xref: /dragonfly/sys/kern/kern_exit.c (revision 5812c3cc)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h>		/* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
71 #include <sys/user.h>
72 
73 #include <sys/refcount.h>
74 #include <sys/spinlock2.h>
75 #include <sys/mplock2.h>
76 
77 #include <machine/vmm.h>
78 
79 static void reaplwps(void *context, int dummy);
80 static void reaplwp(struct lwp *lp);
81 static void killlwps(struct lwp *lp);
82 
83 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
84 
85 /*
86  * callout list for things to do at exit time
87  */
88 struct exitlist {
89 	exitlist_fn function;
90 	TAILQ_ENTRY(exitlist) next;
91 };
92 
93 TAILQ_HEAD(exit_list_head, exitlist);
94 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
95 
96 /*
97  * LWP reaper data
98  */
99 static struct task *deadlwp_task[MAXCPU];
100 static struct lwplist deadlwp_list[MAXCPU];
101 static struct lwkt_token deadlwp_token[MAXCPU];
102 
103 /*
104  * exit --
105  *	Death of process.
106  *
107  * SYS_EXIT_ARGS(int rval)
108  */
109 int
110 sys_exit(struct exit_args *uap)
111 {
112 	exit1(W_EXITCODE(uap->rval, 0));
113 	/* NOTREACHED */
114 }
115 
116 /*
117  * Extended exit --
118  *	Death of a lwp or process with optional bells and whistles.
119  */
120 int
121 sys_extexit(struct extexit_args *uap)
122 {
123 	struct proc *p = curproc;
124 	int action, who;
125 	int error;
126 
127 	action = EXTEXIT_ACTION(uap->how);
128 	who = EXTEXIT_WHO(uap->how);
129 
130 	/* Check parameters before we might perform some action */
131 	switch (who) {
132 	case EXTEXIT_PROC:
133 	case EXTEXIT_LWP:
134 		break;
135 	default:
136 		return (EINVAL);
137 	}
138 
139 	switch (action) {
140 	case EXTEXIT_SIMPLE:
141 		break;
142 	case EXTEXIT_SETINT:
143 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
144 		if (error)
145 			return (error);
146 		break;
147 	default:
148 		return (EINVAL);
149 	}
150 
151 	lwkt_gettoken(&p->p_token);
152 
153 	switch (who) {
154 	case EXTEXIT_LWP:
155 		/*
156 		 * Be sure only to perform a simple lwp exit if there is at
157 		 * least one more lwp in the proc, which will call exit1()
158 		 * later, otherwise the proc will be an UNDEAD and not even a
159 		 * SZOMB!
160 		 */
161 		if (p->p_nthreads > 1) {
162 			lwp_exit(0, NULL);	/* called w/ p_token held */
163 			/* NOT REACHED */
164 		}
165 		/* else last lwp in proc:  do the real thing */
166 		/* FALLTHROUGH */
167 	default:	/* to help gcc */
168 	case EXTEXIT_PROC:
169 		lwkt_reltoken(&p->p_token);
170 		exit1(W_EXITCODE(uap->status, 0));
171 		/* NOTREACHED */
172 	}
173 
174 	/* NOTREACHED */
175 	lwkt_reltoken(&p->p_token);	/* safety */
176 }
177 
178 /*
179  * Kill all lwps associated with the current process except the
180  * current lwp.   Return an error if we race another thread trying to
181  * do the same thing and lose the race.
182  *
183  * If forexec is non-zero the current thread and process flags are
184  * cleaned up so they can be reused.
185  */
186 int
187 killalllwps(int forexec)
188 {
189 	struct lwp *lp = curthread->td_lwp;
190 	struct proc *p = lp->lwp_proc;
191 	int fakestop;
192 
193 	/*
194 	 * Interlock against P_WEXIT.  Only one of the process's thread
195 	 * is allowed to do the master exit.
196 	 */
197 	lwkt_gettoken(&p->p_token);
198 	if (p->p_flags & P_WEXIT) {
199 		lwkt_reltoken(&p->p_token);
200 		return (EALREADY);
201 	}
202 	p->p_flags |= P_WEXIT;
203 	lwkt_gettoken(&lp->lwp_token);
204 
205 	/*
206 	 * Set temporary stopped state in case we are racing a coredump.
207 	 * Otherwise the coredump may hang forever.
208 	 */
209 	if (lp->lwp_mpflags & LWP_MP_WSTOP) {
210 		fakestop = 0;
211 	} else {
212 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
213 		++p->p_nstopped;
214 		fakestop = 1;
215 		wakeup(&p->p_nstopped);
216 	}
217 
218 	/*
219 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
220 	 */
221 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
222 	if (p->p_nthreads > 1)
223 		killlwps(lp);
224 
225 	/*
226 	 * Undo temporary stopped state
227 	 */
228 	if (fakestop && (lp->lwp_mpflags & LWP_MP_WSTOP)) {
229 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
230 		--p->p_nstopped;
231 	}
232 
233 	/*
234 	 * If doing this for an exec, clean up the remaining thread
235 	 * (us) for continuing operation after all the other threads
236 	 * have been killed.
237 	 */
238 	if (forexec) {
239 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
240 		p->p_flags &= ~P_WEXIT;
241 	}
242 	lwkt_reltoken(&lp->lwp_token);
243 	lwkt_reltoken(&p->p_token);
244 
245 	return(0);
246 }
247 
248 /*
249  * Kill all LWPs except the current one.  Do not try to signal
250  * LWPs which have exited on their own or have already been
251  * signaled.
252  */
253 static void
254 killlwps(struct lwp *lp)
255 {
256 	struct proc *p = lp->lwp_proc;
257 	struct lwp *tlp;
258 
259 	/*
260 	 * Kill the remaining LWPs.  We must send the signal before setting
261 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
262 	 * races.  tlp must be held across the call as it might block and
263 	 * allow the target lwp to rip itself out from under our loop.
