xref: /dragonfly/sys/kern/kern_exit.c (revision 71990c18)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h>		/* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
71 #include <sys/user.h>
72 
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/sysref2.h>
76 #include <sys/mplock2.h>
77 
78 #include <machine/vmm.h>
79 
80 static void reaplwps(void *context, int dummy);
81 static void reaplwp(struct lwp *lp);
82 static void killlwps(struct lwp *lp);
83 
84 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
85 
86 /*
87  * callout list for things to do at exit time
88  */
89 struct exitlist {
90 	exitlist_fn function;
91 	TAILQ_ENTRY(exitlist) next;
92 };
93 
94 TAILQ_HEAD(exit_list_head, exitlist);
95 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
96 
97 /*
98  * LWP reaper data
99  */
100 static struct task *deadlwp_task[MAXCPU];
101 static struct lwplist deadlwp_list[MAXCPU];
102 static struct lwkt_token deadlwp_token[MAXCPU];
103 
104 /*
105  * exit --
106  *	Death of process.
107  *
108  * SYS_EXIT_ARGS(int rval)
109  */
110 int
111 sys_exit(struct exit_args *uap)
112 {
113 	exit1(W_EXITCODE(uap->rval, 0));
114 	/* NOTREACHED */
115 }
116 
117 /*
118  * Extended exit --
119  *	Death of a lwp or process with optional bells and whistles.
120  */
121 int
122 sys_extexit(struct extexit_args *uap)
123 {
124 	struct proc *p = curproc;
125 	int action, who;
126 	int error;
127 
128 	action = EXTEXIT_ACTION(uap->how);
129 	who = EXTEXIT_WHO(uap->how);
130 
131 	/* Check parameters before we might perform some action */
132 	switch (who) {
133 	case EXTEXIT_PROC:
134 	case EXTEXIT_LWP:
135 		break;
136 	default:
137 		return (EINVAL);
138 	}
139 
140 	switch (action) {
141 	case EXTEXIT_SIMPLE:
142 		break;
143 	case EXTEXIT_SETINT:
144 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
145 		if (error)
146 			return (error);
147 		break;
148 	default:
149 		return (EINVAL);
150 	}
151 
152 	lwkt_gettoken(&p->p_token);
153 
154 	switch (who) {
155 	case EXTEXIT_LWP:
156 		/*
157 		 * Be sure only to perform a simple lwp exit if there is at
158 		 * least one more lwp in the proc, which will call exit1()
159 		 * later, otherwise the proc will be an UNDEAD and not even a
160 		 * SZOMB!
161 		 */
162 		if (p->p_nthreads > 1) {
163 			lwp_exit(0, NULL);	/* called w/ p_token held */
164 			/* NOT REACHED */
165 		}
166 		/* else last lwp in proc:  do the real thing */
167 		/* FALLTHROUGH */
168 	default:	/* to help gcc */
169 	case EXTEXIT_PROC:
170 		lwkt_reltoken(&p->p_token);
171 		exit1(W_EXITCODE(uap->status, 0));
172 		/* NOTREACHED */
173 	}
174 
175 	/* NOTREACHED */
176 	lwkt_reltoken(&p->p_token);	/* safety */
177 }
178 
179 /*
180  * Kill all lwps associated with the current process except the
181  * current lwp.   Return an error if we race another thread trying to
182  * do the same thing and lose the race.
183  *
184  * If forexec is non-zero the current thread and process flags are
185  * cleaned up so they can be reused.
186  *
187  * Caller must hold curproc->p_token
188  */
189 int
190 killalllwps(int forexec)
191 {
192 	struct lwp *lp = curthread->td_lwp;
193 	struct proc *p = lp->lwp_proc;
194 	int fakestop;
195 
196 	/*
197 	 * Interlock against P_WEXIT.  Only one of the process's thread
198 	 * is allowed to do the master exit.
199 	 */
200 	if (p->p_flags & P_WEXIT)
201 		return (EALREADY);
202 	p->p_flags |= P_WEXIT;
203 
204 	/*
205 	 * Set temporary stopped state in case we are racing a coredump.
206 	 * Otherwise the coredump may hang forever.
