xref: /dragonfly/sys/kern/kern_exit.c (revision 52f9f0d9)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
39  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
40  */
41 
42 #include "opt_compat.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/proc.h>
51 #include <sys/ktrace.h>
52 #include <sys/pioctl.h>
53 #include <sys/tty.h>
54 #include <sys/wait.h>
55 #include <sys/vnode.h>
56 #include <sys/resourcevar.h>
57 #include <sys/signalvar.h>
58 #include <sys/taskqueue.h>
59 #include <sys/ptrace.h>
60 #include <sys/acct.h>		/* for acct_process() function prototype */
61 #include <sys/filedesc.h>
62 #include <sys/shm.h>
63 #include <sys/sem.h>
64 #include <sys/jail.h>
65 #include <sys/kern_syscall.h>
66 #include <sys/upcall.h>
67 #include <sys/caps.h>
68 #include <sys/unistd.h>
69 #include <sys/eventhandler.h>
70 #include <sys/dsched.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_param.h>
74 #include <sys/lock.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_extern.h>
78 #include <sys/user.h>
79 
80 #include <sys/refcount.h>
81 #include <sys/thread2.h>
82 #include <sys/sysref2.h>
83 #include <sys/mplock2.h>
84 
85 static void reaplwps(void *context, int dummy);
86 static void reaplwp(struct lwp *lp);
87 static void killlwps(struct lwp *lp);
88 
89 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
90 static MALLOC_DEFINE(M_ZOMBIE, "zombie", "zombie proc status");
91 
92 static struct lwkt_token deadlwp_token = LWKT_TOKEN_INITIALIZER(deadlwp_token);
93 
94 /*
95  * callout list for things to do at exit time
96  */
97 struct exitlist {
98 	exitlist_fn function;
99 	TAILQ_ENTRY(exitlist) next;
100 };
101 
102 TAILQ_HEAD(exit_list_head, exitlist);
103 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
104 
105 /*
106  * LWP reaper data
107  */
108 struct task *deadlwp_task[MAXCPU];
109 struct lwplist deadlwp_list[MAXCPU];
110 
111 /*
112  * exit --
113  *	Death of process.
114  *
115  * SYS_EXIT_ARGS(int rval)
116  */
117 int
118 sys_exit(struct exit_args *uap)
119 {
120 	exit1(W_EXITCODE(uap->rval, 0));
121 	/* NOTREACHED */
122 }
123 
124 /*
125  * Extended exit --
126  *	Death of a lwp or process with optional bells and whistles.
127  *
128  * MPALMOSTSAFE
129  */
130 int
131 sys_extexit(struct extexit_args *uap)
132 {
133 	struct proc *p = curproc;
134 	int action, who;
135 	int error;
136 
137 	action = EXTEXIT_ACTION(uap->how);
138 	who = EXTEXIT_WHO(uap->how);
139 
140 	/* Check parameters before we might perform some action */
141 	switch (who) {
142 	case EXTEXIT_PROC:
143 	case EXTEXIT_LWP:
144 		break;
145 	default:
146 		return (EINVAL);
147 	}
148 
149 	switch (action) {
150 	case EXTEXIT_SIMPLE:
151 		break;
152 	case EXTEXIT_SETINT:
153 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
154 		if (error)
155 			return (error);
156 		break;
157 	default:
158 		return (EINVAL);
159 	}
160 
161 	lwkt_gettoken(&p->p_token);
162 
163 	switch (who) {
164 	case EXTEXIT_LWP:
165 		/*
166 		 * Be sure only to perform a simple lwp exit if there is at
167 		 * least one more lwp in the proc, which will call exit1()
168 		 * later, otherwise the proc will be an UNDEAD and not even a
169 		 * SZOMB!
170 		 */
171 		if (p->p_nthreads > 1) {
172 			lwp_exit(0);	/* called w/ p_token held */
173 			/* NOT REACHED */
174 		}
175 		/* else last lwp in proc:  do the real thing */
176 		/* FALLTHROUGH */
177 	default:	/* to help gcc */
178 	case EXTEXIT_PROC:
179 		lwkt_reltoken(&p->p_token);
180 		exit1(W_EXITCODE(uap->status, 0));
181 		/* NOTREACHED */
182 	}
183 
184 	/* NOTREACHED */
185 	lwkt_reltoken(&p->p_token);	/* safety */
186 }
187 
188 /*
189  * Kill all lwps associated with the current process except the
190  * current lwp.   Return an error if we race another thread trying to
191  * do the same thing and lose the race.
