xref: /dragonfly/sys/kern/kern_exec.c (revision f8f04fe3)
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  * $DragonFly: src/sys/kern/kern_exec.c,v 1.62 2007/08/28 01:09:24 dillon Exp $
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/sysproto.h>
33 #include <sys/kernel.h>
34 #include <sys/mount.h>
35 #include <sys/filedesc.h>
36 #include <sys/fcntl.h>
37 #include <sys/acct.h>
38 #include <sys/exec.h>
39 #include <sys/imgact.h>
40 #include <sys/imgact_elf.h>
41 #include <sys/kern_syscall.h>
42 #include <sys/wait.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sfbuf.h>
50 #include <sys/sysent.h>
51 #include <sys/shm.h>
52 #include <sys/sysctl.h>
53 #include <sys/vnode.h>
54 #include <sys/vmmeter.h>
55 #include <sys/aio.h>
56 #include <sys/libkern.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
69 
70 #include <sys/user.h>
71 #include <sys/reg.h>
72 
73 #include <sys/thread2.h>
74 
75 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
76 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
77 
78 static register_t *exec_copyout_strings (struct image_params *);
79 
80 /* XXX This should be vm_size_t. */
81 static u_long ps_strings = PS_STRINGS;
82 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
83 
84 /* XXX This should be vm_size_t. */
85 static u_long usrstack = USRSTACK;
86 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
87 
88 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
89 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
90     &ps_arg_cache_limit, 0, "");
91 
92 int ps_argsopen = 1;
93 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
94 
95 void print_execve_args(struct image_args *args);
96 int debug_execve_args = 0;
97 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
98     0, "");
99 
100 /*
101  * Exec arguments object cache
102  */
103 static struct objcache *exec_objcache;
104 
105 static
106 void
107 exec_objcache_init(void *arg __unused)
108 {
109 	exec_objcache = objcache_create_mbacked(
110 					M_EXECARGS, PATH_MAX + ARG_MAX,
111 					16,	/* up to this many objects */
112 					2,	/* minimal magazine capacity */
113 					NULL, NULL, NULL);
114 }
115 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
116 
117 /*
118  * stackgap_random specifies if the stackgap should have a random size added
119  * to it.  It must be a power of 2.  If non-zero, the stack gap will be
120  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
121  */
122 static int stackgap_random = 1024;
123 static int
124 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
125 {
126 	int error, new_val;
127 	new_val = stackgap_random;
128 	error = sysctl_handle_int(oidp, &new_val, 0, req);
129 	if (error != 0 || req->newptr == NULL)
130 		return (error);
131 	if ((new_val < 0) || (new_val > 16 * PAGE_SIZE) || ! powerof2(new_val))
132 		return (EINVAL);
133 	stackgap_random = new_val;
134 
135 	return(0);
136 }
137 
138 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_UINT,
139 	0, 0, sysctl_kern_stackgap, "IU", "Max random stack gap (power of 2)");
140 
141 void
142 print_execve_args(struct image_args *args)
143 {
144 	char *cp;
145 	int ndx;
146 
147 	cp = args->begin_argv;
148 	for (ndx = 0; ndx < args->argc; ndx++) {
149 		kprintf("\targv[%d]: %s\n", ndx, cp);
150 		while (*cp++ != '\0');
151 	}
152 	for (ndx = 0; ndx < args->envc; ndx++) {
153 		kprintf("\tenvv[%d]: %s\n", ndx, cp);
154 		while (*cp++ != '\0');
155 	}
156 }
157 
158 /*
159  * Each of the items is a pointer to a `const struct execsw', hence the
160  * double pointer here.
161  */
162 static const struct execsw **execsw;
163 
164 /*
165  * Replace current vmspace with a new binary.
166  * Returns 0 on success, > 0 on recoverable error (use as errno).
167  * Returns -1 on lethal error which demands killing of the current
168  * process!
169  */
170 int
171 kern_execve(struct nlookupdata *nd, struct image_args *args)
172 {
173 	struct thread *td = curthread;
174 	struct lwp *lp = td->td_lwp;
175 	struct proc *p = td->td_proc;
176 	register_t *stack_base;
177 	int error, len, i;
178 	struct image_params image_params, *imgp;
179 	struct vattr attr;
180 	int (*img_first) (struct image_params *);
181 
182 	if (debug_execve_args) {
183 		kprintf("%s()\n", __func__);
184 		print_execve_args(args);
185 	}
186 
187 	KKASSERT(p);
188 	imgp = &image_params;
189 
190 	/*
191 	 * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
192 	 * no modifications to the process at all until we get there.