264 	 */
265 	FOREACH_LWP_IN_PROC(tlp, p) {
266 		LWPHOLD(tlp);
267 		lwkt_gettoken(&tlp->lwp_token);
268 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
269 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
270 			lwpsignal(p, tlp, SIGKILL);
271 		}
272 		lwkt_reltoken(&tlp->lwp_token);
273 		LWPRELE(tlp);
274 	}
275 
276 	/*
277 	 * Wait for everything to clear out.  Also make sure any tstop()s
278 	 * are signalled (we are holding p_token for the interlock).
279 	 */
280 	wakeup(p);
281 	while (p->p_nthreads > 1)
282 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
283 }
284 
285 /*
286  * Exit: deallocate address space and other resources, change proc state
287  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
288  * status and rusage for wait().  Check for child processes and orphan them.
289  */
290 void
291 exit1(int rv)
292 {
293 	struct thread *td = curthread;
294 	struct proc *p = td->td_proc;
295 	struct lwp *lp = td->td_lwp;
296 	struct proc *q;
297 	struct proc *pp;
298 	struct proc *reproc;
299 	struct sysreaper *reap;
300 	struct vmspace *vm;
301 	struct vnode *vtmp;
302 	struct exitlist *ep;
303 	int error;
304 
305 	lwkt_gettoken(&p->p_token);
306 
307 	if (p->p_pid == 1) {
308 		kprintf("init died (signal %d, exit %d)\n",
309 		    WTERMSIG(rv), WEXITSTATUS(rv));
310 		panic("Going nowhere without my init!");
311 	}
312 	varsymset_clean(&p->p_varsymset);
313 	lockuninit(&p->p_varsymset.vx_lock);
314 
315 	/*
316 	 * Kill all lwps associated with the current process, return an
317 	 * error if we race another thread trying to do the same thing
318 	 * and lose the race.
319 	 */
320 	error = killalllwps(0);
321 	if (error) {
322 		lwp_exit(0, NULL);
323 		/* NOT REACHED */
324 	}
325 
326 	/* are we a task leader? */
327 	if (p == p->p_leader) {
328         	struct kill_args killArgs;
329 		killArgs.signum = SIGKILL;
330 		q = p->p_peers;
331 		while(q) {
332 			killArgs.pid = q->p_pid;
333 			/*
334 		         * The interface for kill is better
335 			 * than the internal signal
336 			 */
337 			sys_kill(&killArgs);
338 			q = q->p_peers;
339 		}
340 		while (p->p_peers)
341 			tsleep((caddr_t)p, 0, "exit1", 0);
342 	}
343 
344 #ifdef PGINPROF
345 	vmsizmon();
346 #endif
347 	STOPEVENT(p, S_EXIT, rv);
348 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
349 
350 	/*
351 	 * Check if any loadable modules need anything done at process exit.
352 	 * e.g. SYSV IPC stuff
353 	 * XXX what if one of these generates an error?
354 	 */
355 	p->p_xstat = rv;
356 
357 	/*
358 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
359 	 *	Maybe we should move everything to use eventhandler.
360 	 */
361 	TAILQ_FOREACH(ep, &exit_list, next)
362 		(*ep->function)(td);
363 
364 	if (p->p_flags & P_PROFIL)
365 		stopprofclock(p);
366 
367 	SIGEMPTYSET(p->p_siglist);
368 	SIGEMPTYSET(lp->lwp_siglist);
369 	if (timevalisset(&p->p_realtimer.it_value))
370 		callout_terminate(&p->p_ithandle);
371 
372 	/*
373 	 * Reset any sigio structures pointing to us as a result of
374 	 * F_SETOWN with our pid.
375 	 */
376 	funsetownlst(&p->p_sigiolst);
377 
378 	/*
379 	 * Close open files and release open-file table.
380 	 * This may block!
381 	 */
382 	fdfree(p, NULL);
383 
384 	if (p->p_leader->p_peers) {
385 		q = p->p_leader;
386 		while(q->p_peers != p)
387 			q = q->p_peers;
388 		q->p_peers = p->p_peers;
389 		wakeup((caddr_t)p->p_leader);
390 	}
391 
392 	/*
393 	 * XXX Shutdown SYSV semaphores
394 	 */
395 	semexit(p);
396 
397 	/* The next two chunks should probably be moved to vmspace_exit. */
398 	vm = p->p_vmspace;
399 
400 	/*
401 	 * Clean up data related to virtual kernel operation.  Clean up
402 	 * any vkernel context related to the current lwp now so we can
403 	 * destroy p_vkernel.
404 	 */
405 	if (p->p_vkernel) {
406 		vkernel_lwp_exit(lp);
407 		vkernel_exit(p);
408 	}
409 
410 	/*
411 	 * Release the user portion of address space.  The exitbump prevents
412 	 * the vmspace from being completely eradicated (using holdcnt).
413 	 * This releases references to vnodes, which could cause I/O if the
414 	 * file has been unlinked.  We need to do this early enough that
415 	 * we can still sleep.
416 	 *
417 	 * We can't free the entire vmspace as the kernel stack may be mapped
418 	 * within that space also.
419 	 *
420 	 * Processes sharing the same vmspace may exit in one order, and
421 	 * get cleaned up by vmspace_exit() in a different order.  The
422 	 * last exiting process to reach this point releases as much of
423 	 * the environment as it can, and the last process cleaned up
424 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
425 	 * remainder.
426 	 *
427 	 * NOTE: Releasing p_token around this call is helpful if the
428 	 *	 vmspace had a huge RSS.  Otherwise some other process
429 	 *	 trying to do an allproc or other scan (like 'ps') may
430 	 *	 stall for a long time.
431 	 */
432 	lwkt_reltoken(&p->p_token);
433 	vmspace_relexit(vm);
434 	lwkt_gettoken(&p->p_token);
435 
436 	if (SESS_LEADER(p)) {
437 		struct session *sp = p->p_session;
438 
439 		if (sp->s_ttyvp) {
440 			/*
441 			 * We are the controlling process.  Signal the
442 			 * foreground process group, drain the controlling
443 			 * terminal, and revoke access to the controlling
444 			 * terminal.
445 			 *
446 			 * NOTE: while waiting for the process group to exit
447 			 * it is possible that one of the processes in the
448 			 * group will revoke the tty, so the ttyclosesession()
449 			 * function will re-check sp->s_ttyvp.
