xref: /dragonfly/sys/kern/kern_exit.c (revision 07a2f99c)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
39  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
40  */
41 
42 #include "opt_compat.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/proc.h>
51 #include <sys/ktrace.h>
52 #include <sys/pioctl.h>
53 #include <sys/tty.h>
54 #include <sys/wait.h>
55 #include <sys/vnode.h>
56 #include <sys/resourcevar.h>
57 #include <sys/signalvar.h>
58 #include <sys/taskqueue.h>
59 #include <sys/ptrace.h>
60 #include <sys/acct.h>		/* for acct_process() function prototype */
61 #include <sys/filedesc.h>
62 #include <sys/shm.h>
63 #include <sys/sem.h>
64 #include <sys/jail.h>
65 #include <sys/kern_syscall.h>
66 #include <sys/unistd.h>
67 #include <sys/eventhandler.h>
68 #include <sys/dsched.h>
69 
70 #include <vm/vm.h>
71 #include <vm/vm_param.h>
72 #include <sys/lock.h>
73 #include <vm/pmap.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_extern.h>
76 #include <sys/user.h>
77 
78 #include <sys/refcount.h>
79 #include <sys/thread2.h>
80 #include <sys/sysref2.h>
81 #include <sys/mplock2.h>
82 
83 static void reaplwps(void *context, int dummy);
84 static void reaplwp(struct lwp *lp);
85 static void killlwps(struct lwp *lp);
86 
87 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
88 static MALLOC_DEFINE(M_ZOMBIE, "zombie", "zombie proc status");
89 
90 static struct lwkt_token deadlwp_token = LWKT_TOKEN_INITIALIZER(deadlwp_token);
91 
92 /*
93  * callout list for things to do at exit time
94  */
95 struct exitlist {
96 	exitlist_fn function;
97 	TAILQ_ENTRY(exitlist) next;
98 };
99 
100 TAILQ_HEAD(exit_list_head, exitlist);
101 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
102 
103 /*
104  * LWP reaper data
105  */
106 struct task *deadlwp_task[MAXCPU];
107 struct lwplist deadlwp_list[MAXCPU];
108 
109 /*
110  * exit --
111  *	Death of process.
112  *
113  * SYS_EXIT_ARGS(int rval)
114  */
115 int
116 sys_exit(struct exit_args *uap)
117 {
118 	exit1(W_EXITCODE(uap->rval, 0));
119 	/* NOTREACHED */
120 }
121 
122 /*
123  * Extended exit --
124  *	Death of a lwp or process with optional bells and whistles.
125  *
126  * MPALMOSTSAFE
127  */
128 int
129 sys_extexit(struct extexit_args *uap)
130 {
131 	struct proc *p = curproc;
132 	int action, who;
133 	int error;
134 
135 	action = EXTEXIT_ACTION(uap->how);
136 	who = EXTEXIT_WHO(uap->how);
137 
138 	/* Check parameters before we might perform some action */
139 	switch (who) {
140 	case EXTEXIT_PROC:
141 	case EXTEXIT_LWP:
142 		break;
143 	default:
144 		return (EINVAL);
145 	}
146 
147 	switch (action) {
148 	case EXTEXIT_SIMPLE:
149 		break;
150 	case EXTEXIT_SETINT:
151 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
152 		if (error)
153 			return (error);
154 		break;
155 	default:
156 		return (EINVAL);
157 	}
158 
159 	lwkt_gettoken(&p->p_token);
160 
161 	switch (who) {
162 	case EXTEXIT_LWP:
163 		/*
164 		 * Be sure only to perform a simple lwp exit if there is at
165 		 * least one more lwp in the proc, which will call exit1()
166 		 * later, otherwise the proc will be an UNDEAD and not even a
167 		 * SZOMB!
168 		 */
169 		if (p->p_nthreads > 1) {
170 			lwp_exit(0);	/* called w/ p_token held */
171 			/* NOT REACHED */
172 		}
173 		/* else last lwp in proc:  do the real thing */
174 		/* FALLTHROUGH */
175 	default:	/* to help gcc */
176 	case EXTEXIT_PROC:
177 		lwkt_reltoken(&p->p_token);
178 		exit1(W_EXITCODE(uap->status, 0));
179 		/* NOTREACHED */
180 	}
181 
182 	/* NOTREACHED */
183 	lwkt_reltoken(&p->p_token);	/* safety */
184 }
185 
186 /*
187  * Kill all lwps associated with the current process except the
188  * current lwp.   Return an error if we race another thread trying to
189  * do the same thing and lose the race.
190  *
191  * If forexec is non-zero the current thread and process flags are
192  * cleaned up so they can be reused.
193  *
194  * Caller must hold curproc->p_token
195  */
196 int
197 killalllwps(int forexec)
198 {
199 	struct lwp *lp = curthread->td_lwp;
200 	struct proc *p = lp->lwp_proc;
201 
202 	/*
203 	 * Interlock against P_WEXIT.  Only one of the process's thread
204 	 * is allowed to do the master exit.