193 	 *
194 	 * Note that multiple threads may be trying to exec at the same
195 	 * time.  exec_new_vmspace() handles that too.
196 	 */
197 
198 	/*
199 	 * Initialize part of the common data
200 	 */
201 	imgp->proc = p;
202 	imgp->args = args;
203 	imgp->attr = &attr;
204 	imgp->entry_addr = 0;
205 	imgp->resident = 0;
206 	imgp->vmspace_destroyed = 0;
207 	imgp->interpreted = 0;
208 	imgp->interpreter_name[0] = 0;
209 	imgp->auxargs = NULL;
210 	imgp->vp = NULL;
211 	imgp->firstpage = NULL;
212 	imgp->ps_strings = 0;
213 	imgp->image_header = NULL;
214 
215 interpret:
216 
217 	/*
218 	 * Translate the file name to a vnode.  Unlock the cache entry to
219 	 * improve parallelism for programs exec'd in parallel.
220 	 */
221 	if ((error = nlookup(nd)) != 0)
222 		goto exec_fail;
223 	error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_EXCLUSIVE, &imgp->vp);
224 	KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
225 	nd->nl_flags &= ~NLC_NCPISLOCKED;
226 	cache_unlock(&nd->nl_nch);
227 	if (error)
228 		goto exec_fail;
229 
230 	/*
231 	 * Check file permissions (also 'opens' file)
232 	 */
233 	error = exec_check_permissions(imgp);
234 	if (error) {
235 		vn_unlock(imgp->vp);
236 		goto exec_fail_dealloc;
237 	}
238 
239 	error = exec_map_first_page(imgp);
240 	vn_unlock(imgp->vp);
241 	if (error)
242 		goto exec_fail_dealloc;
243 
244 	if (debug_execve_args && imgp->interpreted) {
245 		kprintf("    target is interpreted -- recursive pass\n");
246 		kprintf("    interpreter: %s\n", imgp->interpreter_name);
247 		print_execve_args(args);
248 	}
249 
250 	/*
251 	 *	If the current process has a special image activator it
252 	 *	wants to try first, call it.   For example, emulating shell
253 	 *	scripts differently.
254 	 */
255 	error = -1;
256 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
257 		error = img_first(imgp);
258 
259 	/*
260 	 *	If the vnode has a registered vmspace, exec the vmspace
261 	 */
262 	if (error == -1 && imgp->vp->v_resident) {
263 		error = exec_resident_imgact(imgp);
264 	}
265 
266 	/*
267 	 *	Loop through the list of image activators, calling each one.
268 	 *	An activator returns -1 if there is no match, 0 on success,
269 	 *	and an error otherwise.
270 	 */
271 	for (i = 0; error == -1 && execsw[i]; ++i) {
272 		if (execsw[i]->ex_imgact == NULL ||
273 		    execsw[i]->ex_imgact == img_first) {
274 			continue;
275 		}
276 		error = (*execsw[i]->ex_imgact)(imgp);
277 	}
278 
279 	if (error) {
280 		if (error == -1)
281 			error = ENOEXEC;
282 		goto exec_fail_dealloc;
283 	}
284 
285 	/*
286 	 * Special interpreter operation, cleanup and loop up to try to
287 	 * activate the interpreter.
288 	 */
289 	if (imgp->interpreted) {
290 		exec_unmap_first_page(imgp);
291 		nlookup_done(nd);
292 		vrele(imgp->vp);
293 		imgp->vp = NULL;
294 		error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
295 					NLC_FOLLOW);
296 		if (error)
297 			goto exec_fail;
298 		goto interpret;
299 	}
300 
301 	/*
302 	 * Copy out strings (args and env) and initialize stack base
303 	 */
304 	stack_base = exec_copyout_strings(imgp);
305 	p->p_vmspace->vm_minsaddr = (char *)stack_base;
306 
307 	/*
308 	 * If custom stack fixup routine present for this process
309 	 * let it do the stack setup.  If we are running a resident
310 	 * image there is no auxinfo or other image activator context
311 	 * so don't try to add fixups to the stack.