450 			 */
451 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
452 				if (sp->s_ttyp->t_pgrp)
453 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
454 				ttywait(sp->s_ttyp);
455 				ttyclosesession(sp, 1); /* also revoke */
456 			}
457 			/*
458 			 * Release the tty.  If someone has it open via
459 			 * /dev/tty then close it (since they no longer can
460 			 * once we've NULL'd it out).
461 			 */
462 			ttyclosesession(sp, 0);
463 
464 			/*
465 			 * s_ttyp is not zero'd; we use this to indicate
466 			 * that the session once had a controlling terminal.
467 			 * (for logging and informational purposes)
468 			 */
469 		}
470 		sp->s_leader = NULL;
471 	}
472 	fixjobc(p, p->p_pgrp, 0);
473 	(void)acct_process(p);
474 #ifdef KTRACE
475 	/*
476 	 * release trace file
477 	 */
478 	if (p->p_tracenode)
479 		ktrdestroy(&p->p_tracenode);
480 	p->p_traceflag = 0;
481 #endif
482 	/*
483 	 * Release reference to text vnode
484 	 */
485 	if ((vtmp = p->p_textvp) != NULL) {
486 		p->p_textvp = NULL;
487 		vrele(vtmp);
488 	}
489 
490 	/* Release namecache handle to text file */
491 	if (p->p_textnch.ncp)
492 		cache_drop(&p->p_textnch);
493 
494 	/*
495 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
496 	 * will block on the PHOLD() the parent is doing.
497 	 *
498 	 * We are using the flag as an interlock so an atomic op is
499 	 * necessary to synchronize with the parent's cpu.
500 	 */
501 	if (p->p_flags & P_PPWAIT) {
502 		if (p->p_pptr && p->p_pptr->p_upmap)
503 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
504 		atomic_clear_int(&p->p_flags, P_PPWAIT);
505 		wakeup(p->p_pptr);
506 	}
507 
508 	/*
509 	 * Move the process to the zombie list.  This will block
510 	 * until the process p_lock count reaches 0.  The process will
511 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
512 	 * which is called from cpu_proc_exit().
513 	 *
514 	 * Interlock against waiters using p_waitgen.  We increment
515 	 * p_waitgen after completing the move of our process to the
516 	 * zombie list.
517 	 *
518 	 * WARNING: pp becomes stale when we block, clear it now as a
519 	 *	    reminder.
520 	 */
521 	proc_move_allproc_zombie(p);
522 	pp = p->p_pptr;
523 	atomic_add_long(&pp->p_waitgen, 1);
524 	pp = NULL;
525 
526 	/*
527 	 * release controlled reaper for exit if we own it and return the
528 	 * remaining reaper (the one for us), which we will drop after we
529 	 * are done.
530 	 */
531 	reap = reaper_exit(p);
532 
533 	/*
534 	 * Reparent all of this process's children to the init process or
535 	 * to the designated reaper.  We must hold the reaper's p_token in
536 	 * order to safely mess with p_children.
537 	 *
538 	 * We already hold p->p_token (to remove the children from our list).
539 	 */
540 	reproc = NULL;
541 	q = LIST_FIRST(&p->p_children);
542 	if (q) {
543 		reproc = reaper_get(reap);
544 		lwkt_gettoken(&reproc->p_token);
545 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
546 			PHOLD(q);
547 			lwkt_gettoken(&q->p_token);
548 			if (q != LIST_FIRST(&p->p_children)) {
549 				lwkt_reltoken(&q->p_token);
550 				PRELE(q);
551 				continue;
552 			}
553 			LIST_REMOVE(q, p_sibling);
554 			LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
555 			q->p_pptr = reproc;
556 			q->p_ppid = reproc->p_pid;
557 			q->p_sigparent = SIGCHLD;
558 
559 			/*
560 			 * Traced processes are killed
561 			 * since their existence means someone is screwing up.
562 			 */
563 			if (q->p_flags & P_TRACED) {
564 				q->p_flags &= ~P_TRACED;
565 				ksignal(q, SIGKILL);
566 			}
567 			lwkt_reltoken(&q->p_token);
568 			PRELE(q);
569 		}
570 		lwkt_reltoken(&reproc->p_token);
571 		wakeup(reproc);
572 	}
573 
574 	/*
575 	 * Save exit status and final rusage info.  We no longer add
576 	 * child rusage info into self times, wait4() and kern_wait()
577 	 * handles it in order to properly support wait6().
578 	 */
579 	calcru_proc(p, &p->p_ru);
580 	/*ruadd(&p->p_ru, &p->p_cru); REMOVED */
581 
582 	/*
583 	 * notify interested parties of our demise.
584 	 */
585 	KNOTE(&p->p_klist, NOTE_EXIT);
586 
587 	/*
588 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
589 	 * flag set, or if the handler is set to SIG_IGN, notify the reaper
590 	 * instead (it will handle this situation).
591 	 *
592 	 * NOTE: The reaper can still be the parent process.
593 	 *
594 	 * (must reload pp)
595 	 */
596 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
597 		if (reproc == NULL)
598 			reproc = reaper_get(reap);
599 		proc_reparent(p, reproc);
600 	}
601 	if (reproc)
602 		PRELE(reproc);
603 	if (reap)
604 		reaper_drop(reap);
605 
606 	/*
607 	 * Signal (possibly new) parent.
608 	 */
609 	pp = p->p_pptr;
610 	PHOLD(pp);
611 	if (p->p_sigparent && pp != initproc) {
612 		int sig = p->p_sigparent;
613 
614 		if (sig != SIGUSR1 && sig != SIGCHLD)
615 			sig = SIGCHLD;
616 	        ksignal(pp, sig);
617 	} else {
618 	        ksignal(pp, SIGCHLD);
619 	}
620 	p->p_flags &= ~P_TRACED;
621 	PRELE(pp);
622 
623 	/*
624 	 * cpu_exit is responsible for clearing curproc, since
625 	 * it is heavily integrated with the thread/switching sequence.
626 	 *
627 	 * Other substructures are freed from wait().