207 	 */
208 	if (lp->lwp_mpflags & LWP_MP_WSTOP) {
209 		fakestop = 0;
210 	} else {
211 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
212 		++p->p_nstopped;
213 		fakestop = 1;
214 		wakeup(&p->p_nstopped);
215 	}
216 
217 	/*
218 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
219 	 */
220 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
221 	if (p->p_nthreads > 1)
222 		killlwps(lp);
223 
224 	/*
225 	 * Undo temporary stopped state
226 	 */
227 	if (fakestop) {
228 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
229 		--p->p_nstopped;
230 	}
231 
232 	/*
233 	 * If doing this for an exec, clean up the remaining thread
234 	 * (us) for continuing operation after all the other threads
235 	 * have been killed.
236 	 */
237 	if (forexec) {
238 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
239 		p->p_flags &= ~P_WEXIT;
240 	}
241 	return(0);
242 }
243 
244 /*
245  * Kill all LWPs except the current one.  Do not try to signal
246  * LWPs which have exited on their own or have already been
247  * signaled.
248  */
249 static void
250 killlwps(struct lwp *lp)
251 {
252 	struct proc *p = lp->lwp_proc;
253 	struct lwp *tlp;
254 
255 	/*
256 	 * Kill the remaining LWPs.  We must send the signal before setting
257 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
258 	 * races.  tlp must be held across the call as it might block and
259 	 * allow the target lwp to rip itself out from under our loop.
260 	 */
261 	FOREACH_LWP_IN_PROC(tlp, p) {
262 		LWPHOLD(tlp);
263 		lwkt_gettoken(&tlp->lwp_token);
264 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
265 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
266 			lwpsignal(p, tlp, SIGKILL);
267 		}
268 		lwkt_reltoken(&tlp->lwp_token);
269 		LWPRELE(tlp);
270 	}
271 
272 	/*
273 	 * Wait for everything to clear out.  Also make sure any tstop()s
274 	 * are signalled (we are holding p_token for the interlock).
275 	 */
276 	wakeup(p);
277 	while (p->p_nthreads > 1)
278 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
279 }
280 
281 /*
282  * Exit: deallocate address space and other resources, change proc state
283  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
284  * status and rusage for wait().  Check for child processes and orphan them.
285  */
286 void
287 exit1(int rv)
288 {
289 	struct thread *td = curthread;
290 	struct proc *p = td->td_proc;
291 	struct lwp *lp = td->td_lwp;
292 	struct proc *q;
293 	struct proc *pp;
294 	struct proc *reproc;
295 	struct sysreaper *reap;
296 	struct vmspace *vm;
297 	struct vnode *vtmp;
298 	struct exitlist *ep;
299 	int error;
300 
301 	lwkt_gettoken(&p->p_token);
302 
303 	if (p->p_pid == 1) {
304 		kprintf("init died (signal %d, exit %d)\n",
305 		    WTERMSIG(rv), WEXITSTATUS(rv));
306 		panic("Going nowhere without my init!");
307 	}
308 	varsymset_clean(&p->p_varsymset);
309 	lockuninit(&p->p_varsymset.vx_lock);
310 
311 	/*
312 	 * Kill all lwps associated with the current process, return an
313 	 * error if we race another thread trying to do the same thing
314 	 * and lose the race.
315 	 */
316 	error = killalllwps(0);
317 	if (error) {
318 		lwp_exit(0, NULL);
319 		/* NOT REACHED */
320 	}
321 
322 	/* are we a task leader? */
323 	if (p == p->p_leader) {
324         	struct kill_args killArgs;
325 		killArgs.signum = SIGKILL;
326 		q = p->p_peers;
327 		while(q) {
328 			killArgs.pid = q->p_pid;
329 			/*
330 		         * The interface for kill is better
331 			 * than the internal signal
332 			 */
333 			sys_kill(&killArgs);
334 			q = q->p_peers;
335 		}
336 		while (p->p_peers)
337 			tsleep((caddr_t)p, 0, "exit1", 0);
338 	}
339 
340 #ifdef PGINPROF
341 	vmsizmon();
342 #endif
343 	STOPEVENT(p, S_EXIT, rv);
344 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
345 
346 	/*
347 	 * Check if any loadable modules need anything done at process exit.
348 	 * e.g. SYSV IPC stuff
349 	 * XXX what if one of these generates an error?
350 	 */
351 	p->p_xstat = rv;
352 	EVENTHANDLER_INVOKE(process_exit, p);
353 
354 	/*
355 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
356 	 *	Maybe we should move everything to use eventhandler.
