp, nd->nl_nch.mount);
261 	if (error) {
262 		vn_unlock(imgp->vp);
263 		goto exec_fail_dealloc;
264 	}
265 
266 	error = exec_map_first_page(imgp);
267 	vn_unlock(imgp->vp);
268 	if (error)
269 		goto exec_fail_dealloc;
270 
271 	imgp->proc->p_osrel = 0;
272 
273 	if (debug_execve_args && imgp->interpreted) {
274 		kprintf("    target is interpreted -- recursive pass\n");
275 		kprintf("    interpreter: %s\n", imgp->interpreter_name);
276 		print_execve_args(args);
277 	}
278 
279 	/*
280 	 *	If the current process has a special image activator it
281 	 *	wants to try first, call it.   For example, emulating shell
282 	 *	scripts differently.
283 	 */
284 	error = -1;
285 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
286 		error = img_first(imgp);
287 
288 	/*
289 	 *	If the vnode has a registered vmspace, exec the vmspace
290 	 */
291 	if (error == -1 && imgp->vp->v_resident) {
292 		error = exec_resident_imgact(imgp);
293 	}
294 
295 	/*
296 	 *	Loop through the list of image activators, calling each one.
297 	 *	An activator returns -1 if there is no match, 0 on success,
298 	 *	and an error otherwise.
299 	 */
300 	for (i = 0; error == -1 && execsw[i]; ++i) {
301 		if (execsw[i]->ex_imgact == NULL ||
302 		    execsw[i]->ex_imgact == img_first) {
303 			continue;
304 		}
305 		error = (*execsw[i]->ex_imgact)(imgp);
306 	}
307 
308 	if (error) {
309 		if (error == -1)
310 			error = ENOEXEC;
311 		goto exec_fail_dealloc;
312 	}
313 
314 	/*
315 	 * Special interpreter operation, cleanup and loop up to try to
316 	 * activate the interpreter.
317 	 */
318 	if (imgp->interpreted) {
319 		exec_unmap_first_page(imgp);
320 		nlookup_done(nd);
321 		vrele(imgp->vp);
322 		imgp->vp = NULL;
323 		error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
324 					NLC_FOLLOW);
325 		if (error)
326 			goto exec_fail;
327 		goto interpret;
328 	}
329 
330 	/*
331 	 * Do the best to calculate the full path to the image file
332 	 */
333 	if (imgp->auxargs != NULL &&
334 	   ((args->fname != NULL && args->fname[0] == '/') ||
335 	    vn_fullpath(imgp->proc,
336 			imgp->vp,
337 			&imgp->execpath,
338 			&imgp->freepath,
339 			0) != 0))
340 		imgp->execpath = args->fname;
341 
342 	/*
343 	 * Copy out strings (args and env) and initialize stack base
344 	 */
345 	stack_base = exec_copyout_strings(imgp);
346 	p->p_vmspace->vm_minsaddr = (char *)stack_base;
347 
348 	/*
349 	 * If custom stack fixup routine present for this process
350 	 * let it do the stack setup.  If we are running a resident
351 	 * image there is no auxinfo or other image activator context
352 	 * so don't try to add fixups to the stack.
353 	 *
354 	 * Else stuff argument count as first item on stack
355 	 */
356 	if (p->p_sysent->sv_fixup && imgp->resident == 0)
357 		(*p->p_sysent->sv_fixup)(&stack_base, imgp);
358 	else
359 		suword(--stack_base, imgp->args->argc);
360 
361 	/*
362 	 * For security and other reasons, the file descriptor table cannot
363 	 * be shared after an exec.
364 	 */
365 	if (p->p_fd->fd_refcnt > 1) {
366 		struct filedesc *tmp;
367 
368 		error = fdcopy(p, &tmp);
369 		if (error != 0)
370 			goto exec_fail;
371 		fdfree(p, tmp);
372 	}
373 
374 	/*
375 	 * For security and other reasons, signal handlers cannot
376 	 * be shared after an exec. The new proces gets a copy of the old
377 	 * handlers. In execsigs(), the new process will have its signals
378 	 * reset.