628 	 */
629 	if (p->p_limit) {
630 		struct plimit *rlimit;
631 
632 		rlimit = p->p_limit;
633 		p->p_limit = NULL;
634 		plimit_free(rlimit);
635 	}
636 
637 	/*
638 	 * Finally, call machine-dependent code to release as many of the
639 	 * lwp's resources as we can and halt execution of this thread.
640 	 *
641 	 * pp is a wild pointer now but still the correct wakeup() target.
642 	 * lwp_exit() only uses it to send the wakeup() signal to the likely
643 	 * parent.  Any reparenting race that occurs will get a signal
644 	 * automatically and not be an issue.
645 	 */
646 	lwp_exit(1, pp);
647 }
648 
649 /*
650  * Eventually called by every exiting LWP
651  *
652  * p->p_token must be held.  mplock may be held and will be released.
653  */
654 void
655 lwp_exit(int masterexit, void *waddr)
656 {
657 	struct thread *td = curthread;
658 	struct lwp *lp = td->td_lwp;
659 	struct proc *p = lp->lwp_proc;
660 	int dowake = 0;
661 
662 	/*
663 	 * Release the current user process designation on the process so
664 	 * the userland scheduler can work in someone else.
665 	 */
666 	p->p_usched->release_curproc(lp);
667 
668 	/*
669 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
670 	 * make sure it is set here.
671 	 */
672 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
673 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
674 
675 	/*
676 	 * Clean up any virtualization
677 	 */
678 	if (lp->lwp_vkernel)
679 		vkernel_lwp_exit(lp);
680 
681 	if (td->td_vmm)
682 		vmm_vmdestroy();
683 
684 	/*
685 	 * Clean up select/poll support
686 	 */
687 	kqueue_terminate(&lp->lwp_kqueue);
688 
689 	/*
690 	 * Clean up any syscall-cached ucred or rlimit.
691 	 */
692 	if (td->td_ucred) {
693 		crfree(td->td_ucred);
694 		td->td_ucred = NULL;
695 	}
696 	if (td->td_limit) {
697 		struct plimit *rlimit;
698 
699 		rlimit = td->td_limit;
700 		td->td_limit = NULL;
701 		plimit_free(rlimit);
702         }
703 
704 	/*
705 	 * Cleanup any cached descriptors for this thread
706 	 */
707 	if (p->p_fd)
708 		fexitcache(td);
709 
710 	/*
711 	 * Nobody actually wakes us when the lock
712 	 * count reaches zero, so just wait one tick.
713 	 */
714 	while (lp->lwp_lock > 0)
715 		tsleep(lp, 0, "lwpexit", 1);
716 
717 	/* Hand down resource usage to our proc */
718 	ruadd(&p->p_ru, &lp->lwp_ru);
719 
720 	/*
721 	 * If we don't hold the process until the LWP is reaped wait*()
722 	 * may try to dispose of its vmspace before all the LWPs have
723 	 * actually terminated.
724 	 */
725 	PHOLD(p);
726 
727 	/*
728 	 * Do any remaining work that might block on us.  We should be
729 	 * coded such that further blocking is ok after decrementing
730 	 * p_nthreads but don't take the chance.
731 	 */
732 	dsched_exit_thread(td);
733 	biosched_done(curthread);
734 
735 	/*
736 	 * We have to use the reaper for all the LWPs except the one doing
737 	 * the master exit.  The LWP doing the master exit can just be
738 	 * left on p_lwps and the process reaper will deal with it
739 	 * synchronously, which is much faster.
740 	 *
741 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
742 	 *
743 	 * The process is left held until the reaper calls lwp_dispose() on
744 	 * the lp (after calling lwp_wait()).
745 	 */
746 	if (masterexit == 0) {
747 		int cpu = mycpuid;
748 
749 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
750 		--p->p_nthreads;
751 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
752 			dowake = 1;
753 		lwkt_gettoken(&deadlwp_token[cpu]);
754 		LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
755 		taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
756 		lwkt_reltoken(&deadlwp_token[cpu]);
757 	} else {
758 		--p->p_nthreads;
759 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
760 			dowake = 1;
761 	}
762 
763 	/*
764 	 * We no longer need p_token.
765 	 *
766 	 * Tell the userland scheduler that we are going away
767 	 */
768 	lwkt_reltoken(&p->p_token);
769 	p->p_usched->heuristic_exiting(lp, p);
770 
771 	/*
772 	 * Issue late wakeups after releasing our token to give us a chance
773 	 * to deschedule and switch away before another cpu in a wait*()
774 	 * reaps us.  This is done as late as possible to reduce contention.
775 	 */
776 	if (dowake)
777 		wakeup(&p->p_nthreads);
778 	if (waddr)
779 		wakeup(waddr);
780 
781 	cpu_lwp_exit();
782 }
783 
784 /*
785  * Wait until a lwp is completely dead.  The final interlock in this drama
786  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
787  * switchout.
788  *
789  * At the point TDF_EXITING is set a complete exit is accomplished when
790  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
791  * post-switch interlock flags that can be used to wait for the TDF_
792  * flags to clear.
793  *
794  * Returns non-zero on success, and zero if the caller needs to retry
795  * the lwp_wait().
796  */
797 static int
798 lwp_wait(struct lwp *lp)
799 {
800 	struct thread *td = lp->lwp_thread;
801 	u_int mpflags;
802 
803 	KKASSERT(lwkt_preempted_proc() != lp);
804 
805 	/*
806 	 * This bit of code uses the thread destruction interlock
807 	 * managed by lwkt_switch_return() to wait for the lwp's
808 	 * thread to completely disengage.
809 	 *
810 	 * It is possible for us to race another cpu core so we
811 	 * have to do this correctly.
812 	 */
813 	for (;;) {
814 		mpflags = td->td_mpflags;
815 		cpu_ccfence();
816 		if (mpflags & TDF_MP_EXITSIG)
817 			break;
818 		tsleep_interlock(td, 0);
819 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
820 				      mpflags | TDF_MP_EXITWAIT)) {
821 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
822 		}
823 	}
824 
825 	/*
826 	 * We've already waited for the core exit but there can still
827 	 * be other refs from e.g. process scans and such.