357 	 */
358 	TAILQ_FOREACH(ep, &exit_list, next)
359 		(*ep->function)(td);
360 
361 	if (p->p_flags & P_PROFIL)
362 		stopprofclock(p);
363 
364 	SIGEMPTYSET(p->p_siglist);
365 	SIGEMPTYSET(lp->lwp_siglist);
366 	if (timevalisset(&p->p_realtimer.it_value))
367 		callout_stop_sync(&p->p_ithandle);
368 
369 	/*
370 	 * Reset any sigio structures pointing to us as a result of
371 	 * F_SETOWN with our pid.
372 	 */
373 	funsetownlst(&p->p_sigiolst);
374 
375 	/*
376 	 * Close open files and release open-file table.
377 	 * This may block!
378 	 */
379 	fdfree(p, NULL);
380 
381 	if (p->p_leader->p_peers) {
382 		q = p->p_leader;
383 		while(q->p_peers != p)
384 			q = q->p_peers;
385 		q->p_peers = p->p_peers;
386 		wakeup((caddr_t)p->p_leader);
387 	}
388 
389 	/*
390 	 * XXX Shutdown SYSV semaphores
391 	 */
392 	semexit(p);
393 
394 	KKASSERT(p->p_numposixlocks == 0);
395 
396 	/* The next two chunks should probably be moved to vmspace_exit. */
397 	vm = p->p_vmspace;
398 
399 	/*
400 	 * Clean up data related to virtual kernel operation.  Clean up
401 	 * any vkernel context related to the current lwp now so we can
402 	 * destroy p_vkernel.
403 	 */
404 	if (p->p_vkernel) {
405 		vkernel_lwp_exit(lp);
406 		vkernel_exit(p);
407 	}
408 
409 	/*
410 	 * Release the user portion of address space.  The exitbump prevents
411 	 * the vmspace from being completely eradicated (using holdcnt).
412 	 * This releases references to vnodes, which could cause I/O if the
413 	 * file has been unlinked.  We need to do this early enough that
414 	 * we can still sleep.
415 	 *
416 	 * We can't free the entire vmspace as the kernel stack may be mapped
417 	 * within that space also.
418 	 *
419 	 * Processes sharing the same vmspace may exit in one order, and
420 	 * get cleaned up by vmspace_exit() in a different order.  The
421 	 * last exiting process to reach this point releases as much of
422 	 * the environment as it can, and the last process cleaned up
423 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
424 	 * remainder.
425 	 *
426 	 * NOTE: Releasing p_token around this call is helpful if the
427 	 *	 vmspace had a huge RSS.  Otherwise some other process
428 	 *	 trying to do an allproc or other scan (like 'ps') may
429 	 *	 stall for a long time.
430 	 */
431 	lwkt_reltoken(&p->p_token);
432 	vmspace_relexit(vm);
433 	lwkt_gettoken(&p->p_token);
434 
435 	if (SESS_LEADER(p)) {
436 		struct session *sp = p->p_session;
437 
438 		if (sp->s_ttyvp) {
439 			/*
440 			 * We are the controlling process.  Signal the
441 			 * foreground process group, drain the controlling
442 			 * terminal, and revoke access to the controlling
443 			 * terminal.
444 			 *
445 			 * NOTE: while waiting for the process group to exit
446 			 * it is possible that one of the processes in the
447 			 * group will revoke the tty, so the ttyclosesession()
448 			 * function will re-check sp->s_ttyvp.
449 			 */
450 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
451 				if (sp->s_ttyp->t_pgrp)
452 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
453 				ttywait(sp->s_ttyp);
454 				ttyclosesession(sp, 1); /* also revoke */
455 			}
456 			/*
457 			 * Release the tty.  If someone has it open via
458 			 * /dev/tty then close it (since they no longer can
459 			 * once we've NULL'd it out).
460 			 */
461 			ttyclosesession(sp, 0);
462 
463 			/*
464 			 * s_ttyp is not zero'd; we use this to indicate
465 			 * that the session once had a controlling terminal.