379 	 */
380 	ops = p->p_sigacts;
381 	if (ops->ps_refcnt > 1) {
382 		nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
383 		bcopy(ops, nps, sizeof(*nps));
384 		refcount_init(&nps->ps_refcnt, 1);
385 		p->p_sigacts = nps;
386 		if (refcount_release(&ops->ps_refcnt)) {
387 			kfree(ops, M_SUBPROC);
388 			ops = NULL;
389 		}
390 	}
391 
392 	/*
393 	 * For security and other reasons virtual kernels cannot be
394 	 * inherited by an exec.  This also allows a virtual kernel
395 	 * to fork/exec unrelated applications.
396 	 */
397 	if (p->p_vkernel)
398 		vkernel_exit(p);
399 
400 	/* Stop profiling */
401 	stopprofclock(p);
402 
403 	/* close files on exec */
404 	fdcloseexec(p);
405 
406 	/* reset caught signals */
407 	execsigs(p);
408 
409 	/* name this process - nameiexec(p, ndp) */
410 	len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
411 	bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
412 	p->p_comm[len] = 0;
413 	bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
414 
415 	/*
416 	 * mark as execed, wakeup the process that vforked (if any) and tell
417 	 * it that it now has its own resources back
418 	 */
419 	p->p_flags |= P_EXEC;
420 	if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
421 		p->p_flags &= ~P_PPWAIT;
422 		wakeup((caddr_t)p->p_pptr);
423 	}
424 
425 	/*
426 	 * Implement image setuid/setgid.
427 	 *
428 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
429 	 * the process is being traced.
430 	 */
431 	if ((((attr.va_mode & VSUID) && p->p_ucred->cr_uid != attr.va_uid) ||
432 	     ((attr.va_mode & VSGID) && p->p_ucred->cr_gid != attr.va_gid)) &&
433 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
434 	    (p->p_flags & P_TRACED) == 0) {
435 		/*
436 		 * Turn off syscall tracing for set-id programs, except for
437 		 * root.  Record any set-id flags first to make sure that
438 		 * we do not regain any tracing during a possible block.
439 		 */
440 		setsugid();
441 		if (p->p_tracenode && ktrace_suid == 0 &&
442 		    priv_check(td, PRIV_ROOT) != 0) {
443 			ktrdestroy(&p->p_tracenode);
444 			p->p_traceflag = 0;
445 		}
446 		/* Close any file descriptors 0..2 that reference procfs */
447 		setugidsafety(p);
448 		/* Make sure file descriptors 0..2 are in use. */
449 		error = fdcheckstd(lp);
450 		if (error != 0)
451 			goto exec_fail_dealloc;
452 		/*
453 		 * Set the new credentials.
454 		 */
455 		cratom(&p->p_ucred);
456 		if (attr.va_mode & VSUID)
457 			change_euid(attr.va_uid);
458 		if (attr.va_mode & VSGID)
459 			p->p_ucred->cr_gid = attr.va_gid;
460 
461 		/*
462 		 * Clear local varsym variables
463 		 */
464 		varsymset_clean(&p->p_varsymset);
465 	} else {
466 		if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
467 		    p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
468 			p->p_flags &= ~P_SUGID;
469 	}
470 
471 	/*
472 	 * Implement correct POSIX saved-id behavior.
473 	 */
474 	if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
475 	    p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
476 		cratom(&p->p_ucred);
477 		p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
478 		p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
479 	}
480 
481 	/*
482 	 * Store the vp for use in procfs.  Be sure to keep p_textvp
483 	 * consistent if we block during the switch-over.
484 	 */
485 	ovp = p->p_textvp;
486 	vref(imgp->vp);			/* ref new vp */
487 	p->p_textvp = imgp->vp;
488 	if (ovp)			/* release old vp */
489 		vrele(ovp);
490 
491 	/* Release old namecache handle to text file */
492 	if (p->p_textnch.ncp)
493 		cache_drop(&p->p_textnch);
494 
495 	if (nd->nl_nch.mount)
496 		cache_copy(&nd->nl_nch, &p->p_textnch);
497 
498         /*
499          * Notify others that we exec'd, and clear the P_INEXEC flag
500          * as we're now a bona fide freshly-execed process.
501          */
502 	KNOTE(&p->p_klist, NOTE_EXEC);
503 	p->p_flags &= ~P_INEXEC;
504 
505 	/*
506 	 * If tracing the process, trap to debugger so breakpoints
507 	 * 	can be set before the program executes.