828 	 */
829 	if (lp->lwp_lock > 0) {
830 		tsleep(lp, 0, "lwpwait1", 1);
831 		return(0);
832 	}
833 	if (td->td_refs) {
834 		tsleep(td, 0, "lwpwait2", 1);
835 		return(0);
836 	}
837 
838 	/*
839 	 * Now that we have the thread destruction interlock these flags
840 	 * really should already be cleaned up, keep a check for safety.
841 	 *
842 	 * We can't rip its stack out from under it until TDF_EXITING is
843 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
844 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
845 	 * will be cleared temporarily if a thread gets preempted.
846 	 */
847 	while ((td->td_flags & (TDF_RUNNING |
848 				TDF_RUNQ |
849 			        TDF_PREEMPT_LOCK |
850 			        TDF_EXITING)) != TDF_EXITING) {
851 		tsleep(lp, 0, "lwpwait3", 1);
852 		return (0);
853 	}
854 
855 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
856 		("lwp_wait: td %p (%s) still on run or sleep queue",
857 		td, td->td_comm));
858 	return (1);
859 }
860 
861 /*
862  * Release the resources associated with a lwp.
863  * The lwp must be completely dead.
864  */
865 void
866 lwp_dispose(struct lwp *lp)
867 {
868 	struct thread *td = lp->lwp_thread;
869 
870 	KKASSERT(lwkt_preempted_proc() != lp);
871 	KKASSERT(lp->lwp_lock == 0);
872 	KKASSERT(td->td_refs == 0);
873 	KKASSERT((td->td_flags & (TDF_RUNNING |
874 				  TDF_RUNQ |
875 				  TDF_PREEMPT_LOCK |
876 				  TDF_EXITING)) == TDF_EXITING);
877 
878 	PRELE(lp->lwp_proc);
879 	lp->lwp_proc = NULL;
880 	if (td != NULL) {
881 		td->td_proc = NULL;
882 		td->td_lwp = NULL;
883 		lp->lwp_thread = NULL;
884 		lwkt_free_thread(td);
885 	}
886 	kfree(lp, M_LWP);
887 }
888 
889 int
890 sys_wait4(struct wait_args *uap)
891 {
892 	struct __wrusage wrusage;
893 	int error;
894 	int status;
895 	int options;
896 	id_t id;
897 	idtype_t idtype;
898 
899 	options = uap->options | WEXITED | WTRAPPED;
900 	id = uap->pid;
901 
902 	if (id == WAIT_ANY) {
903 		idtype = P_ALL;
904 	} else if (id == WAIT_MYPGRP) {
905 		idtype = P_PGID;
906 		id = curproc->p_pgid;
907 	} else if (id < 0) {
908 		idtype = P_PGID;
909 		id = -id;
910 	} else {
911 		idtype = P_PID;
912 	}
913 
914 	error = kern_wait(idtype, id, &status, options, &wrusage,
915 			  NULL, &uap->sysmsg_result);
916 
917 	if (error == 0 && uap->status)
918 		error = copyout(&status, uap->status, sizeof(*uap->status));
919 	if (error == 0 && uap->rusage) {
920 		ruadd(&wrusage.wru_self, &wrusage.wru_children);
921 		error = copyout(&wrusage.wru_self, uap->rusage, sizeof(*uap->rusage));
922 	}
923 	return (error);
924 }
925 
926 int
927 sys_wait6(struct wait6_args *uap)
928 {
929 	struct __wrusage wrusage;
930 	struct __siginfo info;
931 	struct __siginfo *infop;
932 	int error;
933 	int status;
934 	int options;
935 	id_t id;
936 	idtype_t idtype;
937 
938 	/*
939 	 * NOTE: wait6() requires WEXITED and WTRAPPED to be specified if
940 	 *	 desired.
941 	 */
942 	options = uap->options;
943 	idtype = uap->idtype;
944 	id = uap->id;
945 	infop = uap->info ? &info : NULL;
946 
947 	switch(idtype) {
948 	case P_PID:
949 	case P_PGID:
950 		if (id == WAIT_MYPGRP) {
951 			idtype = P_PGID;
952 			id = curproc->p_pgid;
953 		}
954 		break;
955 	default:
956 		/* let kern_wait deal with the remainder */
957 		break;
958 	}
959 
960 	error = kern_wait(idtype, id, &status, options,
961 			  &wrusage, infop, &uap->sysmsg_result);
962 
963 	if (error == 0 && uap->status)
964 		error = copyout(&status, uap->status, sizeof(*uap->status));
965 	if (error == 0 && uap->wrusage)
966 		error = copyout(&wrusage, uap->wrusage, sizeof(*uap->wrusage));
967 	if (error == 0 && uap->info)
968 		error = copyout(&info, uap->info, sizeof(*uap->info));
969 	return (error);
970 }
971 
972 /*
973  * kernel wait*() system call support
974  */
975 int
976 kern_wait(idtype_t idtype, id_t id, int *status, int options,
977 	  struct __wrusage *wrusage, struct __siginfo *info, int *res)
978 {
979 	struct thread *td = curthread;
980 	struct lwp *lp;
981 	struct proc *q = td->td_proc;
982 	struct proc *p, *t;
983 	struct ucred *cr;
984 	struct pargs *pa;
985 	struct sigacts *ps;
986 	int nfound, error;
987 	long waitgen;
988 
989 	/*
990 	 * Must not have extraneous options.  Must have at least one
991 	 * matchable option.
992 	 */
993 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE|WSTOPPED|
994 			WEXITED|WTRAPPED|WNOWAIT)) {
995 		return (EINVAL);
996 	}
997 	if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
998 		return (EINVAL);
999 	}
1000 
1001 	/*
1002 	 * Protect the q->p_children list
1003 	 */
1004 	lwkt_gettoken(&q->p_token);
1005 loop:
1006 	/*
1007 	 * All sorts of things can change due to blocking so we have to loop
1008 	 * all the way back up here.
1009 	 *
1010 	 * The problem is that if a process group is stopped and the parent
1011 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
1012 	 * of the child and then stop itself when it tries to return from the
1013 	 * system call.  When the process group is resumed the parent will
1014 	 * then get the STOP status even though the child has now resumed
1015 	 * (a followup wait*() will get the CONT status).