192  *
193  * If forexec is non-zero the current thread and process flags are
194  * cleaned up so they can be reused.
195  *
196  * Caller must hold curproc->p_token
197  */
198 int
199 killalllwps(int forexec)
200 {
201 	struct lwp *lp = curthread->td_lwp;
202 	struct proc *p = lp->lwp_proc;
203 
204 	/*
205 	 * Interlock against P_WEXIT.  Only one of the process's thread
206 	 * is allowed to do the master exit.
207 	 */
208 	if (p->p_flags & P_WEXIT)
209 		return (EALREADY);
210 	p->p_flags |= P_WEXIT;
211 
212 	/*
213 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
214 	 */
215 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
216 	if (p->p_nthreads > 1)
217 		killlwps(lp);
218 
219 	/*
220 	 * If doing this for an exec, clean up the remaining thread
221 	 * (us) for continuing operation after all the other threads
222 	 * have been killed.
223 	 */
224 	if (forexec) {
225 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
226 		p->p_flags &= ~P_WEXIT;
227 	}
228 	return(0);
229 }
230 
231 /*
232  * Kill all LWPs except the current one.  Do not try to signal
233  * LWPs which have exited on their own or have already been
234  * signaled.
235  */
236 static void
237 killlwps(struct lwp *lp)
238 {
239 	struct proc *p = lp->lwp_proc;
240 	struct lwp *tlp;
241 
242 	/*
243 	 * Kill the remaining LWPs.  We must send the signal before setting
244 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
245 	 * races.  tlp must be held across the call as it might block and
246 	 * allow the target lwp to rip itself out from under our loop.
247 	 */
248 	FOREACH_LWP_IN_PROC(tlp, p) {
249 		LWPHOLD(tlp);
250 		lwkt_gettoken(&tlp->lwp_token);
251 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
252 			lwpsignal(p, tlp, SIGKILL);
253 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
254 		}
255 		lwkt_reltoken(&tlp->lwp_token);
256 		LWPRELE(tlp);
257 	}
258 
259 	/*
260 	 * Wait for everything to clear out.
261 	 */
262 	while (p->p_nthreads > 1) {
263 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
264 	}
265 }
266 
267 /*
268  * Exit: deallocate address space and other resources, change proc state
269  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
270  * status and rusage for wait().  Check for child processes and orphan them.
271  */
272 void
273 exit1(int rv)
274 {
275 	struct thread *td = curthread;
276 	struct proc *p = td->td_proc;
277 	struct lwp *lp = td->td_lwp;
278 	struct proc *q, *nq;
279 	struct vmspace *vm;
280 	struct vnode *vtmp;
281 	struct exitlist *ep;
282 	int error;
283 
284 	lwkt_gettoken(&p->p_token);
285 
286 	if (p->p_pid == 1) {
287 		kprintf("init died (signal %d, exit %d)\n",
288 		    WTERMSIG(rv), WEXITSTATUS(rv));
289 		panic("Going nowhere without my init!");
290 	}
291 	varsymset_clean(&p->p_varsymset);
292 	lockuninit(&p->p_varsymset.vx_lock);
293 
294 	/*
295 	 * Kill all lwps associated with the current process, return an
296 	 * error if we race another thread trying to do the same thing
297 	 * and lose the race.
298 	 */
299 	error = killalllwps(0);
300 	if (error) {
301 		lwp_exit(0);
302 		/* NOT REACHED */
303 	}
304 
305 	caps_exit(lp->lwp_thread);
306 
307 	/* are we a task leader? */
308 	if (p == p->p_leader) {
309         	struct kill_args killArgs;
310 		killArgs.signum = SIGKILL;
311 		q = p->p_peers;
312 		while(q) {
313 			killArgs.pid = q->p_pid;
314 			/*
315 		         * The interface for kill is better
316 			 * than the internal signal
317 			 */
318 			sys_kill(&killArgs);
319 			nq = q;
320 			q = q->p_peers;
321 		}
322 		while (p->p_peers)
323 			tsleep((caddr_t)p, 0, "exit1", 0);
324 	}
325 
326 #ifdef PGINPROF
327 	vmsizmon();
328 #endif
329 	STOPEVENT(p, S_EXIT, rv);
330 	wakeup(&p->p_stype);	/* Wakeup anyone in procfs' PIOCWAIT */
331 
332 	/*
333 	 * Check if any loadable modules need anything done at process exit.
334 	 * e.g. SYSV IPC stuff
335 	 * XXX what if one of these generates an error?