508 	 */
509 	STOPEVENT(p, S_EXEC, 0);
510 
511 	if (p->p_flags & P_TRACED)
512 		ksignal(p, SIGTRAP);
513 
514 	/* clear "fork but no exec" flag, as we _are_ execing */
515 	p->p_acflag &= ~AFORK;
516 
517 	/* Set values passed into the program in registers. */
518 	exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
519 		     imgp->ps_strings);
520 
521 	/* Set the access time on the vnode */
522 	vn_mark_atime(imgp->vp, td);
523 
524 	/*
525 	 * Free any previous argument cache
526 	 */
527 	pa = p->p_args;
528 	p->p_args = NULL;
529 	if (pa && refcount_release(&pa->ar_ref)) {
530 		kfree(pa, M_PARGS);
531 		pa = NULL;
532 	}
533 
534 	/*
535 	 * Cache arguments if they fit inside our allowance
536 	 */
537 	i = imgp->args->begin_envv - imgp->args->begin_argv;
538 	if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
539 		pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
540 		refcount_init(&pa->ar_ref, 1);
541 		pa->ar_length = i;
542 		bcopy(imgp->args->begin_argv, pa->ar_args, i);
543 		KKASSERT(p->p_args == NULL);
544 		p->p_args = pa;
545 	}
546 
547 exec_fail_dealloc:
548 
549 	/*
550 	 * free various allocated resources
551 	 */
552 	if (imgp->firstpage)
553 		exec_unmap_first_page(imgp);
554 
555 	if (imgp->vp) {
556 		vrele(imgp->vp);
557 		imgp->vp = NULL;
558 	}
559 
560 	if (imgp->freepath)
561 		kfree(imgp->freepath, M_TEMP);
562 
563 	if (error == 0) {
564 		++mycpu->gd_cnt.v_exec;
565 		lwkt_reltoken(&p->p_token);
566 		return (0);
567 	}
568 
569 exec_fail:
570 	/*
571 	 * we're done here, clear P_INEXEC if we were the ones that
572 	 * set it.  Otherwise if vmspace_destroyed is still set we
573 	 * raced another thread and that thread is responsible for
574 	 * clearing it.
575 	 */
576 	if (imgp->vmspace_destroyed & 2)
577 		p->p_flags &= ~P_INEXEC;
578 	lwkt_reltoken(&p->p_token);
579 	if (imgp->vmspace_destroyed) {
580 		/*
581 		 * Sorry, no more process anymore. exit gracefully.
582 		 * However we can't die right here, because our
583 		 * caller might have to clean up, so indicate a
584 		 * lethal error by returning -1.
585 		 */
586 		return(-1);
587 	} else {
588 		return(error);
589 	}
590 }
591 
592 /*
593  * execve() system call.
594  */
595 int
596 sys_execve(struct execve_args *uap)
597 {
598 	struct nlookupdata nd;
599 	struct image_args args;
600 	int error;
601 
602 	bzero(&args, sizeof(args));
603 
604 	error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
605 	if (error == 0) {
606 		error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
607 					uap->argv, uap->envv);
608 	}
609 	if (error == 0)
610 		error = kern_execve(&nd, &args);
611 	nlookup_done(&nd);
612 	exec_free_args(&args);
613 
614 	if (error < 0) {
615 		/* We hit a lethal error condition.  Let's die now. */
616 		exit1(W_EXITCODE(0, SIGABRT));
617 		/* NOTREACHED */
618 	}
619 
620 	/*
621 	 * The syscall result is returned in registers to the new program.
622 	 * Linux will register %edx as an atexit function and we must be
623 	 * sure to set it to 0.  XXX
624 	 */
625 	if (error == 0)
626 		uap->sysmsg_result64 = 0;
627 
628 	return (error);
629 }
630 
631 int
632 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
633 	      struct lwbuf **plwb, const char **pdata)
634 {
635 	int rv;
636 	vm_page_t ma;
637 	vm_page_t m;
638 	vm_object_t object;
639 
640 	/*
641 	 * The file has to be mappable.