1016 	 *
1017 	 * Previously the CONT would overwrite the STOP because the tstop
1018 	 * was handled within tsleep(), and the parent would only see
1019 	 * the CONT when both are stopped and continued together.  This little
1020 	 * two-line hack restores this effect.
1021 	 */
1022 	if (STOPLWP(q, td->td_lwp))
1023             tstop();
1024 
1025 	nfound = 0;
1026 
1027 	/*
1028 	 * Loop on children.
1029 	 *
1030 	 * NOTE: We don't want to break q's p_token in the loop for the
1031 	 *	 case where no children are found or we risk breaking the
1032 	 *	 interlock between child and parent.
1033 	 */
1034 	waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1035 	LIST_FOREACH(p, &q->p_children, p_sibling) {
1036 		/*
1037 		 * Filter, (p) will be held on fall-through.  Try to optimize
1038 		 * this to avoid the atomic op until we are pretty sure we
1039 		 * want this process.
1040 		 */
1041 		switch(idtype) {
1042 		case P_ALL:
1043 			PHOLD(p);
1044 			break;
1045 		case P_PID:
1046 			if (p->p_pid != (pid_t)id)
1047 				continue;
1048 			PHOLD(p);
1049 			break;
1050 		case P_PGID:
1051 			if (p->p_pgid != (pid_t)id)
1052 				continue;
1053 			PHOLD(p);
1054 			break;
1055 		case P_SID:
1056 			PHOLD(p);
1057 			if (p->p_session && p->p_session->s_sid != (pid_t)id) {
1058 				PRELE(p);
1059 				continue;
1060 			}
1061 			break;
1062 		case P_UID:
1063 			PHOLD(p);
1064 			if (p->p_ucred->cr_uid != (uid_t)id) {
1065 				PRELE(p);
1066 				continue;
1067 			}
1068 			break;
1069 		case P_GID:
1070 			PHOLD(p);
1071 			if (p->p_ucred->cr_gid != (gid_t)id) {
1072 				PRELE(p);
1073 				continue;
1074 			}
1075 			break;
1076 		case P_JAILID:
1077 			PHOLD(p);
1078 			if (p->p_ucred->cr_prison &&
1079 			    p->p_ucred->cr_prison->pr_id != (int)id) {
1080 				PRELE(p);
1081 				continue;
1082 			}
1083 			break;
1084 		default:
1085 			/* unsupported filter */
1086 			continue;
1087 		}
1088 		/* (p) is held at this point */
1089 
1090 		/*
1091 		 * This special case handles a kthread spawned by linux_clone
1092 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
1093 		 * functions need to be able to distinguish between waiting
1094 		 * on a process and waiting on a thread.  It is a thread if
1095 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
1096 		 * signifies we want to wait for threads and not processes.
1097 		 */
1098 		if ((p->p_sigparent != SIGCHLD) ^
1099 		    ((options & WLINUXCLONE) != 0)) {
1100 			PRELE(p);
1101 			continue;
1102 		}
1103 
1104 		nfound++;
1105 		if (p->p_stat == SZOMB && (options & WEXITED)) {
1106 			/*
1107 			 * We may go into SZOMB with threads still present.
1108 			 * We must wait for them to exit before we can reap
1109 			 * the master thread, otherwise we may race reaping
1110 			 * non-master threads.
1111 			 *
1112 			 * Only this routine can remove a process from
1113 			 * the zombie list and destroy it.
1114 			 */
1115 			if (PHOLDZOMB(p)) {
1116 				PRELE(p);
1117 				goto loop;
1118 			}
1119 			lwkt_gettoken(&p->p_token);
1120 			if (p->p_pptr != q) {
1121 				lwkt_reltoken(&p->p_token);
1122 				PRELE(p);
1123 				PRELEZOMB(p);
1124 				goto loop;
1125 			}
1126 			while (p->p_nthreads > 0) {
1127 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
1128 			}
1129 
1130 			/*
1131 			 * Reap any LWPs left in p->p_lwps.  This is usually
1132 			 * just the last LWP.  This must be done before
1133 			 * we loop on p_lock since the lwps hold a ref on
1134 			 * it as a vmspace interlock.
1135 			 *
1136 			 * Once that is accomplished p_nthreads had better
1137 			 * be zero.
1138 			 */
1139 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
1140 				/*
1141 				 * Make sure no one is using this lwp, before
1142 				 * it is removed from the tree.  If we didn't
1143 				 * wait it here, lwp tree iteration with
1144 				 * blocking operation would be broken.
1145 				 */
1146 				while (lp->lwp_lock > 0)
1147 					tsleep(lp, 0, "zomblwp", 1);
1148 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1149 				reaplwp(lp);
1150 			}
1151 			KKASSERT(p->p_nthreads == 0);
1152 
1153 			/*
1154 			 * Don't do anything really bad until all references
1155 			 * to the process go away.  This may include other
1156 			 * LWPs which are still in the process of being
1157 			 * reaped.  We can't just pull the rug out from under
1158 			 * them because they may still be using the VM space.
1159 			 *
1160 			 * Certain kernel facilities such as /proc will also
1161 			 * put a hold on the process for short periods of
1162 			 * time.
1163 			 */
1164 			PRELE(p);		/* from top of loop */
1165 			PSTALL(p, "reap3", 1);	/* 1 ref (for PZOMBHOLD) */
1166 
1167 			/* Take care of our return values. */
1168 			*res = p->p_pid;
1169 
1170 			*status = p->p_xstat;
1171 			wrusage->wru_self = p->p_ru;
1172 			wrusage->wru_children = p->p_cru;
1173 
1174 			if (info) {
1175 				bzero(info, sizeof(*info));
1176 				info->si_errno = 0;
1177 				info->si_signo = SIGCHLD;
1178 				if (WIFEXITED(p->p_xstat)) {
1179 					info->si_code = CLD_EXITED;
1180 					info->si_status =
1181 						WEXITSTATUS(p->p_xstat);
1182 				} else {
1183 					info->si_code = CLD_KILLED;
1184 					info->si_status = WTERMSIG(p->p_xstat);
1185 				}
1186 				info->si_pid = p->p_pid;
1187 				info->si_uid = p->p_ucred->cr_uid;
1188 			}
1189 
1190 			/*
1191 			 * WNOWAIT shortcuts to done here, leaving the
1192 			 * child on the zombie list.