336 	 */
337 	p->p_xstat = rv;
338 	EVENTHANDLER_INVOKE(process_exit, p);
339 
340 	/*
341 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
342 	 *	Maybe we should move everything to use eventhandler.
343 	 */
344 	TAILQ_FOREACH(ep, &exit_list, next)
345 		(*ep->function)(td);
346 
347 	if (p->p_flags & P_PROFIL)
348 		stopprofclock(p);
349 
350 	SIGEMPTYSET(p->p_siglist);
351 	SIGEMPTYSET(lp->lwp_siglist);
352 	if (timevalisset(&p->p_realtimer.it_value))
353 		callout_stop_sync(&p->p_ithandle);
354 
355 	/*
356 	 * Reset any sigio structures pointing to us as a result of
357 	 * F_SETOWN with our pid.
358 	 */
359 	funsetownlst(&p->p_sigiolst);
360 
361 	/*
362 	 * Close open files and release open-file table.
363 	 * This may block!
364 	 */
365 	fdfree(p, NULL);
366 
367 	if(p->p_leader->p_peers) {
368 		q = p->p_leader;
369 		while(q->p_peers != p)
370 			q = q->p_peers;
371 		q->p_peers = p->p_peers;
372 		wakeup((caddr_t)p->p_leader);
373 	}
374 
375 	/*
376 	 * XXX Shutdown SYSV semaphores
377 	 */
378 	semexit(p);
379 
380 	KKASSERT(p->p_numposixlocks == 0);
381 
382 	/* The next two chunks should probably be moved to vmspace_exit. */
383 	vm = p->p_vmspace;
384 
385 	/*
386 	 * Release upcalls associated with this process
387 	 */
388 	if (vm->vm_upcalls)
389 		upc_release(vm, lp);
390 
391 	/*
392 	 * Clean up data related to virtual kernel operation.  Clean up
393 	 * any vkernel context related to the current lwp now so we can
394 	 * destroy p_vkernel.
395 	 */
396 	if (p->p_vkernel) {
397 		vkernel_lwp_exit(lp);
398 		vkernel_exit(p);
399 	}
400 
401 	/*
402 	 * Release user portion of address space.
403 	 * This releases references to vnodes,
404 	 * which could cause I/O if the file has been unlinked.
405 	 * Need to do this early enough that we can still sleep.
406 	 * Can't free the entire vmspace as the kernel stack
407 	 * may be mapped within that space also.
408 	 *
409 	 * Processes sharing the same vmspace may exit in one order, and
410 	 * get cleaned up by vmspace_exit() in a different order.  The
411 	 * last exiting process to reach this point releases as much of
412 	 * the environment as it can, and the last process cleaned up
413 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
414 	 * remainder.
415 	 */
416 	vmspace_exitbump(vm);
417 	sysref_put(&vm->vm_sysref);
418 
419 	if (SESS_LEADER(p)) {
420 		struct session *sp = p->p_session;
421 
422 		if (sp->s_ttyvp) {
423 			/*
424 			 * We are the controlling process.  Signal the
425 			 * foreground process group, drain the controlling
426 			 * terminal, and revoke access to the controlling
427 			 * terminal.
428 			 *
429 			 * NOTE: while waiting for the process group to exit
430 			 * it is possible that one of the processes in the
431 			 * group will revoke the tty, so the ttyclosesession()
432 			 * function will re-check sp->s_ttyvp.
433 			 */
434 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
435 				if (sp->s_ttyp->t_pgrp)
436 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
437 				ttywait(sp->s_ttyp);
438 				ttyclosesession(sp, 1); /* also revoke */
439 			}
440 			/*
441 			 * Release the tty.  If someone has it open via
442 			 * /dev/tty then close it (since they no longer can
443 			 * once we've NULL'd it out).
444 			 */
445 			ttyclosesession(sp, 0);
446 
447 			/*
448 			 * s_ttyp is not zero'd; we use this to indicate
449 			 * that the session once had a controlling terminal.
450 			 * (for logging and informational purposes)
451 			 */
452 		}
453 		sp->s_leader = NULL;
454 	}
455 	fixjobc(p, p->p_pgrp, 0);
456 	(void)acct_process(p);
457 #ifdef KTRACE
458 	/*
459 	 * release trace file
460 	 */
461 	if (p->p_tracenode)
462 		ktrdestroy(&p->p_tracenode);
463 	p->p_traceflag = 0;
464 #endif
465 	/*
466 	 * Release reference to text vnode
467 	 */
468 	if ((vtmp = p->p_textvp) != NULL) {
469 		p->p_textvp = NULL;
470 		vrele(vtmp);
471 	}
472 
473 	/* Release namecache handle to text file */
474 	if (p->p_textnch.ncp)
475 		cache_drop(&p->p_textnch);
476 
477 	/*
478 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
479 	 * will block on the PHOLD() the parent is doing.