312 	 *
313 	 * Else stuff argument count as first item on stack
314 	 */
315 	if (p->p_sysent->sv_fixup && imgp->resident == 0)
316 		(*p->p_sysent->sv_fixup)(&stack_base, imgp);
317 	else
318 		suword(--stack_base, imgp->args->argc);
319 
320 	/*
321 	 * For security and other reasons, the file descriptor table cannot
322 	 * be shared after an exec.
323 	 */
324 	if (p->p_fd->fd_refcnt > 1) {
325 		struct filedesc *tmp;
326 
327 		tmp = fdcopy(p);
328 		fdfree(p);
329 		p->p_fd = tmp;
330 	}
331 
332 	/*
333 	 * For security and other reasons, signal handlers cannot
334 	 * be shared after an exec. The new proces gets a copy of the old
335 	 * handlers. In execsigs(), the new process will have its signals
336 	 * reset.
337 	 */
338 	if (p->p_sigacts->ps_refcnt > 1) {
339 		struct sigacts *newsigacts;
340 
341 		newsigacts = (struct sigacts *)kmalloc(sizeof(*newsigacts),
342 		       M_SUBPROC, M_WAITOK);
343 		bcopy(p->p_sigacts, newsigacts, sizeof(*newsigacts));
344 		p->p_sigacts->ps_refcnt--;
345 		p->p_sigacts = newsigacts;
346 		p->p_sigacts->ps_refcnt = 1;
347 	}
348 
349 	/*
350 	 * For security and other reasons virtual kernels cannot be
351 	 * inherited by an exec.  This also allows a virtual kernel
352 	 * to fork/exec unrelated applications.
353 	 */
354 	if (p->p_vkernel)
355 		vkernel_exit(p);
356 
357 	/* Stop profiling */
358 	stopprofclock(p);
359 
360 	/* close files on exec */
361 	fdcloseexec(p);
362 
363 	/* reset caught signals */
364 	execsigs(p);
365 
366 	/* name this process - nameiexec(p, ndp) */
367 	len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
368 	bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
369 	p->p_comm[len] = 0;
370 	bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
371 
372 	/*
373 	 * mark as execed, wakeup the process that vforked (if any) and tell
374 	 * it that it now has its own resources back
375 	 */
376 	p->p_flag |= P_EXEC;
377 	if (p->p_pptr && (p->p_flag & P_PPWAIT)) {
378 		p->p_flag &= ~P_PPWAIT;
379 		wakeup((caddr_t)p->p_pptr);
380 	}
381 
382 	/*
383 	 * Implement image setuid/setgid.
384 	 *
385 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
386 	 * the process is being traced.
387 	 */
388 	if ((((attr.va_mode & VSUID) && p->p_ucred->cr_uid != attr.va_uid) ||
389 	     ((attr.va_mode & VSGID) && p->p_ucred->cr_gid != attr.va_gid)) &&
390 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
391 	    (p->p_flag & P_TRACED) == 0) {
392 		/*
393 		 * Turn off syscall tracing for set-id programs, except for
394 		 * root.  Record any set-id flags first to make sure that
395 		 * we do not regain any tracing during a possible block.
396 		 */
397 		setsugid();
398 		if (p->p_tracenode && suser(td) != 0) {
399 			ktrdestroy(&p->p_tracenode);
400 			p->p_traceflag = 0;
401 		}
402 		/* Close any file descriptors 0..2 that reference procfs */
403 		setugidsafety(p);
404 		/* Make sure file descriptors 0..2 are in use. */
405 		error = fdcheckstd(p);
406 		if (error != 0)
407 			goto exec_fail_dealloc;
408 		/*
409 		 * Set the new credentials.
410 		 */
411 		cratom(&p->p_ucred);
412 		if (attr.va_mode & VSUID)
413 			change_euid(attr.va_uid);
414 		if (attr.va_mode & VSGID)
415 			p->p_ucred->cr_gid = attr.va_gid;
416 
417 		/*
418 		 * Clear local varsym variables
419 		 */
420 		varsymset_clean(&p->p_varsymset);
421 	} else {
422 		if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
423 		    p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
424 			p->p_flag &= ~P_SUGID;
425 	}
426 
427 	/*
428 	 * Implement correct POSIX saved-id behavior.