205 	 */
206 	if (p->p_flags & P_WEXIT)
207 		return (EALREADY);
208 	p->p_flags |= P_WEXIT;
209 
210 	/*
211 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
212 	 */
213 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
214 	if (p->p_nthreads > 1)
215 		killlwps(lp);
216 
217 	/*
218 	 * If doing this for an exec, clean up the remaining thread
219 	 * (us) for continuing operation after all the other threads
220 	 * have been killed.
221 	 */
222 	if (forexec) {
223 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
224 		p->p_flags &= ~P_WEXIT;
225 	}
226 	return(0);
227 }
228 
229 /*
230  * Kill all LWPs except the current one.  Do not try to signal
231  * LWPs which have exited on their own or have already been
232  * signaled.
233  */
234 static void
235 killlwps(struct lwp *lp)
236 {
237 	struct proc *p = lp->lwp_proc;
238 	struct lwp *tlp;
239 
240 	/*
241 	 * Kill the remaining LWPs.  We must send the signal before setting
242 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
243 	 * races.  tlp must be held across the call as it might block and
244 	 * allow the target lwp to rip itself out from under our loop.
245 	 */
246 	FOREACH_LWP_IN_PROC(tlp, p) {
247 		LWPHOLD(tlp);
248 		lwkt_gettoken(&tlp->lwp_token);
249 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
250 			lwpsignal(p, tlp, SIGKILL);
251 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
252 		}
253 		lwkt_reltoken(&tlp->lwp_token);
254 		LWPRELE(tlp);
255 	}
256 
257 	/*
258 	 * Wait for everything to clear out.
259 	 */
260 	while (p->p_nthreads > 1) {
261 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
262 	}
263 }
264 
265 /*
266  * Exit: deallocate address space and other resources, change proc state
267  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
268  * status and rusage for wait().  Check for child processes and orphan them.
269  */
270 void
271 exit1(int rv)
272 {
273 	struct thread *td = curthread;
274 	struct proc *p = td->td_proc;
275 	struct lwp *lp = td->td_lwp;
276 	struct proc *q, *nq;
277 	struct vmspace *vm;
278 	struct vnode *vtmp;
279 	struct exitlist *ep;
280 	int error;
281 
282 	lwkt_gettoken(&p->p_token);
283 
284 	if (p->p_pid == 1) {
285 		kprintf("init died (signal %d, exit %d)\n",
286 		    WTERMSIG(rv), WEXITSTATUS(rv));
287 		panic("Going nowhere without my init!");
288 	}
289 	varsymset_clean(&p->p_varsymset);
290 	lockuninit(&p->p_varsymset.vx_lock);
291 
292 	/*
293 	 * Kill all lwps associated with the current process, return an
294 	 * error if we race another thread trying to do the same thing
295 	 * and lose the race.
296 	 */
297 	error = killalllwps(0);
298 	if (error) {
299 		lwp_exit(0);
300 		/* NOT REACHED */
301 	}
302 
303 	/* are we a task leader? */
304 	if (p == p->p_leader) {
305         	struct kill_args killArgs;
306 		killArgs.signum = SIGKILL;
307 		q = p->p_peers;
308 		while(q) {
309 			killArgs.pid = q->p_pid;
310 			/*
311 		         * The interface for kill is better
312 			 * than the internal signal
313 			 */
314 			sys_kill(&killArgs);
315 			nq = q;
316 			q = q->p_peers;
317 		}
318 		while (p->p_peers)
319 			tsleep((caddr_t)p, 0, "exit1", 0);
320 	}
321 
322 #ifdef PGINPROF
323 	vmsizmon();
324 #endif
325 	STOPEVENT(p, S_EXIT, rv);
326 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
327 
328 	/*
329 	 * Check if any loadable modules need anything done at process exit.
330 	 * e.g. SYSV IPC stuff
331 	 * XXX what if one of these generates an error?
332 	 */
333 	p->p_xstat = rv;
334 	EVENTHANDLER_INVOKE(process_exit, p);
335 
336 	/*
337 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
338 	 *	Maybe we should move everything to use eventhandler.
339 	 */
340 	TAILQ_FOREACH(ep, &exit_list, next)
341 		(*ep->function)(td);
342 
343 	if (p->p_flags & P_PROFIL)
344 		stopprofclock(p);
345 
346 	SIGEMPTYSET(p->p_siglist);
347 	SIGEMPTYSET(lp->lwp_siglist);
348 	if (timevalisset(&p->p_realtimer.it_value))
349 		callout_stop_sync(&p->p_ithandle);
350 
351 	/*
352 	 * Reset any sigio structures pointing to us as a result of
353 	 * F_SETOWN with our pid.