480 	 */
481 	if (p->p_flags & P_PPWAIT) {
482 		p->p_flags &= ~P_PPWAIT;
483 		wakeup(p->p_pptr);
484 	}
485 
486 	/*
487 	 * Move the process to the zombie list.  This will block
488 	 * until the process p_lock count reaches 0.  The process will
489 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
490 	 * which is called from cpu_proc_exit().
491 	 */
492 	proc_move_allproc_zombie(p);
493 
494 	/*
495 	 * Reparent all of this process's children to the init process.
496 	 * We must hold initproc->p_token in order to mess with
497 	 * initproc->p_children.  We already hold p->p_token (to remove
498 	 * the children from our list).
499 	 */
500 	q = LIST_FIRST(&p->p_children);
501 	if (q) {
502 		lwkt_gettoken(&initproc->p_token);
503 		while (q) {
504 			nq = LIST_NEXT(q, p_sibling);
505 			LIST_REMOVE(q, p_sibling);
506 			LIST_INSERT_HEAD(&initproc->p_children, q, p_sibling);
507 			q->p_pptr = initproc;
508 			q->p_sigparent = SIGCHLD;
509 			/*
510 			 * Traced processes are killed
511 			 * since their existence means someone is screwing up.
512 			 */
513 			if (q->p_flags & P_TRACED) {
514 				q->p_flags &= ~P_TRACED;
515 				ksignal(q, SIGKILL);
516 			}
517 			q = nq;
518 		}
519 		lwkt_reltoken(&initproc->p_token);
520 		wakeup(initproc);
521 	}
522 
523 	/*
524 	 * Save exit status and final rusage info, adding in child rusage
525 	 * info and self times.
526 	 */
527 	calcru_proc(p, &p->p_ru);
528 	ruadd(&p->p_ru, &p->p_cru);
529 
530 	/*
531 	 * notify interested parties of our demise.
532 	 */
533 	KNOTE(&p->p_klist, NOTE_EXIT);
534 
535 	/*
536 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
537 	 * flag set, or if the handler is set to SIG_IGN, notify process 1
538 	 * instead (and hope it will handle this situation).
539 	 */
540 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
541 		struct proc *pp = p->p_pptr;
542 
543 		PHOLD(pp);
544 		proc_reparent(p, initproc);
545 
546 		/*
547 		 * If this was the last child of our parent, notify
548 		 * parent, so in case he was wait(2)ing, he will
549 		 * continue.  This function interlocks with pptr->p_token.
550 		 */
551 		if (LIST_EMPTY(&pp->p_children))
552 			wakeup((caddr_t)pp);
553 		PRELE(pp);
554 	}
555 
556 	/* lwkt_gettoken(&proc_token); */
557 	q = p->p_pptr;
558 	PHOLD(q);
559 	if (p->p_sigparent && q != initproc) {
560 	        ksignal(q, p->p_sigparent);
561 	} else {
562 	        ksignal(q, SIGCHLD);
563 	}
564 
565 	p->p_flags &= ~P_TRACED;
566 	wakeup(p->p_pptr);
567 
568 	PRELE(q);
569 	/* lwkt_reltoken(&proc_token); */
570 	/* NOTE: p->p_pptr can get ripped out */
571 	/*
572 	 * cpu_exit is responsible for clearing curproc, since
573 	 * it is heavily integrated with the thread/switching sequence.
574 	 *
575 	 * Other substructures are freed from wait().
576 	 */
577 	plimit_free(p);
578 
579 	/*
580 	 * Release the current user process designation on the process so
581 	 * the userland scheduler can work in someone else.
582 	 */
583 	p->p_usched->release_curproc(lp);
584 
585 	/*
586 	 * Finally, call machine-dependent code to release as many of the
587 	 * lwp's resources as we can and halt execution of this thread.
588 	 */
589 	lwp_exit(1);
590 }
591 
592 /*
593  * Eventually called by every exiting LWP
594  *
595  * p->p_token must be held.  mplock may be held and will be released.
596  */
597 void
598 lwp_exit(int masterexit)
599 {
600 	struct thread *td = curthread;
601 	struct lwp *lp = td->td_lwp;
602 	struct proc *p = lp->lwp_proc;
603 	int dowake = 0;
604 
605 	/*
606 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
607 	 * make sure it is set here.