429 	 */
430 	if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
431 	    p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
432 		cratom(&p->p_ucred);
433 		p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
434 		p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
435 	}
436 
437 	/*
438 	 * Store the vp for use in procfs
439 	 */
440 	if (p->p_textvp)		/* release old reference */
441 		vrele(p->p_textvp);
442 	p->p_textvp = imgp->vp;
443 	vref(p->p_textvp);
444 
445         /*
446          * Notify others that we exec'd, and clear the P_INEXEC flag
447          * as we're now a bona fide freshly-execed process.
448          */
449 	KNOTE(&p->p_klist, NOTE_EXEC);
450 	p->p_flag &= ~P_INEXEC;
451 
452 	/*
453 	 * If tracing the process, trap to debugger so breakpoints
454 	 * 	can be set before the program executes.
455 	 */
456 	STOPEVENT(p, S_EXEC, 0);
457 
458 	if (p->p_flag & P_TRACED)
459 		ksignal(p, SIGTRAP);
460 
461 	/* clear "fork but no exec" flag, as we _are_ execing */
462 	p->p_acflag &= ~AFORK;
463 
464 	/* Set values passed into the program in registers. */
465 	exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
466 	    imgp->ps_strings);
467 
468 	/* Free any previous argument cache */
469 	if (p->p_args && --p->p_args->ar_ref == 0)
470 		FREE(p->p_args, M_PARGS);
471 	p->p_args = NULL;
472 
473 	/* Cache arguments if they fit inside our allowance */
474 	i = imgp->args->begin_envv - imgp->args->begin_argv;
475 	if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
476 		MALLOC(p->p_args, struct pargs *, sizeof(struct pargs) + i,
477 		    M_PARGS, M_WAITOK);
478 		p->p_args->ar_ref = 1;
479 		p->p_args->ar_length = i;
480 		bcopy(imgp->args->begin_argv, p->p_args->ar_args, i);
481 	}
482 
483 exec_fail_dealloc:
484 
485 	/*
486 	 * free various allocated resources
487 	 */
488 	if (imgp->firstpage)
489 		exec_unmap_first_page(imgp);
490 
491 	if (imgp->vp) {
492 		vrele(imgp->vp);
493 		imgp->vp = NULL;
494 	}
495 
496 	if (error == 0) {
497 		++mycpu->gd_cnt.v_exec;
498 		return (0);
499 	}
500 
501 exec_fail:
502 	/*
503 	 * we're done here, clear P_INEXEC if we were the ones that
504 	 * set it.  Otherwise if vmspace_destroyed is still set we
505 	 * raced another thread and that thread is responsible for
506 	 * clearing it.
507 	 */
508 	if (imgp->vmspace_destroyed & 2)
509 		p->p_flag &= ~P_INEXEC;
510 	if (imgp->vmspace_destroyed) {
511 		/*
512 		 * Sorry, no more process anymore. exit gracefully.
513 		 * However we can't die right here, because our
514 		 * caller might have to clean up, so indicate a
515 		 * lethal error by returning -1.
516 		 */
517 		return(-1);
518 	} else {
519 		return(error);
520 	}
521 }
522 
523 /*
524  * execve() system call.
525  */
526 int
527 sys_execve(struct execve_args *uap)
528 {
529 	struct nlookupdata nd;
530 	struct image_args args;
531 	int error;
532 
533 	error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
534 	if (error == 0) {
535 		error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
536 					uap->argv, uap->envv);
537 	}
538 	if (error == 0)
539 		error = kern_execve(&nd, &args);
540 	nlookup_done(&nd);
541 	exec_free_args(&args);
542 
543 	if (error < 0) {
544 		/* We hit a lethal error condition.  Let's die now. */
545 		exit1(W_EXITCODE(0, SIGABRT));
546 		/* NOTREACHED */
547 	}
548 
549 	/*
550 	 * The syscall result is returned in registers to the new program.
551 	 * Linux will register %edx as an atexit function and we must be
552 	 * sure to set it to 0.  XXX
553 	 */
554 	if (error == 0)
555 		uap->sysmsg_result64 = 0;
556 
557 	return (error);
558 }
559 
560 int
561 exec_map_first_page(struct image_params *imgp)
562 {
563 	int rv, i;
564 	int initial_pagein;
565 	vm_page_t ma[VM_INITIAL_PAGEIN];
566 	vm_page_t m;
567 	vm_object_t object;
568 
569 	if (imgp->firstpage)
570 		exec_unmap_first_page(imgp);
571 
572 	/*
573 	 * The file has to be mappable.