642 	 */
643 	if ((object = imgp->vp->v_object) == NULL)
644 		return (EIO);
645 
646 	if (pageno >= object->size)
647 		return (EIO);
648 
649 	vm_object_hold(object);
650 	m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
651 	while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
652 		ma = m;
653 
654 		/*
655 		 * get_pages unbusies all the requested pages except the
656 		 * primary page (at index 0 in this case).  The primary
657 		 * page may have been wired during the pagein (e.g. by
658 		 * the buffer cache) so vnode_pager_freepage() must be
659 		 * used to properly release it.
660 		 */
661 		rv = vm_pager_get_page(object, &ma, 1);
662 		m = vm_page_lookup(object, pageno);
663 
664 		if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
665 			if (m) {
666 				vm_page_protect(m, VM_PROT_NONE);
667 				vnode_pager_freepage(m);
668 			}
669 			vm_object_drop(object);
670 			return EIO;
671 		}
672 	}
673 	vm_page_hold(m);
674 	vm_page_wakeup(m);	/* unbusy the page */
675 	vm_object_drop(object);
676 
677 	*plwb = lwbuf_alloc(m, *plwb);
678 	*pdata = (void *)lwbuf_kva(*plwb);
679 
680 	return (0);
681 }
682 
683 /*
684  * Map the first page of an executable image.
685  *
686  * NOTE: If the mapping fails we have to NULL-out firstpage which may
687  *	 still be pointing to our supplied lwp structure.
688  */
689 int
690 exec_map_first_page(struct image_params *imgp)
691 {
692 	int err;
693 
694 	if (imgp->firstpage)
695 		exec_unmap_first_page(imgp);
696 
697 	imgp->firstpage = &imgp->firstpage_cache;
698 	err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
699 
700 	if (err) {
701 		imgp->firstpage = NULL;
702 		return err;
703 	}
704 
705 	return 0;
706 }
707 
708 void
709 exec_unmap_page(struct lwbuf *lwb)
710 {
711 	vm_page_t m;
712 
713 	crit_enter();
714 	if (lwb != NULL) {
715 		m = lwbuf_page(lwb);
716 		lwbuf_free(lwb);
717 		vm_page_unhold(m);
718 	}
719 	crit_exit();
720 }
721 
722 void
723 exec_unmap_first_page(struct image_params *imgp)
724 {
725 	exec_unmap_page(imgp->firstpage);
726 	imgp->firstpage = NULL;
727 	imgp->image_header = NULL;
728 }
729 
730 /*
731  * Destroy old address space, and allocate a new stack
732  *	The new stack is only SGROWSIZ large because it is grown
733  *	automatically in trap.c.
734  *
735  * This is the point of no return.
736  */
737 int
738 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
739 {
740 	struct vmspace *vmspace = imgp->proc->p_vmspace;
741 	vm_offset_t stack_addr = USRSTACK - maxssiz;
742 	struct proc *p;
743 	vm_map_t map;
744 	int error;
745 
746 	/*
747 	 * Indicate that we cannot gracefully error out any more, kill
748 	 * any other threads present, and set P_INEXEC to indicate that
749 	 * we are now messing with the process structure proper.
750 	 *
751 	 * If killalllwps() races return an error which coupled with
752 	 * vmspace_destroyed will cause us to exit.  This is what we
753 	 * want since another thread is patiently waiting for us to exit
754 	 * in that case.
755 	 */
756 	p = curproc;
757 	imgp->vmspace_destroyed = 1;
758 
759 	if (curthread->td_proc->p_nthreads > 1) {
760 		error = killalllwps(1);
761 		if (error)
762 			return (error);
763 	}
764 	imgp->vmspace_destroyed |= 2;	/* we are responsible for P_INEXEC */
765 	p->p_flags |= P_INEXEC;
766 
767 	/*
768 	 * After setting P_INEXEC wait for any remaining references to
769 	 * the process (p) to go away.
770 	 *
771 	 * In particular, a vfork/exec sequence will replace p->p_vmspace
772 	 * and we must interlock anyone trying to access the space (aka
773 	 * procfs or sys_process.c calling procfs_domem()).
774 	 *
775 	 * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
776 	 */
777 	PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
778 
779 	/*
780 	 * Blow away entire process VM, if address space not shared,
781 	 * otherwise, create a new VM space so that other threads are
782 	 * not disrupted.  If we are execing a resident vmspace we
783 	 * create a duplicate of it and remap the stack.