608 	 */
609 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
610 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
611 
612 	/*
613 	 * Clean up any virtualization
614 	 */
615 	if (lp->lwp_vkernel)
616 		vkernel_lwp_exit(lp);
617 
618 	/*
619 	 * Clean up select/poll support
620 	 */
621 	kqueue_terminate(&lp->lwp_kqueue);
622 
623 	/*
624 	 * Clean up any syscall-cached ucred
625 	 */
626 	if (td->td_ucred) {
627 		crfree(td->td_ucred);
628 		td->td_ucred = NULL;
629 	}
630 
631 	/*
632 	 * Nobody actually wakes us when the lock
633 	 * count reaches zero, so just wait one tick.
634 	 */
635 	while (lp->lwp_lock > 0)
636 		tsleep(lp, 0, "lwpexit", 1);
637 
638 	/* Hand down resource usage to our proc */
639 	ruadd(&p->p_ru, &lp->lwp_ru);
640 
641 	/*
642 	 * If we don't hold the process until the LWP is reaped wait*()
643 	 * may try to dispose of its vmspace before all the LWPs have
644 	 * actually terminated.
645 	 */
646 	PHOLD(p);
647 
648 	/*
649 	 * Do any remaining work that might block on us.  We should be
650 	 * coded such that further blocking is ok after decrementing
651 	 * p_nthreads but don't take the chance.
652 	 */
653 	dsched_exit_thread(td);
654 	biosched_done(curthread);
655 
656 	/*
657 	 * We have to use the reaper for all the LWPs except the one doing
658 	 * the master exit.  The LWP doing the master exit can just be
659 	 * left on p_lwps and the process reaper will deal with it
660 	 * synchronously, which is much faster.
661 	 *
662 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
663 	 *
664 	 * The process is left held until the reaper calls lwp_dispose() on
665 	 * the lp (after calling lwp_wait()).
666 	 */
667 	if (masterexit == 0) {
668 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
669 		--p->p_nthreads;
670 		if (p->p_nthreads <= 1)
671 			dowake = 1;
672 		lwkt_gettoken(&deadlwp_token);
673 		LIST_INSERT_HEAD(&deadlwp_list[mycpuid], lp, u.lwp_reap_entry);
674 		taskqueue_enqueue(taskqueue_thread[mycpuid],
675 				  deadlwp_task[mycpuid]);
676 		lwkt_reltoken(&deadlwp_token);
677 	} else {
678 		--p->p_nthreads;
679 		if (p->p_nthreads <= 1)
680 			dowake = 1;
681 	}
682 
683 	/*
684 	 * Release p_token.  Issue the wakeup() on p_nthreads if necessary,
685 	 * as late as possible to give us a chance to actually deschedule and
686 	 * switch away before another cpu core hits reaplwp().
687 	 */
688 	lwkt_reltoken(&p->p_token);
689 	if (dowake)
690 		wakeup(&p->p_nthreads);
691 	cpu_lwp_exit();
692 }
693 
694 /*
695  * Wait until a lwp is completely dead.  The final interlock in this drama
696  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
697  * switchout.
698  *
699  * At the point TDF_EXITING is set a complete exit is accomplished when
700  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.
701  *
702  * Returns non-zero on success, and zero if the caller needs to retry
703  * the lwp_wait().
704  */
705 static int
706 lwp_wait(struct lwp *lp)
707 {
708 	struct thread *td = lp->lwp_thread;;
709 
710 	KKASSERT(lwkt_preempted_proc() != lp);
711 
712 	/*
713 	 * Wait until the lp has entered its low level exit and wait
714 	 * until other cores with refs on the lp (e.g. for ps or signaling)
715 	 * release them.
716 	 */
717 	if (lp->lwp_lock > 0) {
718 		tsleep(lp, 0, "lwpwait1", 1);
719 		return(0);
720 	}
721 
722 	/*
723 	 * Wait until the thread is no longer references and no longer
724 	 * runnable or preempted (i.e. finishes its low level exit).
725 	 */
726 	if (td->td_refs) {
727 		tsleep(td, 0, "lwpwait2", 1);
728 		return(0);
729 	}
730 
731 	/*
732 	 * The lwp's thread may still be in the middle
733 	 * of switching away, we can't rip its stack out from
734 	 * under it until TDF_EXITING is set and both
735 	 * TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
736 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
737 	 * will be cleared temporarily if a thread gets
738 	 * preempted.
739 	 *
740 	 * YYY no wakeup occurs, so we simply return failure
741 	 * and let the caller deal with sleeping and calling
742 	 * us again.