354 	 */
355 	funsetownlst(&p->p_sigiolst);
356 
357 	/*
358 	 * Close open files and release open-file table.
359 	 * This may block!
360 	 */
361 	fdfree(p, NULL);
362 
363 	if(p->p_leader->p_peers) {
364 		q = p->p_leader;
365 		while(q->p_peers != p)
366 			q = q->p_peers;
367 		q->p_peers = p->p_peers;
368 		wakeup((caddr_t)p->p_leader);
369 	}
370 
371 	/*
372 	 * XXX Shutdown SYSV semaphores
373 	 */
374 	semexit(p);
375 
376 	KKASSERT(p->p_numposixlocks == 0);
377 
378 	/* The next two chunks should probably be moved to vmspace_exit. */
379 	vm = p->p_vmspace;
380 
381 	/*
382 	 * Clean up data related to virtual kernel operation.  Clean up
383 	 * any vkernel context related to the current lwp now so we can
384 	 * destroy p_vkernel.
385 	 */
386 	if (p->p_vkernel) {
387 		vkernel_lwp_exit(lp);
388 		vkernel_exit(p);
389 	}
390 
391 	/*
392 	 * Release user portion of address space.
393 	 * This releases references to vnodes,
394 	 * which could cause I/O if the file has been unlinked.
395 	 * Need to do this early enough that we can still sleep.
396 	 * Can't free the entire vmspace as the kernel stack
397 	 * may be mapped within that space also.
398 	 *
399 	 * Processes sharing the same vmspace may exit in one order, and
400 	 * get cleaned up by vmspace_exit() in a different order.  The
401 	 * last exiting process to reach this point releases as much of
402 	 * the environment as it can, and the last process cleaned up
403 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
404 	 * remainder.
405 	 */
406 	vmspace_exitbump(vm);
407 	sysref_put(&vm->vm_sysref);
408 
409 	if (SESS_LEADER(p)) {
410 		struct session *sp = p->p_session;
411 
412 		if (sp->s_ttyvp) {
413 			/*
414 			 * We are the controlling process.  Signal the
415 			 * foreground process group, drain the controlling
416 			 * terminal, and revoke access to the controlling
417 			 * terminal.
418 			 *
419 			 * NOTE: while waiting for the process group to exit
420 			 * it is possible that one of the processes in the
421 			 * group will revoke the tty, so the ttyclosesession()
422 			 * function will re-check sp->s_ttyvp.
423 			 */
424 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
425 				if (sp->s_ttyp->t_pgrp)
426 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
427 				ttywait(sp->s_ttyp);
428 				ttyclosesession(sp, 1); /* also revoke */
429 			}
430 			/*
431 			 * Release the tty.  If someone has it open via
432 			 * /dev/tty then close it (since they no longer can
433 			 * once we've NULL'd it out).
434 			 */
435 			ttyclosesession(sp, 0);
436 
437 			/*
438 			 * s_ttyp is not zero'd; we use this to indicate
439 			 * that the session once had a controlling terminal.
440 			 * (for logging and informational purposes)
441 			 */
442 		}
443 		sp->s_leader = NULL;
444 	}
445 	fixjobc(p, p->p_pgrp, 0);
446 	(void)acct_process(p);
447 #ifdef KTRACE
448 	/*
449 	 * release trace file
450 	 */
451 	if (p->p_tracenode)
452 		ktrdestroy(&p->p_tracenode);
453 	p->p_traceflag = 0;
454 #endif
455 	/*
456 	 * Release reference to text vnode
457 	 */
458 	if ((vtmp = p->p_textvp) != NULL) {
459 		p->p_textvp = NULL;
460 		vrele(vtmp);
461 	}
462 
463 	/* Release namecache handle to text file */
464 	if (p->p_textnch.ncp)
465 		cache_drop(&p->p_textnch);
466 
467 	/*
468 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
469 	 * will block on the PHOLD() the parent is doing.
470 	 */
471 	if (p->p_flags & P_PPWAIT) {
472 		p->p_flags &= ~P_PPWAIT;
473 		wakeup(p->p_pptr);
474 	}
475 
476 	/*
477 	 * Move the process to the zombie list.  This will block
478 	 * until the process p_lock count reaches 0.  The process will
479 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
480 	 * which is called from cpu_proc_exit().
481 	 */
482 	proc_move_allproc_zombie(p);
483 
484 	/*
485 	 * Reparent all of this process's children to the init process.
486 	 * We must hold initproc->p_token in order to mess with
487 	 * initproc->p_children.  We already hold p->p_token (to remove
488 	 * the children from our list).