574 	 */
575 	if ((object = imgp->vp->v_object) == NULL)
576 		return (EIO);
577 
578 	/*
579 	 * We shouldn't need protection for vm_page_grab() but we certainly
580 	 * need it for the lookup loop below (lookup/busy race), since
581 	 * an interrupt can unbusy and free the page before our busy check.
582 	 */
583 	crit_enter();
584 	m = vm_page_grab(object, 0, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
585 
586 	if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
587 		ma[0] = m;
588 		initial_pagein = VM_INITIAL_PAGEIN;
589 		if (initial_pagein > object->size)
590 			initial_pagein = object->size;
591 		for (i = 1; i < initial_pagein; i++) {
592 			if ((m = vm_page_lookup(object, i)) != NULL) {
593 				if ((m->flags & PG_BUSY) || m->busy)
594 					break;
595 				if (m->valid)
596 					break;
597 				vm_page_busy(m);
598 			} else {
599 				m = vm_page_alloc(object, i, VM_ALLOC_NORMAL);
600 				if (m == NULL)
601 					break;
602 			}
603 			ma[i] = m;
604 		}
605 		initial_pagein = i;
606 
607 		/*
608 		 * get_pages unbusies all the requested pages except the
609 		 * primary page (at index 0 in this case).  The primary
610 		 * page may have been wired during the pagein (e.g. by
611 		 * the buffer cache) so vnode_pager_freepage() must be
612 		 * used to properly release it.
613 		 */
614 		rv = vm_pager_get_pages(object, ma, initial_pagein, 0);
615 		m = vm_page_lookup(object, 0);
616 
617 		if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
618 			if (m) {
619 				vm_page_protect(m, VM_PROT_NONE);
620 				vnode_pager_freepage(m);
621 			}
622 			crit_exit();
623 			return EIO;
624 		}
625 	}
626 	vm_page_hold(m);
627 	vm_page_wakeup(m);	/* unbusy the page */
628 	crit_exit();
629 
630 	imgp->firstpage = sf_buf_alloc(m, SFB_CPUPRIVATE);
631 	imgp->image_header = (void *)sf_buf_kva(imgp->firstpage);
632 
633 	return 0;
634 }
635 
636 void
637 exec_unmap_first_page(struct image_params *imgp)
638 {
639 	vm_page_t m;
640 
641 	crit_enter();
642 	if (imgp->firstpage != NULL) {
643 		m = sf_buf_page(imgp->firstpage);
644 		sf_buf_free(imgp->firstpage);
645 		imgp->firstpage = NULL;
646 		imgp->image_header = NULL;
647 		vm_page_unhold(m);
648 	}
649 	crit_exit();
650 }
651 
652 /*
653  * Destroy old address space, and allocate a new stack
654  *	The new stack is only SGROWSIZ large because it is grown
655  *	automatically in trap.c.
656  *
657  * This is the point of no return.
658  */
659 int
660 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
661 {
662 	struct vmspace *vmspace = imgp->proc->p_vmspace;
663 	vm_offset_t stack_addr = USRSTACK - maxssiz;
664 	struct proc *p;
665 	vm_map_t map;
666 	int error;
667 
668 	/*
669 	 * Indicate that we cannot gracefully error out any more, kill
670 	 * any other threads present, and set P_INEXEC to indicate that
671 	 * we are now messing with the process structure proper.
672 	 *
673 	 * If killalllwps() races return an error which coupled with
674 	 * vmspace_destroyed will cause us to exit.  This is what we
675 	 * want since another thread is patiently waiting for us to exit
676 	 * in that case.
677 	 */
678 	p = curproc;
679 	imgp->vmspace_destroyed = 1;
680 
681 	if (curthread->td_proc->p_nthreads > 1) {
682 		error = killalllwps(1);
683 		if (error)
684 			return (error);
685 	}
686 	imgp->vmspace_destroyed |= 2;	/* we are responsible for P_INEXEC */
687 	p->p_flag |= P_INEXEC;
688 
689 	/*
690 	 * Prevent a pending AIO from modifying the new address space.