1193 			 */
1194 			if (options & WNOWAIT) {
1195 				lwkt_reltoken(&p->p_token);
1196 				PRELEZOMB(p);
1197 				error = 0;
1198 				goto done;
1199 			}
1200 
1201 			/*
1202 			 * If we got the child via a ptrace 'attach',
1203 			 * we need to give it back to the old parent.
1204 			 */
1205 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1206 				p->p_oppid = 0;
1207 				proc_reparent(p, t);
1208 				ksignal(t, SIGCHLD);
1209 				wakeup((caddr_t)t);
1210 				PRELE(t);
1211 				lwkt_reltoken(&p->p_token);
1212 				PRELEZOMB(p);
1213 				error = 0;
1214 				goto done;
1215 			}
1216 
1217 			/*
1218 			 * Unlink the proc from its process group so that
1219 			 * the following operations won't lead to an
1220 			 * inconsistent state for processes running down
1221 			 * the zombie list.
1222 			 */
1223 			proc_remove_zombie(p);
1224 			proc_userunmap(p);
1225 			lwkt_reltoken(&p->p_token);
1226 			leavepgrp(p);
1227 
1228 			p->p_xstat = 0;
1229 			ruadd(&q->p_cru, &p->p_ru);
1230 			ruadd(&q->p_cru, &p->p_cru);
1231 
1232 			/*
1233 			 * Decrement the count of procs running with this uid.
1234 			 */
1235 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1236 
1237 			/*
1238 			 * Free up credentials.  p_spin is required to
1239 			 * avoid races against allproc scans.
1240 			 */
1241 			spin_lock(&p->p_spin);
1242 			cr = p->p_ucred;
1243 			p->p_ucred = NULL;
1244 			spin_unlock(&p->p_spin);
1245 			crfree(cr);
1246 
1247 			/*
1248 			 * Remove unused arguments
1249 			 */
1250 			pa = p->p_args;
1251 			p->p_args = NULL;
1252 			if (pa && refcount_release(&pa->ar_ref)) {
1253 				kfree(pa, M_PARGS);
1254 				pa = NULL;
1255 			}
1256 
1257 			ps = p->p_sigacts;
1258 			p->p_sigacts = NULL;
1259 			if (ps && refcount_release(&ps->ps_refcnt)) {
1260 				kfree(ps, M_SUBPROC);
1261 				ps = NULL;
1262 			}
1263 
1264 			/*
1265 			 * Our exitingcount was incremented when the process
1266 			 * became a zombie, now that the process has been
1267 			 * removed from (almost) all lists we should be able
1268 			 * to safely destroy its vmspace.  Wait for any current
1269 			 * holders to go away (so the vmspace remains stable),
1270 			 * then scrap it.
1271 			 *
1272 			 * NOTE: Releasing the parent process (q) p_token
1273 			 *	 across the vmspace_exitfree() call is
1274 			 *	 important here to reduce stalls on
1275 			 *	 interactions with (q) (such as
1276 			 *	 fork/exec/wait or 'ps').
1277 			 */
1278 			PSTALL(p, "reap4", 1);
1279 			lwkt_reltoken(&q->p_token);
1280 			vmspace_exitfree(p);
1281 			lwkt_gettoken(&q->p_token);
1282 			PSTALL(p, "reap5", 1);
1283 
1284 			/*
1285 			 * NOTE: We have to officially release ZOMB in order
1286 			 *	 to ensure that a racing thread in kern_wait()
1287 			 *	 which blocked on ZOMB is woken up.
1288 			 */
1289 			PRELEZOMB(p);
1290 			kfree(p->p_uidpcpu, M_SUBPROC);
1291 			kfree(p, M_PROC);
1292 			atomic_add_int(&nprocs, -1);
1293 			error = 0;
1294 			goto done;
1295 		}
1296 
1297 		/*
1298 		 * Process has not yet exited
1299 		 */
1300 		if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1301 		    (p->p_flags & P_WAITED) == 0 &&
1302 		    (((p->p_flags & P_TRACED) && (options & WTRAPPED)) ||
1303 		     (options & WSTOPPED))) {
1304 			lwkt_gettoken(&p->p_token);
1305 			if (p->p_pptr != q) {
1306 				lwkt_reltoken(&p->p_token);
1307 				PRELE(p);
1308 				goto loop;
1309 			}
1310 			if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1311 			    (p->p_flags & P_WAITED) != 0 ||
1312 			    ((p->p_flags & P_TRACED) == 0 &&
1313 			     (options & WUNTRACED) == 0)) {
1314 				lwkt_reltoken(&p->p_token);
1315 				PRELE(p);
1316 				goto loop;
1317 			}
1318 
1319 			/*
1320 			 * Don't set P_WAITED if WNOWAIT specified, leaving
1321 			 * the process in a waitable state.
1322 			 */
1323 			if ((options & WNOWAIT) == 0)
1324 				p->p_flags |= P_WAITED;
1325 
1326 			*res = p->p_pid;
1327 			*status = W_STOPCODE(p->p_xstat);
1328 			/* Zero rusage so we get something consistent. */
1329 			bzero(wrusage, sizeof(*wrusage));
1330 			error = 0;
1331 			if (info) {
1332 				bzero(info, sizeof(*info));
1333 				if (p->p_flags & P_TRACED)
1334 					info->si_code = CLD_TRAPPED;
1335 				else
1336 					info->si_code = CLD_STOPPED;
1337 				info->si_status = WSTOPSIG(p->p_xstat);
1338 			}
1339 			lwkt_reltoken(&p->p_token);
1340 			PRELE(p);
1341 			goto done;
1342 		}
1343 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1344 			lwkt_gettoken(&p->p_token);
1345 			if (p->p_pptr != q) {
1346 				lwkt_reltoken(&p->p_token);
1347 				PRELE(p);
1348 				goto loop;
1349 			}
1350 			if ((p->p_flags & P_CONTINUED) == 0) {
1351 				lwkt_reltoken(&p->p_token);
1352 				PRELE(p);
1353 				goto loop;
1354 			}
1355 
1356 			*res = p->p_pid;
1357 
1358 			/*
1359 			 * Don't set P_WAITED if WNOWAIT specified, leaving
1360 			 * the process in a waitable state.