489 	 */
490 	q = LIST_FIRST(&p->p_children);
491 	if (q) {
492 		lwkt_gettoken(&initproc->p_token);
493 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
494 			PHOLD(q);
495 			lwkt_gettoken(&q->p_token);
496 			if (q != LIST_FIRST(&p->p_children)) {
497 				lwkt_reltoken(&q->p_token);
498 				PRELE(q);
499 				continue;
500 			}
501 			LIST_REMOVE(q, p_sibling);
502 			LIST_INSERT_HEAD(&initproc->p_children, q, p_sibling);
503 			q->p_pptr = initproc;
504 			q->p_sigparent = SIGCHLD;
505 
506 			/*
507 			 * Traced processes are killed
508 			 * since their existence means someone is screwing up.
509 			 */
510 			if (q->p_flags & P_TRACED) {
511 				q->p_flags &= ~P_TRACED;
512 				ksignal(q, SIGKILL);
513 			}
514 			lwkt_reltoken(&q->p_token);
515 			PRELE(q);
516 		}
517 		lwkt_reltoken(&initproc->p_token);
518 		wakeup(initproc);
519 	}
520 
521 	/*
522 	 * Save exit status and final rusage info, adding in child rusage
523 	 * info and self times.
524 	 */
525 	calcru_proc(p, &p->p_ru);
526 	ruadd(&p->p_ru, &p->p_cru);
527 
528 	/*
529 	 * notify interested parties of our demise.
530 	 */
531 	KNOTE(&p->p_klist, NOTE_EXIT);
532 
533 	/*
534 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
535 	 * flag set, or if the handler is set to SIG_IGN, notify process 1
536 	 * instead (and hope it will handle this situation).
537 	 */
538 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
539 		proc_reparent(p, initproc);
540 	}
541 
542 	/* lwkt_gettoken(&proc_token); */
543 	q = p->p_pptr;
544 	PHOLD(q);
545 	if (p->p_sigparent && q != initproc) {
546 	        ksignal(q, p->p_sigparent);
547 	} else {
548 	        ksignal(q, SIGCHLD);
549 	}
550 
551 	p->p_flags &= ~P_TRACED;
552 	wakeup(p->p_pptr);
553 
554 	PRELE(q);
555 	/* lwkt_reltoken(&proc_token); */
556 	/* NOTE: p->p_pptr can get ripped out */
557 	/*
558 	 * cpu_exit is responsible for clearing curproc, since
559 	 * it is heavily integrated with the thread/switching sequence.
560 	 *
561 	 * Other substructures are freed from wait().
562 	 */
563 	plimit_free(p);
564 
565 	/*
566 	 * Release the current user process designation on the process so
567 	 * the userland scheduler can work in someone else.
568 	 */
569 	p->p_usched->release_curproc(lp);
570 
571 	/*
572 	 * Finally, call machine-dependent code to release as many of the
573 	 * lwp's resources as we can and halt execution of this thread.
574 	 */
575 	lwp_exit(1);
576 }
577 
578 /*
579  * Eventually called by every exiting LWP
580  *
581  * p->p_token must be held.  mplock may be held and will be released.
582  */
583 void
584 lwp_exit(int masterexit)
585 {
586 	struct thread *td = curthread;
587 	struct lwp *lp = td->td_lwp;
588 	struct proc *p = lp->lwp_proc;
589 	int dowake = 0;
590 
591 	/*
592 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
593 	 * make sure it is set here.
594 	 */
595 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
596 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
597 
598 	/*
599 	 * Clean up any virtualization
600 	 */
601 	if (lp->lwp_vkernel)
602 		vkernel_lwp_exit(lp);
603 
604 	/*
605 	 * Clean up select/poll support
606 	 */
607 	kqueue_terminate(&lp->lwp_kqueue);
608 
609 	/*
610 	 * Clean up any syscall-cached ucred
611 	 */
612 	if (td->td_ucred) {
613 		crfree(td->td_ucred);
614 		td->td_ucred = NULL;
615 	}
616 
617 	/*
618 	 * Nobody actually wakes us when the lock
619 	 * count reaches zero, so just wait one tick.
620 	 */
621 	while (lp->lwp_lock > 0)
622 		tsleep(lp, 0, "lwpexit", 1);
623 
624 	/* Hand down resource usage to our proc */
625 	ruadd(&p->p_ru, &lp->lwp_ru);
626 
627 	/*
628 	 * If we don't hold the process until the LWP is reaped wait*()
629 	 * may try to dispose of its vmspace before all the LWPs have
630 	 * actually terminated.
631 	 */
632 	PHOLD(p);
633 
634 	/*
635 	 * Do any remaining work that might block on us.  We should be
636 	 * coded such that further blocking is ok after decrementing
637 	 * p_nthreads but don't take the chance.
638 	 */
639 	dsched_exit_thread(td);
640 	biosched_done(curthread);
641 
642 	/*
643 	 * We have to use the reaper for all the LWPs except the one doing
644 	 * the master exit.  The LWP doing the master exit can just be
645 	 * left on p_lwps and the process reaper will deal with it
646 	 * synchronously, which is much faster.
647 	 *
648 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
649 	 *
650 	 * The process is left held until the reaper calls lwp_dispose() on
651 	 * the lp (after calling lwp_wait()).