743 	 */
744 	if ((td->td_flags & (TDF_RUNNING |
745 			     TDF_PREEMPT_LOCK |
746 			     TDF_EXITING)) != TDF_EXITING) {
747 		tsleep(lp, 0, "lwpwait2", 1);
748 		return (0);
749 	}
750 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
751 		("lwp_wait: td %p (%s) still on run or sleep queue",
752 		td, td->td_comm));
753 	return (1);
754 }
755 
756 /*
757  * Release the resources associated with a lwp.
758  * The lwp must be completely dead.
759  */
760 void
761 lwp_dispose(struct lwp *lp)
762 {
763 	struct thread *td = lp->lwp_thread;;
764 
765 	KKASSERT(lwkt_preempted_proc() != lp);
766 	KKASSERT(td->td_refs == 0);
767 	KKASSERT((td->td_flags & (TDF_RUNNING |
768 				  TDF_PREEMPT_LOCK |
769 				  TDF_EXITING)) == TDF_EXITING);
770 
771 	PRELE(lp->lwp_proc);
772 	lp->lwp_proc = NULL;
773 	if (td != NULL) {
774 		td->td_proc = NULL;
775 		td->td_lwp = NULL;
776 		lp->lwp_thread = NULL;
777 		lwkt_free_thread(td);
778 	}
779 	kfree(lp, M_LWP);
780 }
781 
782 /*
783  * MPSAFE
784  */
785 int
786 sys_wait4(struct wait_args *uap)
787 {
788 	struct rusage rusage;
789 	int error, status;
790 
791 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
792 			  uap->options, (uap->rusage ? &rusage : NULL),
793 			  &uap->sysmsg_result);
794 
795 	if (error == 0 && uap->status)
796 		error = copyout(&status, uap->status, sizeof(*uap->status));
797 	if (error == 0 && uap->rusage)
798 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
799 	return (error);
800 }
801 
802 /*
803  * wait1()
804  *
805  * wait_args(int pid, int *status, int options, struct rusage *rusage)
806  *
807  * MPALMOSTSAFE
808  */
809 int
810 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
811 {
812 	struct thread *td = curthread;
813 	struct lwp *lp;
814 	struct proc *q = td->td_proc;
815 	struct proc *p, *t;
816 	struct pargs *pa;
817 	struct sigacts *ps;
818 	int nfound, error;
819 
820 	if (pid == 0)
821 		pid = -q->p_pgid;
822 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
823 		return (EINVAL);
824 
825 	lwkt_gettoken(&q->p_token);
826 loop:
827 	/*
828 	 * All sorts of things can change due to blocking so we have to loop
829 	 * all the way back up here.
830 	 *
831 	 * The problem is that if a process group is stopped and the parent
832 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
833 	 * of the child and then stop itself when it tries to return from the
834 	 * system call.  When the process group is resumed the parent will
835 	 * then get the STOP status even though the child has now resumed
836 	 * (a followup wait*() will get the CONT status).
837 	 *
838 	 * Previously the CONT would overwrite the STOP because the tstop
839 	 * was handled within tsleep(), and the parent would only see
840 	 * the CONT when both are stopped and continued together.  This little
841 	 * two-line hack restores this effect.
842 	 */
843 	while (q->p_stat == SSTOP)
844             tstop();
845 
846 	nfound = 0;
847 
848 	/*
849 	 * Loop on children.
850 	 *
851 	 * NOTE: We don't want to break q's p_token in the loop for the
852 	 *	 case where no children are found or we risk breaking the
853 	 *	 interlock between child and parent.
854 	 */
855 	LIST_FOREACH(p, &q->p_children, p_sibling) {
856 		if (pid != WAIT_ANY &&
857 		    p->p_pid != pid && p->p_pgid != -pid) {
858 			continue;
859 		}
860 
861 		/*
862 		 * This special case handles a kthread spawned by linux_clone
863 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
864 		 * functions need to be able to distinguish between waiting
865 		 * on a process and waiting on a thread.  It is a thread if
866 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
867 		 * signifies we want to wait for threads and not processes.
868 		 */
869 		if ((p->p_sigparent != SIGCHLD) ^
870 		    ((options & WLINUXCLONE) != 0)) {
871 			continue;
872 		}
873 
874 		nfound++;
875 		if (p->p_stat == SZOMB) {
876 			/*
877 			 * We may go into SZOMB with threads still present.
878 			 * We must wait for them to exit before we can reap
879 			 * the master thread, otherwise we may race reaping
880 			 * non-master threads.