691 	 */
692 	aio_proc_rundown(imgp->proc);
693 
694 	/*
695 	 * Blow away entire process VM, if address space not shared,
696 	 * otherwise, create a new VM space so that other threads are
697 	 * not disrupted.  If we are execing a resident vmspace we
698 	 * create a duplicate of it and remap the stack.
699 	 *
700 	 * The exitingcnt test is not strictly necessary but has been
701 	 * included for code sanity (to make the code more deterministic).
702 	 */
703 	map = &vmspace->vm_map;
704 	if (vmcopy) {
705 		vmspace_exec(imgp->proc, vmcopy);
706 		vmspace = imgp->proc->p_vmspace;
707 		pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
708 		map = &vmspace->vm_map;
709 	} else if (vmspace->vm_sysref.refcnt == 1 &&
710 		   vmspace->vm_exitingcnt == 0) {
711 		shmexit(vmspace);
712 		if (vmspace->vm_upcalls)
713 			upc_release(vmspace, ONLY_LWP_IN_PROC(imgp->proc));
714 		pmap_remove_pages(vmspace_pmap(vmspace),
715 			0, VM_MAX_USER_ADDRESS);
716 		vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
717 	} else {
718 		vmspace_exec(imgp->proc, NULL);
719 		vmspace = imgp->proc->p_vmspace;
720 		map = &vmspace->vm_map;
721 	}
722 
723 	/* Allocate a new stack */
724 	error = vm_map_stack(&vmspace->vm_map, stack_addr, (vm_size_t)maxssiz,
725 	    VM_PROT_ALL, VM_PROT_ALL, 0);
726 	if (error)
727 		return (error);
728 
729 	/* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
730 	 * VM_STACK case, but they are still used to monitor the size of the
731 	 * process stack so we can check the stack rlimit.
732 	 */
733 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
734 	vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
735 
736 	return(0);
737 }
738 
739 /*
740  * Copy out argument and environment strings from the old process
741  *	address space into the temporary string buffer.
742  */
743 int
744 exec_copyin_args(struct image_args *args, char *fname,
745 		enum exec_path_segflg segflg, char **argv, char **envv)
746 {
747 	char	*argp, *envp;
748 	int	error = 0;
749 	size_t	length;
750 
751 	bzero(args, sizeof(*args));
752 
753 	args->buf = objcache_get(exec_objcache, M_WAITOK);
754 	if (args->buf == NULL)
755 		return (ENOMEM);
756 	args->begin_argv = args->buf;
757 	args->endp = args->begin_argv;
758 	args->space = ARG_MAX;
759 
760 	args->fname = args->buf + ARG_MAX;
761 
762 	/*
763 	 * Copy the file name.
764 	 */
765 	if (segflg == PATH_SYSSPACE) {
766 		error = copystr(fname, args->fname, PATH_MAX, &length);
767 	} else if (segflg == PATH_USERSPACE) {
768 		error = copyinstr(fname, args->fname, PATH_MAX, &length);
769 	}
770 
771 	/*
772 	 * Extract argument strings.  argv may not be NULL.  The argv
773 	 * array is terminated by a NULL entry.  We special-case the
774 	 * situation where argv[0] is NULL by passing { filename, NULL }
775 	 * to the new program to guarentee that the interpreter knows what
776 	 * file to open in case we exec an interpreted file.   Note that
777 	 * a NULL argv[0] terminates the argv[] array.
778 	 *
779 	 * XXX the special-casing of argv[0] is historical and needs to be
780 	 * revisited.
781 	 */
782 	if (argv == NULL)
783 		error = EFAULT;
784 	if (error == 0) {
785 		while ((argp = (caddr_t)(intptr_t)fuword(argv++)) != NULL) {
786 			if (argp == (caddr_t)-1) {
787 				error = EFAULT;
788 				break;
789 			}
790 			error = copyinstr(argp, args->endp,
791 					    args->space, &length);
792 			if (error) {
793 				if (error == ENAMETOOLONG)
794 					error = E2BIG;
795 				break;
796 			}
797 			args->space -= length;
798 			args->endp += length;
799 			args->argc++;
800 		}
801 		if (args->argc == 0 && error == 0) {
802 			length = strlen(args->fname) + 1;
803 			if (length > args->space) {
804 				error = E2BIG;
805 			} else {
806 				bcopy(args->fname, args->endp, length);
807 				args->space -= length;
808 				args->endp += length;
809 				args->argc++;
810 			}
811 		}
812 	}
813 
814 	args->begin_envv = args->endp;
815 
816 	/*
817 	 * extract environment strings.  envv may be NULL.