652 	 */
653 	if (masterexit == 0) {
654 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
655 		--p->p_nthreads;
656 		if (p->p_nthreads <= 1)
657 			dowake = 1;
658 		lwkt_gettoken(&deadlwp_token);
659 		LIST_INSERT_HEAD(&deadlwp_list[mycpuid], lp, u.lwp_reap_entry);
660 		taskqueue_enqueue(taskqueue_thread[mycpuid],
661 				  deadlwp_task[mycpuid]);
662 		lwkt_reltoken(&deadlwp_token);
663 	} else {
664 		--p->p_nthreads;
665 		if (p->p_nthreads <= 1)
666 			dowake = 1;
667 	}
668 
669 	/*
670 	 * Release p_token.  Issue the wakeup() on p_nthreads if necessary,
671 	 * as late as possible to give us a chance to actually deschedule and
672 	 * switch away before another cpu core hits reaplwp().
673 	 */
674 	lwkt_reltoken(&p->p_token);
675 	if (dowake)
676 		wakeup(&p->p_nthreads);
677 
678 	/*
679 	 * Tell the userland scheduler that we are going away
680 	 */
681 	p->p_usched->heuristic_exiting(lp, p);
682 
683 	cpu_lwp_exit();
684 }
685 
686 /*
687  * Wait until a lwp is completely dead.  The final interlock in this drama
688  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
689  * switchout.
690  *
691  * At the point TDF_EXITING is set a complete exit is accomplished when
692  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
693  * post-switch interlock flags that can be used to wait for the TDF_
694  * flags to clear.
695  *
696  * Returns non-zero on success, and zero if the caller needs to retry
697  * the lwp_wait().
698  */
699 static int
700 lwp_wait(struct lwp *lp)
701 {
702 	struct thread *td = lp->lwp_thread;
703 	u_int mpflags;
704 
705 	KKASSERT(lwkt_preempted_proc() != lp);
706 
707 	/*
708 	 * This bit of code uses the thread destruction interlock
709 	 * managed by lwkt_switch_return() to wait for the lwp's
710 	 * thread to completely disengage.
711 	 *
712 	 * It is possible for us to race another cpu core so we
713 	 * have to do this correctly.
714 	 */
715 	for (;;) {
716 		mpflags = td->td_mpflags;
717 		cpu_ccfence();
718 		if (mpflags & TDF_MP_EXITSIG)
719 			break;
720 		tsleep_interlock(td, 0);
721 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
722 				      mpflags | TDF_MP_EXITWAIT)) {
723 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
724 		}
725 	}
726 
727 	/*
728 	 * We've already waited for the core exit but there can still
729 	 * be other refs from e.g. process scans and such.
730 	 */
731 	if (lp->lwp_lock > 0) {
732 		tsleep(lp, 0, "lwpwait1", 1);
733 		return(0);
734 	}
735 	if (td->td_refs) {
736 		tsleep(td, 0, "lwpwait2", 1);
737 		return(0);
738 	}
739 
740 	/*
741 	 * Now that we have the thread destruction interlock these flags
742 	 * really should already be cleaned up, keep a check for safety.
743 	 *
744 	 * We can't rip its stack out from under it until TDF_EXITING is
745 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
746 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
747 	 * will be cleared temporarily if a thread gets preempted.
748 	 */
749 	while ((td->td_flags & (TDF_RUNNING |
750 			        TDF_PREEMPT_LOCK |
751 			        TDF_EXITING)) != TDF_EXITING) {
752 		tsleep(lp, 0, "lwpwait3", 1);
753 		return (0);
754 	}
755 
756 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
757 		("lwp_wait: td %p (%s) still on run or sleep queue",
758 		td, td->td_comm));
759 	return (1);
760 }
761 
762 /*
763  * Release the resources associated with a lwp.
764  * The lwp must be completely dead.