881 			 */
882 			lwkt_gettoken(&p->p_token);
883 			while (p->p_nthreads > 0) {
884 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
885 			}
886 
887 			/*
888 			 * Reap any LWPs left in p->p_lwps.  This is usually
889 			 * just the last LWP.  This must be done before
890 			 * we loop on p_lock since the lwps hold a ref on
891 			 * it as a vmspace interlock.
892 			 *
893 			 * Once that is accomplished p_nthreads had better
894 			 * be zero.
895 			 */
896 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
897 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
898 				reaplwp(lp);
899 			}
900 			KKASSERT(p->p_nthreads == 0);
901 
902 			/*
903 			 * Don't do anything really bad until all references
904 			 * to the process go away.  This may include other
905 			 * LWPs which are still in the process of being
906 			 * reaped.  We can't just pull the rug out from under
907 			 * them because they may still be using the VM space.
908 			 *
909 			 * Certain kernel facilities such as /proc will also
910 			 * put a hold on the process for short periods of
911 			 * time.
912 			 */
913 			PSTALL(p, "reap3", 0);
914 
915 			/* Take care of our return values. */
916 			*res = p->p_pid;
917 			p->p_usched->heuristic_exiting(td->td_lwp, p);
918 
919 			if (status)
920 				*status = p->p_xstat;
921 			if (rusage)
922 				*rusage = p->p_ru;
923 			/*
924 			 * If we got the child via a ptrace 'attach',
925 			 * we need to give it back to the old parent.
926 			 */
927 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
928 				p->p_oppid = 0;
929 				proc_reparent(p, t);
930 				ksignal(t, SIGCHLD);
931 				wakeup((caddr_t)t);
932 				error = 0;
933 				PRELE(t);
934 				lwkt_reltoken(&p->p_token);
935 				goto done;
936 			}
937 
938 			/*
939 			 * Unlink the proc from its process group so that
940 			 * the following operations won't lead to an
941 			 * inconsistent state for processes running down
942 			 * the zombie list.
943 			 */
944 			proc_remove_zombie(p);
945 			lwkt_reltoken(&p->p_token);
946 			leavepgrp(p);
947 
948 			p->p_xstat = 0;
949 			ruadd(&q->p_cru, &p->p_ru);
950 
951 			/*
952 			 * Decrement the count of procs running with this uid.
953 			 */
954 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
955 
956 			/*
957 			 * Free up credentials.
958 			 */
959 			crfree(p->p_ucred);
960 			p->p_ucred = NULL;
961 
962 			/*
963 			 * Remove unused arguments
964 			 */
965 			pa = p->p_args;
966 			p->p_args = NULL;
967 			if (pa && refcount_release(&pa->ar_ref)) {
968 				kfree(pa, M_PARGS);
969 				pa = NULL;
970 			}
971 
972 			ps = p->p_sigacts;
973 			p->p_sigacts = NULL;
974 			if (ps && refcount_release(&ps->ps_refcnt)) {
975 				kfree(ps, M_SUBPROC);
976 				ps = NULL;
977 			}
978 
979 			/*
980 			 * Our exitingcount was incremented when the process
981 			 * became a zombie, now that the process has been
982 			 * removed from (almost) all lists we should be able
983 			 * to safely destroy its vmspace.  Wait for any current
984 			 * holders to go away (so the vmspace remains stable),
985 			 * then scrap it.
986 			 */
987 			PSTALL(p, "reap4", 0);
988 			vmspace_exitfree(p);
989 			PSTALL(p, "reap5", 0);
990 
991 			kfree(p, M_PROC);
992 			atomic_add_int(&nprocs, -1);
993 			error = 0;
994 			goto done;
995 		}
996 		if (p->p_stat == SSTOP && (p->p_flags & P_WAITED) == 0 &&
997 		    ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
998 			lwkt_gettoken(&p->p_token);
999 			p->p_flags |= P_WAITED;
1000 
1001 			*res = p->p_pid;
1002 			p->p_usched->heuristic_exiting(td->td_lwp, p);
1003 			if (status)
1004 				*status = W_STOPCODE(p->p_xstat);
1005 			/* Zero rusage so we get something consistent. */
1006 			if (rusage)
1007 				bzero(rusage, sizeof(rusage));
1008 			error = 0;
1009 			lwkt_reltoken(&p->p_token);
1010 			goto done;
1011 		}
1012 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1013 			lwkt_gettoken(&p->p_token);
1014 			*res = p->p_pid;
1015 			p->p_usched->heuristic_exiting(td->td_lwp, p);
1016 			p->p_flags &= ~P_CONTINUED;
1017 
1018 			if (status)
1019 				*status = SIGCONT;
1020 			error = 0;
1021 			lwkt_reltoken(&p->p_token);
1022 			goto done;
1023 		}
1024 	}
1025 	if (nfound == 0) {
1026 		error = ECHILD;
1027 		goto done;
1028 	}
1029 	if (options & WNOHANG) {
1030 		*res = 0;
1031 		error = 0;
1032 		goto done;
1033 	}
1034 
1035 	/*
1036 	 * Wait for signal - interlocked using q->p_token.