818 	 */
819 	if (envv && error == 0) {
820 		while ((envp = (caddr_t) (intptr_t) fuword(envv++))) {
821 			if (envp == (caddr_t) -1) {
822 				error = EFAULT;
823 				break;
824 			}
825 			error = copyinstr(envp, args->endp, args->space,
826 			    &length);
827 			if (error) {
828 				if (error == ENAMETOOLONG)
829 					error = E2BIG;
830 				break;
831 			}
832 			args->space -= length;
833 			args->endp += length;
834 			args->envc++;
835 		}
836 	}
837 	return (error);
838 }
839 
840 void
841 exec_free_args(struct image_args *args)
842 {
843 	if (args->buf) {
844 		objcache_put(exec_objcache, args->buf);
845 		args->buf = NULL;
846 	}
847 }
848 
849 /*
850  * Copy strings out to the new process address space, constructing
851  *	new arg and env vector tables. Return a pointer to the base
852  *	so that it can be used as the initial stack pointer.
853  */
854 register_t *
855 exec_copyout_strings(struct image_params *imgp)
856 {
857 	int argc, envc, sgap;
858 	char **vectp;
859 	char *stringp, *destp;
860 	register_t *stack_base;
861 	struct ps_strings *arginfo;
862 	int szsigcode;
863 
864 	/*
865 	 * Calculate string base and vector table pointers.
866 	 * Also deal with signal trampoline code for this exec type.
867 	 */
868 	arginfo = (struct ps_strings *)PS_STRINGS;
869 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
870 	if (stackgap_random != 0)
871 		sgap = ALIGN(karc4random() & (stackgap_random - 1));
872 	else
873 		sgap = 0;
874 	destp =	(caddr_t)arginfo - szsigcode - SPARE_USRSPACE - sgap -
875 	    roundup((ARG_MAX - imgp->args->space), sizeof(char *));
876 
877 	/*
878 	 * install sigcode
879 	 */
880 	if (szsigcode)
881 		copyout(imgp->proc->p_sysent->sv_sigcode,
882 		    ((caddr_t)arginfo - szsigcode), szsigcode);
883 
884 	/*
885 	 * If we have a valid auxargs ptr, prepare some room
886 	 * on the stack.
887 	 *
888 	 * The '+ 2' is for the null pointers at the end of each of the
889 	 * arg and env vector sets, and 'AT_COUNT*2' is room for the
890 	 * ELF Auxargs data.
891 	 */
892 	if (imgp->auxargs) {
893 		vectp = (char **)(destp - (imgp->args->argc +
894 			imgp->args->envc + 2 + AT_COUNT * 2) * sizeof(char*));
895 	} else {
896 		vectp = (char **)(destp - (imgp->args->argc +
897 			imgp->args->envc + 2) * sizeof(char*));
898 	}
899 
900 	/*
901 	 * NOTE: don't bother aligning the stack here for GCC 2.x, it will
902 	 * be done in crt1.o.  Note that GCC 3.x aligns the stack in main.
903 	 */
904 
905 	/*
906 	 * vectp also becomes our initial stack base
907 	 */
908 	stack_base = (register_t *)vectp;
909 
910 	stringp = imgp->args->begin_argv;
911 	argc = imgp->args->argc;
912 	envc = imgp->args->envc;
913 
914 	/*
915 	 * Copy out strings - arguments and environment.
916 	 */
917 	copyout(stringp, destp, ARG_MAX - imgp->args->space);
918 
919 	/*
920 	 * Fill in "ps_strings" struct for ps, w, etc.
921 	 */
922 	suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp);
923 	suword(&arginfo->ps_nargvstr, argc);
924 
925 	/*
926 	 * Fill in argument portion of vector table.
927 	 */
928 	for (; argc > 0; --argc) {
929 		suword(vectp++, (long)(intptr_t)destp);
930 		while (*stringp++ != 0)
931 			destp++;
932 		destp++;
933 	}
934 
935 	/* a null vector table pointer separates the argp's from the envp's */
936 	suword(vectp++, 0);
937 
938 	suword(&arginfo->ps_envstr, (long)(intptr_t)vectp);
939 	suword(&arginfo->ps_nenvstr, envc);
940 
941 	/*
942 	 * Fill in environment portion of vector table.