765  */
766 void
767 lwp_dispose(struct lwp *lp)
768 {
769 	struct thread *td = lp->lwp_thread;
770 
771 	KKASSERT(lwkt_preempted_proc() != lp);
772 	KKASSERT(td->td_refs == 0);
773 	KKASSERT((td->td_flags & (TDF_RUNNING |
774 				  TDF_PREEMPT_LOCK |
775 				  TDF_EXITING)) == TDF_EXITING);
776 
777 	PRELE(lp->lwp_proc);
778 	lp->lwp_proc = NULL;
779 	if (td != NULL) {
780 		td->td_proc = NULL;
781 		td->td_lwp = NULL;
782 		lp->lwp_thread = NULL;
783 		lwkt_free_thread(td);
784 	}
785 	kfree(lp, M_LWP);
786 }
787 
788 /*
789  * MPSAFE
790  */
791 int
792 sys_wait4(struct wait_args *uap)
793 {
794 	struct rusage rusage;
795 	int error, status;
796 
797 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
798 			  uap->options, (uap->rusage ? &rusage : NULL),
799 			  &uap->sysmsg_result);
800 
801 	if (error == 0 && uap->status)
802 		error = copyout(&status, uap->status, sizeof(*uap->status));
803 	if (error == 0 && uap->rusage)
804 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
805 	return (error);
806 }
807 
808 /*
809  * wait1()
810  *
811  * wait_args(int pid, int *status, int options, struct rusage *rusage)
812  *
813  * MPALMOSTSAFE
814  */
815 int
816 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
817 {
818 	struct thread *td = curthread;
819 	struct lwp *lp;
820 	struct proc *q = td->td_proc;
821 	struct proc *p, *t;
822 	struct pargs *pa;
823 	struct sigacts *ps;
824 	int nfound, error;
825 
826 	if (pid == 0)
827 		pid = -q->p_pgid;
828 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
829 		return (EINVAL);
830 
831 	lwkt_gettoken(&q->p_token);
832 loop:
833 	/*
834 	 * All sorts of things can change due to blocking so we have to loop
835 	 * all the way back up here.
836 	 *
837 	 * The problem is that if a process group is stopped and the parent
838 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
839 	 * of the child and then stop itself when it tries to return from the
840 	 * system call.  When the process group is resumed the parent will
841 	 * then get the STOP status even though the child has now resumed
842 	 * (a followup wait*() will get the CONT status).
843 	 *
844 	 * Previously the CONT would overwrite the STOP because the tstop
845 	 * was handled within tsleep(), and the parent would only see
846 	 * the CONT when both are stopped and continued together.  This little
847 	 * two-line hack restores this effect.
848 	 */
849 	while (q->p_stat == SSTOP)
850             tstop();
851 
852 	nfound = 0;
853 
854 	/*
855 	 * Loop on children.
856 	 *
857 	 * NOTE: We don't want to break q's p_token in the loop for the
858 	 *	 case where no children are found or we risk breaking the
859 	 *	 interlock between child and parent.
860 	 */
861 	LIST_FOREACH(p, &q->p_children, p_sibling) {
862 		if (pid != WAIT_ANY &&
863 		    p->p_pid != pid && p->p_pgid != -pid) {
864 			continue;
865 		}
866 
867 		/*
868 		 * This special case handles a kthread spawned by linux_clone
869 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
870 		 * functions need to be able to distinguish between waiting
871 		 * on a process and waiting on a thread.  It is a thread if
872 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
873 		 * signifies we want to wait for threads and not processes.
874 		 */
875 		if ((p->p_sigparent != SIGCHLD) ^
876 		    ((options & WLINUXCLONE) != 0)) {
877 			continue;
878 		}
879 
880 		nfound++;
881 		if (p->p_stat == SZOMB) {
882 			/*
883 			 * We may go into SZOMB with threads still present.
884 			 * We must wait for them to exit before we can reap
885 			 * the master thread, otherwise we may race reaping
886 			 * non-master threads.
887 			 *
888 			 * Only this routine can remove a process from
889 			 * the zombie list and destroy it, use PACQUIREZOMB()
890 			 * to serialize us and loop if it blocks (interlocked
891 			 * by the parent's q->p_token).
892 			 *
893 			 * WARNING!  (p) can be invalid when PHOLDZOMB(p)
894 			 *	     returns non-zero.  Be sure not to
895 			 *	     mess with it.
896 			 */
897 			if (PHOLDZOMB(p))
898 				goto loop;
899 			lwkt_gettoken(&p->p_token);
900 			if (p->p_pptr != q) {
901 				lwkt_reltoken(&p->p_token);
902 				PRELEZOMB(p);
903 				goto loop;
904 			}
905 			while (p->p_nthreads > 0) {
906 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
907 			}
908 
909 			/*
910 			 * Reap any LWPs left in p->p_lwps.  This is usually
911 			 * just the last LWP.  This must be done before
912 			 * we loop on p_lock since the lwps hold a ref on
913 			 * it as a vmspace interlock.
914 			 *
915 			 * Once that is accomplished p_nthreads had better
916 			 * be zero.
917 			 */
918 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
919 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
920 				reaplwp(lp);
921 			}
922 			KKASSERT(p->p_nthreads == 0);
923 
924 			/*
925 			 * Don't do anything really bad until all references
926 			 * to the process go away.  This may include other
927 			 * LWPs which are still in the process of being
928 			 * reaped.  We can't just pull the rug out from under
929 			 * them because they may still be using the VM space.
930 			 *
931 			 * Certain kernel facilities such as /proc will also
932 			 * put a hold on the process for short periods of
933 			 * time.
934 			 */
935 			PRELE(p);
936 			PSTALL(p, "reap3", 0);
937 
938 			/* Take care of our return values. */
939 			*res = p->p_pid;
940 
941 			if (status)
942 				*status = p->p_xstat;
943 			if (rusage)
944 				*rusage = p->p_ru;
945 			/*
946 			 * If we got the child via a ptrace 'attach',
947 			 * we need to give it back to the old parent.