1037 	 */
1038 	error = tsleep(q, PCATCH, "wait", 0);
1039 	if (error) {
1040 done:
1041 		lwkt_reltoken(&q->p_token);
1042 		return (error);
1043 	}
1044 	goto loop;
1045 }
1046 
1047 /*
1048  * Make process 'parent' the new parent of process 'child'.
1049  *
1050  * p_children/p_sibling requires the parent's token, and
1051  * changing pptr requires the child's token, so we have to
1052  * get three tokens to do this operation.
1053  */
1054 void
1055 proc_reparent(struct proc *child, struct proc *parent)
1056 {
1057 	struct proc *opp = child->p_pptr;
1058 
1059 	if (opp == parent)
1060 		return;
1061 	PHOLD(opp);
1062 	PHOLD(parent);
1063 	lwkt_gettoken(&opp->p_token);
1064 	lwkt_gettoken(&child->p_token);
1065 	lwkt_gettoken(&parent->p_token);
1066 	KKASSERT(child->p_pptr == opp);
1067 	LIST_REMOVE(child, p_sibling);
1068 	LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1069 	child->p_pptr = parent;
1070 	lwkt_reltoken(&parent->p_token);
1071 	lwkt_reltoken(&child->p_token);
1072 	lwkt_reltoken(&opp->p_token);
1073 	PRELE(parent);
1074 	PRELE(opp);
1075 }
1076 
1077 /*
1078  * The next two functions are to handle adding/deleting items on the
1079  * exit callout list
1080  *
1081  * at_exit():
1082  * Take the arguments given and put them onto the exit callout list,
1083  * However first make sure that it's not already there.
1084  * returns 0 on success.
1085  */
1086 
1087 int
1088 at_exit(exitlist_fn function)
1089 {
1090 	struct exitlist *ep;
1091 
1092 #ifdef INVARIANTS
1093 	/* Be noisy if the programmer has lost track of things */
1094 	if (rm_at_exit(function))
1095 		kprintf("WARNING: exit callout entry (%p) already present\n",
1096 		    function);
1097 #endif
1098 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1099 	if (ep == NULL)
1100 		return (ENOMEM);
1101 	ep->function = function;
1102 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1103 	return (0);
1104 }
1105 
1106 /*
1107  * Scan the exit callout list for the given item and remove it.
1108  * Returns the number of items removed (0 or 1)
1109  */
1110 int
1111 rm_at_exit(exitlist_fn function)
1112 {
1113 	struct exitlist *ep;
1114 
1115 	TAILQ_FOREACH(ep, &exit_list, next) {
1116 		if (ep->function == function) {
1117 			TAILQ_REMOVE(&exit_list, ep, next);
1118 			kfree(ep, M_ATEXIT);
1119 			return(1);
1120 		}
1121 	}
1122 	return (0);
1123 }
1124 
1125 /*
1126  * LWP reaper related code.
1127  */
1128 static void
1129 reaplwps(void *context, int dummy)
1130 {
1131 	struct lwplist *lwplist = context;
1132 	struct lwp *lp;
1133 
1134 	lwkt_gettoken(&deadlwp_token);
1135 	while ((lp = LIST_FIRST(lwplist))) {
1136 		LIST_REMOVE(lp, u.lwp_reap_entry);
1137 		reaplwp(lp);
1138 	}
1139 	lwkt_reltoken(&deadlwp_token);
1140 }
1141 
1142 static void
1143 reaplwp(struct lwp *lp)
1144 {
1145 	while (lwp_wait(lp) == 0)
1146 		;
1147 	lwp_dispose(lp);
1148 }
1149 
1150 static void
1151 deadlwp_init(void)
1152 {
1153 	int cpu;
1154 
1155 	for (cpu = 0; cpu < ncpus; cpu++) {
1156 		LIST_INIT(&deadlwp_list[cpu]);
1157 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1158 					    M_DEVBUF, M_WAITOK);
1159 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1160 	}
1161 }
1162 
1163 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1164