943 	 */
944 	for (; envc > 0; --envc) {
945 		suword(vectp++, (long)(intptr_t)destp);
946 		while (*stringp++ != 0)
947 			destp++;
948 		destp++;
949 	}
950 
951 	/* end of vector table is a null pointer */
952 	suword(vectp, 0);
953 
954 	return (stack_base);
955 }
956 
957 /*
958  * Check permissions of file to execute.
959  *	Return 0 for success or error code on failure.
960  */
961 int
962 exec_check_permissions(struct image_params *imgp)
963 {
964 	struct proc *p = imgp->proc;
965 	struct vnode *vp = imgp->vp;
966 	struct vattr *attr = imgp->attr;
967 	int error;
968 
969 	/* Get file attributes */
970 	error = VOP_GETATTR(vp, attr);
971 	if (error)
972 		return (error);
973 
974 	/*
975 	 * 1) Check if file execution is disabled for the filesystem that this
976 	 *	file resides on.
977 	 * 2) Insure that at least one execute bit is on - otherwise root
978 	 *	will always succeed, and we don't want to happen unless the
979 	 *	file really is executable.
980 	 * 3) Insure that the file is a regular file.
981 	 */
982 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
983 	    ((attr->va_mode & 0111) == 0) ||
984 	    (attr->va_type != VREG)) {
985 		return (EACCES);
986 	}
987 
988 	/*
989 	 * Zero length files can't be exec'd
990 	 */
991 	if (attr->va_size == 0)
992 		return (ENOEXEC);
993 
994 	/*
995 	 *  Check for execute permission to file based on current credentials.
996 	 */
997 	error = VOP_ACCESS(vp, VEXEC, p->p_ucred);
998 	if (error)
999 		return (error);
1000 
1001 	/*
1002 	 * Check number of open-for-writes on the file and deny execution
1003 	 * if there are any.
1004 	 */
1005 	if (vp->v_writecount)
1006 		return (ETXTBSY);
1007 
1008 	/*
1009 	 * Call filesystem specific open routine, which allows us to read,
1010 	 * write, and mmap the file.  Without the VOP_OPEN we can only
1011 	 * stat the file.
1012 	 */
1013 	error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1014 	if (error)
1015 		return (error);
1016 
1017 	return (0);
1018 }
1019 
1020 /*
1021  * Exec handler registration
1022  */
1023 int
1024 exec_register(const struct execsw *execsw_arg)
1025 {
1026 	const struct execsw **es, **xs, **newexecsw;
1027 	int count = 2;	/* New slot and trailing NULL */
1028 
1029 	if (execsw)
1030 		for (es = execsw; *es; es++)
1031 			count++;
1032 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1033 	if (newexecsw == NULL)
1034 		return ENOMEM;
1035 	xs = newexecsw;
1036 	if (execsw)
1037 		for (es = execsw; *es; es++)
1038 			*xs++ = *es;
1039 	*xs++ = execsw_arg;
1040 	*xs = NULL;
1041 	if (execsw)
1042 		kfree(execsw, M_TEMP);
1043 	execsw = newexecsw;
1044 	return 0;
1045 }
1046 
1047 int
1048 exec_unregister(const struct execsw *execsw_arg)
1049 {
1050 	const struct execsw **es, **xs, **newexecsw;
1051 	int count = 1;
1052 
1053 	if (execsw == NULL)
1054 		panic("unregister with no handlers left?");
1055 
1056 	for (es = execsw; *es; es++) {
1057 		if (*es == execsw_arg)
1058 			break;
1059 	}
1060 	if (*es == NULL)
1061 		return ENOENT;
1062 	for (es = execsw; *es; es++)
1063 		if (*es != execsw_arg)
1064 			count++;
1065 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1066 	if (newexecsw == NULL)
1067 		return ENOMEM;
1068 	xs = newexecsw;
1069 	for (es = execsw; *es; es++)
1070 		if (*es != execsw_arg)
1071 			*xs++ = *es;
1072 	*xs = NULL;
1073 	if (execsw)
1074 		kfree(execsw, M_TEMP);
1075 	execsw = newexecsw;
1076 	return 0;
1077 }
1078