948 			 */
949 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
950 				PHOLD(p);
951 				p->p_oppid = 0;
952 				proc_reparent(p, t);
953 				ksignal(t, SIGCHLD);
954 				wakeup((caddr_t)t);
955 				error = 0;
956 				PRELE(t);
957 				lwkt_reltoken(&p->p_token);
958 				PRELEZOMB(p);
959 				goto done;
960 			}
961 
962 			/*
963 			 * Unlink the proc from its process group so that
964 			 * the following operations won't lead to an
965 			 * inconsistent state for processes running down
966 			 * the zombie list.
967 			 */
968 			proc_remove_zombie(p);
969 			lwkt_reltoken(&p->p_token);
970 			leavepgrp(p);
971 
972 			p->p_xstat = 0;
973 			ruadd(&q->p_cru, &p->p_ru);
974 
975 			/*
976 			 * Decrement the count of procs running with this uid.
977 			 */
978 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
979 
980 			/*
981 			 * Free up credentials.
982 			 */
983 			crfree(p->p_ucred);
984 			p->p_ucred = NULL;
985 
986 			/*
987 			 * Remove unused arguments
988 			 */
989 			pa = p->p_args;
990 			p->p_args = NULL;
991 			if (pa && refcount_release(&pa->ar_ref)) {
992 				kfree(pa, M_PARGS);
993 				pa = NULL;
994 			}
995 
996 			ps = p->p_sigacts;
997 			p->p_sigacts = NULL;
998 			if (ps && refcount_release(&ps->ps_refcnt)) {
999 				kfree(ps, M_SUBPROC);
1000 				ps = NULL;
1001 			}
1002 
1003 			/*
1004 			 * Our exitingcount was incremented when the process
1005 			 * became a zombie, now that the process has been
1006 			 * removed from (almost) all lists we should be able
1007 			 * to safely destroy its vmspace.  Wait for any current
1008 			 * holders to go away (so the vmspace remains stable),
1009 			 * then scrap it.
1010 			 */
1011 			PSTALL(p, "reap4", 0);
1012 			vmspace_exitfree(p);
1013 			PSTALL(p, "reap5", 0);
1014 
1015 			/*
1016 			 * NOTE: We have to officially release ZOMB in order
1017 			 *	 to ensure that a racing thread in kern_wait()
1018 			 *	 which blocked on ZOMB is woken up.
1019 			 */
1020 			PHOLD(p);
1021 			PRELEZOMB(p);
1022 			kfree(p, M_PROC);
1023 			atomic_add_int(&nprocs, -1);
1024 			error = 0;
1025 			goto done;
1026 		}
1027 		if (p->p_stat == SSTOP && (p->p_flags & P_WAITED) == 0 &&
1028 		    ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1029 			PHOLD(p);
1030 			lwkt_gettoken(&p->p_token);
1031 			if (p->p_pptr != q) {
1032 				lwkt_reltoken(&p->p_token);
1033 				PRELE(p);
1034 				goto loop;
1035 			}
1036 			if (p->p_stat != SSTOP ||
1037 			    (p->p_flags & P_WAITED) != 0 ||
1038 			    ((p->p_flags & P_TRACED) == 0 &&
1039 			     (options & WUNTRACED) == 0)) {
1040 				lwkt_reltoken(&p->p_token);
1041 				PRELE(p);
1042 				goto loop;
1043 			}
1044 
1045 			p->p_flags |= P_WAITED;
1046 
1047 			*res = p->p_pid;
1048 			if (status)
1049 				*status = W_STOPCODE(p->p_xstat);
1050 			/* Zero rusage so we get something consistent. */
1051 			if (rusage)
1052 				bzero(rusage, sizeof(*rusage));
1053 			error = 0;
1054 			lwkt_reltoken(&p->p_token);
1055 			PRELE(p);
1056 			goto done;
1057 		}
1058 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1059 			PHOLD(p);
1060 			lwkt_gettoken(&p->p_token);
1061 			if (p->p_pptr != q) {
1062 				lwkt_reltoken(&p->p_token);
1063 				PRELE(p);
1064 				goto loop;
1065 			}
1066 			if ((p->p_flags & P_CONTINUED) == 0) {
1067 				lwkt_reltoken(&p->p_token);
1068 				PRELE(p);
1069 				goto loop;
1070 			}
1071 
1072 			*res = p->p_pid;
1073 			p->p_flags &= ~P_CONTINUED;
1074 
1075 			if (status)
1076 				*status = SIGCONT;
1077 			error = 0;
1078 			lwkt_reltoken(&p->p_token);
1079 			PRELE(p);
1080 			goto done;
1081 		}
1082 	}
1083 	if (nfound == 0) {
1084 		error = ECHILD;
1085 		goto done;
1086 	}
1087 	if (options & WNOHANG) {
1088 		*res = 0;
1089 		error = 0;
1090 		goto done;
1091 	}
1092 
1093 	/*
1094 	 * Wait for signal - interlocked using q->p_token.