784 	 */
785 	map = &vmspace->vm_map;
786 	if (vmcopy) {
787 		vmspace_exec(imgp->proc, vmcopy);
788 		vmspace = imgp->proc->p_vmspace;
789 		pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
790 		map = &vmspace->vm_map;
791 	} else if (vmspace->vm_sysref.refcnt == 1) {
792 		shmexit(vmspace);
793 		if (vmspace->vm_upcalls)
794 			upc_release(vmspace, ONLY_LWP_IN_PROC(imgp->proc));
795 		pmap_remove_pages(vmspace_pmap(vmspace),
796 				  0, VM_MAX_USER_ADDRESS);
797 		vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
798 	} else {
799 		vmspace_exec(imgp->proc, NULL);
800 		vmspace = imgp->proc->p_vmspace;
801 		map = &vmspace->vm_map;
802 	}
803 
804 	/* Allocate a new stack */
805 	error = vm_map_stack(&vmspace->vm_map, stack_addr, (vm_size_t)maxssiz,
806 			     0, VM_PROT_ALL, VM_PROT_ALL, 0);
807 	if (error)
808 		return (error);
809 
810 	/* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
811 	 * VM_STACK case, but they are still used to monitor the size of the
812 	 * process stack so we can check the stack rlimit.
813 	 */
814 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
815 	vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
816 
817 	return(0);
818 }
819 
820 /*
821  * Copy out argument and environment strings from the old process
822  *	address space into the temporary string buffer.
823  */
824 int
825 exec_copyin_args(struct image_args *args, char *fname,
826 		enum exec_path_segflg segflg, char **argv, char **envv)
827 {
828 	char	*argp, *envp;
829 	int	error = 0;
830 	size_t	length;
831 
832 	args->buf = objcache_get(exec_objcache, M_WAITOK);
833 	if (args->buf == NULL)
834 		return (ENOMEM);
835 	args->begin_argv = args->buf;
836 	args->endp = args->begin_argv;
837 	args->space = ARG_MAX;
838 
839 	args->fname = args->buf + ARG_MAX;
840 
841 	/*
842 	 * Copy the file name.
843 	 */
844 	if (segflg == PATH_SYSSPACE) {
845 		error = copystr(fname, args->fname, PATH_MAX, &length);
846 	} else if (segflg == PATH_USERSPACE) {
847 		error = copyinstr(fname, args->fname, PATH_MAX, &length);
848 	}
849 
850 	/*
851 	 * Extract argument strings.  argv may not be NULL.  The argv
852 	 * array is terminated by a NULL entry.  We special-case the
853 	 * situation where argv[0] is NULL by passing { filename, NULL }
854 	 * to the new program to guarentee that the interpreter knows what
855 	 * file to open in case we exec an interpreted file.   Note that
856 	 * a NULL argv[0] terminates the argv[] array.
857 	 *
858 	 * XXX the special-casing of argv[0] is historical and needs to be
859 	 * revisited.
860 	 */
861 	if (argv == NULL)
862 		error = EFAULT;
863 	if (error == 0) {
864 		while ((argp = (caddr_t)(intptr_t)fuword(argv++)) != NULL) {
865 			if (argp == (caddr_t)-1) {
866 				error = EFAULT;
867 				break;
868 			}
869 			error = copyinstr(argp, args->endp,
870 					    args->space, &length);
871 			if (error) {
872 				if (error == ENAMETOOLONG)
873 					error = E2BIG;
874 				break;
875 			}
876 			args->space -= length;
877 			args->endp += length;
878 			args->argc++;
879 		}
880 		if (args->argc == 0 && error == 0) {
881 			length = strlen(args->fname) + 1;
882 			if (length > args->space) {
883 				error = E2BIG;
884 			} else {
885 				bcopy(args->fname, args->endp, length);
886 				args->space -= length;
887 				args->endp += length;
888 				args->argc++;
889 			}
890 		}
891 	}
892 
893 	args->begin_envv = args->endp;
894 
895 	/*
896 	 * extract environment strings.  envv may be NULL.