1361 			 */
1362 			if ((options & WNOWAIT) == 0)
1363 				p->p_flags &= ~P_CONTINUED;
1364 
1365 			*status = SIGCONT;
1366 			error = 0;
1367 			if (info) {
1368 				bzero(info, sizeof(*info));
1369 				info->si_code = CLD_CONTINUED;
1370 				info->si_status = WSTOPSIG(p->p_xstat);
1371 			}
1372 			lwkt_reltoken(&p->p_token);
1373 			PRELE(p);
1374 			goto done;
1375 		}
1376 		PRELE(p);
1377 	}
1378 	if (nfound == 0) {
1379 		error = ECHILD;
1380 		goto done;
1381 	}
1382 	if (options & WNOHANG) {
1383 		*res = 0;
1384 		error = 0;
1385 		goto done;
1386 	}
1387 
1388 	/*
1389 	 * Wait for signal - interlocked using q->p_waitgen.
1390 	 */
1391 	error = 0;
1392 	while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1393 		tsleep_interlock(q, PCATCH);
1394 		waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1395 		if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1396 			error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1397 			break;
1398 		}
1399 	}
1400 	if (error) {
1401 done:
1402 		lwkt_reltoken(&q->p_token);
1403 		return (error);
1404 	}
1405 	goto loop;
1406 }
1407 
1408 /*
1409  * Change child's parent process to parent.
1410  *
1411  * p_children/p_sibling requires the parent's token, and
1412  * changing pptr requires the child's token, so we have to
1413  * get three tokens to do this operation.  We also need to
1414  * hold pointers that might get ripped out from under us to
1415  * preserve structural integrity.
1416  *
1417  * It is possible to race another reparent or disconnect or other
1418  * similar operation.  We must retry when this situation occurs.
1419  * Once we successfully reparent the process we no longer care
1420  * about any races.
1421  */
1422 void
1423 proc_reparent(struct proc *child, struct proc *parent)
1424 {
1425 	struct proc *opp;
1426 
1427 	PHOLD(parent);
1428 	while ((opp = child->p_pptr) != parent) {
1429 		PHOLD(opp);
1430 		lwkt_gettoken(&opp->p_token);
1431 		lwkt_gettoken(&child->p_token);
1432 		lwkt_gettoken(&parent->p_token);
1433 		if (child->p_pptr != opp) {
1434 			lwkt_reltoken(&parent->p_token);
1435 			lwkt_reltoken(&child->p_token);
1436 			lwkt_reltoken(&opp->p_token);
1437 			PRELE(opp);
1438 			continue;
1439 		}
1440 		LIST_REMOVE(child, p_sibling);
1441 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1442 		child->p_pptr = parent;
1443 		child->p_ppid = parent->p_pid;
1444 		lwkt_reltoken(&parent->p_token);
1445 		lwkt_reltoken(&child->p_token);
1446 		lwkt_reltoken(&opp->p_token);
1447 		if (LIST_EMPTY(&opp->p_children))
1448 			wakeup(opp);
1449 		PRELE(opp);
1450 		break;
1451 	}
1452 	PRELE(parent);
1453 }
1454 
1455 /*
1456  * The next two functions are to handle adding/deleting items on the
1457  * exit callout list
1458  *
1459  * at_exit():
1460  * Take the arguments given and put them onto the exit callout list,
1461  * However first make sure that it's not already there.
1462  * returns 0 on success.
1463  */
1464 
1465 int
1466 at_exit(exitlist_fn function)
1467 {
1468 	struct exitlist *ep;
1469 
1470 #ifdef INVARIANTS
1471 	/* Be noisy if the programmer has lost track of things */
1472 	if (rm_at_exit(function))
1473 		kprintf("WARNING: exit callout entry (%p) already present\n",
1474 		    function);
1475 #endif
1476 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1477 	if (ep == NULL)
1478 		return (ENOMEM);
1479 	ep->function = function;
1480 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1481 	return (0);
1482 }
1483 
1484 /*
1485  * Scan the exit callout list for the given item and remove it.
1486  * Returns the number of items removed (0 or 1)
1487  */
1488 int
1489 rm_at_exit(exitlist_fn function)
1490 {
1491 	struct exitlist *ep;
1492 
1493 	TAILQ_FOREACH(ep, &exit_list, next) {
1494 		if (ep->function == function) {
1495 			TAILQ_REMOVE(&exit_list, ep, next);
1496 			kfree(ep, M_ATEXIT);
1497 			return(1);
1498 		}
1499 	}
1500 	return (0);
1501 }
1502 
1503 /*
1504  * LWP reaper related code.
1505  */
1506 static void
1507 reaplwps(void *context, int dummy)
1508 {
1509 	struct lwplist *lwplist = context;
1510 	struct lwp *lp;
1511 	int cpu = mycpuid;
1512 
1513 	lwkt_gettoken(&deadlwp_token[cpu]);
1514 	while ((lp = LIST_FIRST(lwplist))) {
1515 		LIST_REMOVE(lp, u.lwp_reap_entry);
1516 		reaplwp(lp);
1517 	}
1518 	lwkt_reltoken(&deadlwp_token[cpu]);
1519 }
1520 
1521 static void
1522 reaplwp(struct lwp *lp)
1523 {
1524 	while (lwp_wait(lp) == 0)
1525 		;
1526 	lwp_dispose(lp);
1527 }
1528 
1529 static void
1530 deadlwp_init(void)
1531 {
1532 	int cpu;
1533 
1534 	for (cpu = 0; cpu < ncpus; cpu++) {
1535 		lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1536 		LIST_INIT(&deadlwp_list[cpu]);
1537 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1538 					    M_DEVBUF, M_WAITOK);
1539 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1540 	}
1541 }
1542 
1543 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1544