1095 	 */
1096 	error = tsleep(q, PCATCH, "wait", 0);
1097 	if (error) {
1098 done:
1099 		lwkt_reltoken(&q->p_token);
1100 		return (error);
1101 	}
1102 	goto loop;
1103 }
1104 
1105 /*
1106  * Change child's parent process to parent.
1107  *
1108  * p_children/p_sibling requires the parent's token, and
1109  * changing pptr requires the child's token, so we have to
1110  * get three tokens to do this operation.  We also need to
1111  * hold pointers that might get ripped out from under us to
1112  * preserve structural integrity.
1113  *
1114  * It is possible to race another reparent or disconnect or other
1115  * similar operation.  We must retry when this situation occurs.
1116  * Once we successfully reparent the process we no longer care
1117  * about any races.
1118  */
1119 void
1120 proc_reparent(struct proc *child, struct proc *parent)
1121 {
1122 	struct proc *opp;
1123 
1124 	PHOLD(parent);
1125 	while ((opp = child->p_pptr) != parent) {
1126 		PHOLD(opp);
1127 		lwkt_gettoken(&opp->p_token);
1128 		lwkt_gettoken(&child->p_token);
1129 		lwkt_gettoken(&parent->p_token);
1130 		if (child->p_pptr != opp) {
1131 			lwkt_reltoken(&parent->p_token);
1132 			lwkt_reltoken(&child->p_token);
1133 			lwkt_reltoken(&opp->p_token);
1134 			PRELE(opp);
1135 			continue;
1136 		}
1137 		LIST_REMOVE(child, p_sibling);
1138 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1139 		child->p_pptr = parent;
1140 		lwkt_reltoken(&parent->p_token);
1141 		lwkt_reltoken(&child->p_token);
1142 		lwkt_reltoken(&opp->p_token);
1143 		if (LIST_EMPTY(&opp->p_children))
1144 			wakeup(opp);
1145 		PRELE(opp);
1146 		break;
1147 	}
1148 	PRELE(parent);
1149 }
1150 
1151 /*
1152  * The next two functions are to handle adding/deleting items on the
1153  * exit callout list
1154  *
1155  * at_exit():
1156  * Take the arguments given and put them onto the exit callout list,
1157  * However first make sure that it's not already there.
1158  * returns 0 on success.
1159  */
1160 
1161 int
1162 at_exit(exitlist_fn function)
1163 {
1164 	struct exitlist *ep;
1165 
1166 #ifdef INVARIANTS
1167 	/* Be noisy if the programmer has lost track of things */
1168 	if (rm_at_exit(function))
1169 		kprintf("WARNING: exit callout entry (%p) already present\n",
1170 		    function);
1171 #endif
1172 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1173 	if (ep == NULL)
1174 		return (ENOMEM);
1175 	ep->function = function;
1176 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1177 	return (0);
1178 }
1179 
1180 /*
1181  * Scan the exit callout list for the given item and remove it.
1182  * Returns the number of items removed (0 or 1)
1183  */
1184 int
1185 rm_at_exit(exitlist_fn function)
1186 {
1187 	struct exitlist *ep;
1188 
1189 	TAILQ_FOREACH(ep, &exit_list, next) {
1190 		if (ep->function == function) {
1191 			TAILQ_REMOVE(&exit_list, ep, next);
1192 			kfree(ep, M_ATEXIT);
1193 			return(1);
1194 		}
1195 	}
1196 	return (0);
1197 }
1198 
1199 /*
1200  * LWP reaper related code.
1201  */
1202 static void
1203 reaplwps(void *context, int dummy)
1204 {
1205 	struct lwplist *lwplist = context;
1206 	struct lwp *lp;
1207 
1208 	lwkt_gettoken(&deadlwp_token);
1209 	while ((lp = LIST_FIRST(lwplist))) {
1210 		LIST_REMOVE(lp, u.lwp_reap_entry);
1211 		reaplwp(lp);
1212 	}
1213 	lwkt_reltoken(&deadlwp_token);
1214 }
1215 
1216 static void
1217 reaplwp(struct lwp *lp)
1218 {
1219 	while (lwp_wait(lp) == 0)
1220 		;
1221 	lwp_dispose(lp);
1222 }
1223 
1224 static void
1225 deadlwp_init(void)
1226 {
1227 	int cpu;
1228 
1229 	for (cpu = 0; cpu < ncpus; cpu++) {
1230 		LIST_INIT(&deadlwp_list[cpu]);
1231 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1232 					    M_DEVBUF, M_WAITOK);
1233 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1234 	}
1235 }
1236 
1237 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1238