897 	 */
898 	if (envv && error == 0) {
899 		while ((envp = (caddr_t) (intptr_t) fuword(envv++))) {
900 			if (envp == (caddr_t) -1) {
901 				error = EFAULT;
902 				break;
903 			}
904 			error = copyinstr(envp, args->endp, args->space,
905 			    &length);
906 			if (error) {
907 				if (error == ENAMETOOLONG)
908 					error = E2BIG;
909 				break;
910 			}
911 			args->space -= length;
912 			args->endp += length;
913 			args->envc++;
914 		}
915 	}
916 	return (error);
917 }
918 
919 void
920 exec_free_args(struct image_args *args)
921 {
922 	if (args->buf) {
923 		objcache_put(exec_objcache, args->buf);
924 		args->buf = NULL;
925 	}
926 }
927 
928 /*
929  * Copy strings out to the new process address space, constructing
930  *	new arg and env vector tables. Return a pointer to the base
931  *	so that it can be used as the initial stack pointer.
932  */
933 register_t *
934 exec_copyout_strings(struct image_params *imgp)
935 {
936 	int argc, envc, sgap;
937 	char **vectp;
938 	char *stringp, *destp;
939 	register_t *stack_base;
940 	struct ps_strings *arginfo;
941 	size_t execpath_len;
942 	int szsigcode;
943 
944 	/*
945 	 * Calculate string base and vector table pointers.
946 	 * Also deal with signal trampoline code for this exec type.
947 	 */
948 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
949 		execpath_len = strlen(imgp->execpath) + 1;
950 	else
951 		execpath_len = 0;
952 	arginfo = (struct ps_strings *)PS_STRINGS;
953 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
954 	if (stackgap_random != 0)
955 		sgap = ALIGN(karc4random() & (stackgap_random - 1));
956 	else
957 		sgap = 0;
958 	destp =	(caddr_t)arginfo - szsigcode - SPARE_USRSPACE - sgap -
959 	    roundup(execpath_len, sizeof(char *)) -
960 	    roundup((ARG_MAX - imgp->args->space), sizeof(char *));
961 
962 	/*
963 	 * install sigcode
964 	 */
965 	if (szsigcode)
966 		copyout(imgp->proc->p_sysent->sv_sigcode,
967 		    ((caddr_t)arginfo - szsigcode), szsigcode);
968 
969 	/*
970 	 * Copy the image path for the rtld
971 	 */
972 	if (execpath_len != 0) {
973 		imgp->execpathp = (uintptr_t)arginfo
974 				  - szsigcode
975 				  - execpath_len;
976 		copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
977 	}
978 
979 	/*
980 	 * If we have a valid auxargs ptr, prepare some room
981 	 * on the stack.
982 	 *
983 	 * The '+ 2' is for the null pointers at the end of each of the
984 	 * arg and env vector sets, and 'AT_COUNT*2' is room for the
985 	 * ELF Auxargs data.
986 	 */
987 	if (imgp->auxargs) {
988 		vectp = (char **)(destp - (imgp->args->argc +
989 			imgp->args->envc + 2 + (AT_COUNT * 2) + execpath_len) *
990 			sizeof(char*));
991 	} else {
992 		vectp = (char **)(destp - (imgp->args->argc +
993 			imgp->args->envc + 2) * sizeof(char*));
994 	}
995 
996 	/*
997 	 * NOTE: don't bother aligning the stack here for GCC 2.x, it will
998 	 * be done in crt1.o.  Note that GCC 3.x aligns the stack in main.
999 	 */
1000 
1001 	/*
1002 	 * vectp also becomes our initial stack base
1003 	 */
1004 	stack_base = (register_t *)vectp;
1005 
1006 	stringp = imgp->args->begin_argv;
1007 	argc = imgp->args->argc;
1008 	envc = imgp->args->envc;
1009 
1010 	/*
1011 	 * Copy out strings - arguments and environment.
1012 	 */
1013 	copyout(stringp, destp, ARG_MAX - imgp->args->space);
1014 
1015 	/*
1016 	 * Fill in "ps_strings" struct for ps, w, etc.
1017 	 */
1018 	suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp);
1019 	suword(&arginfo->ps_nargvstr, argc);
1020 
1021 	/*
1022 	 * Fill in argument portion of vector table.
1023 	 */
1024 	for (; argc > 0; --argc) {
1025 		suword(vectp++, (long)(intptr_t)destp);
1026 		while (*stringp++ != 0)
1027 			destp++;
1028 		destp++;
1029 	}
1030 
1031 	/* a null vector table pointer separates the argp's from the envp's */
1032 	suword(vectp++, 0);
1033 
1034 	suword(&arginfo->ps_envstr, (long)(intptr_t)vectp);
1035 	suword(&arginfo->ps_nenvstr, envc);
1036 
1037 	/*
1038 	 * Fill in environment portion of vector table.
1039 	 */
1040 	for (; envc > 0; --envc) {
1041 		suword(vectp++, (long)(intptr_t)destp);
1042 		while (*stringp++ != 0)
1043 			destp++;
1044 		destp++;
1045 	}
1046 
1047 	/* end of vector table is a null pointer */
1048 	suword(vectp, 0);
1049 
1050 	return (stack_base);
1051 }
1052 
1053 /*
1054  * Check permissions of file to execute.
1055  *	Return 0 for success or error code on failure.
1056  */
1057 int
1058 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1059 {
1060 	struct proc *p = imgp->proc;
1061 	struct vnode *vp = imgp->vp;
1062 	struct vattr *attr = imgp->attr;
1063 	int error;
1064 
1065 	/* Get file attributes */
1066 	error = VOP_GETATTR(vp, attr);
1067 	if (error)
1068 		return (error);
1069 
1070 	/*
1071 	 * 1) Check if file execution is disabled for the filesystem that this
1072 	 *	file resides on.
1073 	 * 2) Insure that at least one execute bit is on - otherwise root
1074 	 *	will always succeed, and we don't want to happen unless the
1075 	 *	file really is executable.
1076 	 * 3) Insure that the file is a regular file.
1077 	 */
1078 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1079 	    ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1080 	    ((attr->va_mode & 0111) == 0) ||
1081 	    (attr->va_type != VREG)) {
1082 		return (EACCES);
1083 	}
1084 
1085 	/*
1086 	 * Zero length files can't be exec'd
1087 	 */
1088 	if (attr->va_size == 0)
1089 		return (ENOEXEC);
1090 
1091 	/*
1092 	 *  Check for execute permission to file based on current credentials.
1093 	 */
1094 	error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1095 	if (error)
1096 		return (error);
1097 
1098 	/*
1099 	 * Check number of open-for-writes on the file and deny execution
1100 	 * if there are any.
1101 	 */
1102 	if (vp->v_writecount)
1103 		return (ETXTBSY);
1104 
1105 	/*
1106 	 * Call filesystem specific open routine, which allows us to read,
1107 	 * write, and mmap the file.  Without the VOP_OPEN we can only
1108 	 * stat the file.
1109 	 */
1110 	error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1111 	if (error)
1112 		return (error);
1113 
1114 	return (0);
1115 }
1116 
1117 /*
1118  * Exec handler registration
1119  */
1120 int
1121 exec_register(const struct execsw *execsw_arg)
1122 {
1123 	const struct execsw **es, **xs, **newexecsw;
1124 	int count = 2;	/* New slot and trailing NULL */
1125 
1126 	if (execsw)
1127 		for (es = execsw; *es; es++)
1128 			count++;
1129 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1130 	xs = newexecsw;
1131 	if (execsw)
1132 		for (es = execsw; *es; es++)
1133 			*xs++ = *es;
1134 	*xs++ = execsw_arg;
1135 	*xs = NULL;
1136 	if (execsw)
1137 		kfree(execsw, M_TEMP);
1138 	execsw = newexecsw;
1139 	return 0;
1140 }
1141 
1142 int
1143 exec_unregister(const struct execsw *execsw_arg)
1144 {
1145 	const struct execsw **es, **xs, **newexecsw;
1146 	int count = 1;
1147 
1148 	if (execsw == NULL)
1149 		panic("unregister with no handlers left?");
1150 
1151 	for (es = execsw; *es; es++) {
1152 		if (*es == execsw_arg)
1153 			break;
1154 	}
1155 	if (*es == NULL)
1156 		return ENOENT;
1157 	for (es = execsw; *es; es++)
1158 		if (*es != execsw_arg)
1159 			count++;
1160 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1161 	xs = newexecsw;
1162 	for (es = execsw; *es; es++)
1163 		if (*es != execsw_arg)
1164 			*xs++ = *es;
1165 	*xs = NULL;
1166 	if (execsw)
1167 		kfree(execsw, M_TEMP);
1168 	execsw = newexecsw;
1169 	return 0;
1170 }
1171