466 			 * (for logging and informational purposes)
467 			 */
468 		}
469 		sp->s_leader = NULL;
470 	}
471 	fixjobc(p, p->p_pgrp, 0);
472 	(void)acct_process(p);
473 #ifdef KTRACE
474 	/*
475 	 * release trace file
476 	 */
477 	if (p->p_tracenode)
478 		ktrdestroy(&p->p_tracenode);
479 	p->p_traceflag = 0;
480 #endif
481 	/*
482 	 * Release reference to text vnode
483 	 */
484 	if ((vtmp = p->p_textvp) != NULL) {
485 		p->p_textvp = NULL;
486 		vrele(vtmp);
487 	}
488 
489 	/* Release namecache handle to text file */
490 	if (p->p_textnch.ncp)
491 		cache_drop(&p->p_textnch);
492 
493 	/*
494 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
495 	 * will block on the PHOLD() the parent is doing.
496 	 *
497 	 * We are using the flag as an interlock so an atomic op is
498 	 * necessary to synchronize with the parent's cpu.
499 	 */
500 	if (p->p_flags & P_PPWAIT) {
501 		if (p->p_pptr && p->p_pptr->p_upmap)
502 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
503 		atomic_clear_int(&p->p_flags, P_PPWAIT);
504 		wakeup(p->p_pptr);
505 	}
506 
507 	/*
508 	 * Move the process to the zombie list.  This will block
509 	 * until the process p_lock count reaches 0.  The process will
510 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
511 	 * which is called from cpu_proc_exit().
512 	 *
513 	 * Interlock against waiters using p_waitgen.  We increment
514 	 * p_waitgen after completing the move of our process to the
515 	 * zombie list.
516 	 *
517 	 * WARNING: pp becomes stale when we block, clear it now as a
518 	 *	    reminder.
519 	 */
520 	proc_move_allproc_zombie(p);
521 	pp = p->p_pptr;
522 	atomic_add_long(&pp->p_waitgen, 1);
523 	pp = NULL;
524 
525 	/*
526 	 * release controlled reaper for exit if we own it and return the
527 	 * remaining reaper (the one for us), which we will drop after we
528 	 * are done.
529 	 */
530 	reap = reaper_exit(p);
531 
532 	/*
533 	 * Reparent all of this process's children to the init process or
534 	 * to the designated reaper.  We must hold the reaper's p_token in
535 	 * order to safely mess with p_children.
536 	 *
537 	 * We already hold p->p_token (to remove the children from our list).
538 	 */
539 	reproc = NULL;
540 	q = LIST_FIRST(&p->p_children);
541 	if (q) {
542 		reproc = reaper_get(reap);
543 		lwkt_gettoken(&reproc->p_token);
544 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
545 			PHOLD(q);
546 			lwkt_gettoken(&q->p_token);
547 			if (q != LIST_FIRST(&p->p_children)) {
548 				lwkt_reltoken(&q->p_token);
549 				PRELE(q);
550 				continue;
551 			}
552 			LIST_REMOVE(q, p_sibling);
553 			LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
554 			q->p_pptr = reproc;
555 			q->p_sigparent = SIGCHLD;
556 
557 			/*
558 			 * Traced processes are killed
559 			 * since their existence means someone is screwing up.
560 			 */
561 			if (q->p_flags & P_TRACED) {
562 				q->p_flags &= ~P_TRACED;
563 				ksignal(q, SIGKILL);
564 			}
565 			lwkt_reltoken(&q->p_token);
566 			PRELE(q);
567 		}
568 		lwkt_reltoken(&reproc->p_token);
569 		wakeup(reproc);
570 	}
571 
572 	/*
573 	 * Save exit status and final rusage info, adding in child rusage
574 	 * info and self times.
575 	 */
576 	calcru_proc(p, &p->p_ru);
577 	ruadd(&p->p_ru, &p->p_cru);
578 
579 	/*
580 	 * notify interested parties of our demise.
581 	 */
582 	KNOTE(&p->p_klist, NOTE_EXIT);
583 
584 	/*
585 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
586 	 * flag set, or if the handler is set to SIG_IGN, notify the reaper
587 	 * instead (it will handle this situation).
588 	 *
589 	 * NOTE: The reaper can still be the parent process.
590 	 *
591 	 * (must reload pp)
592 	 */
593 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
594 		if (reproc == NULL)
595 			reproc = reaper_get(reap);
596 		proc_reparent(p, reproc);
597 	}
598 	if (reproc)
599 		PRELE(reproc);
600 	if (reap)
601 		reaper_drop(reap);
602 
603 	/*
604 	 * Signal (possibly new) parent.
605 	 */
606 	pp = p->p_pptr;
607 	PHOLD(pp);
608 	if (p->p_sigparent && pp != initproc) {
609 		int sig = p->p_sigparent;
610 
611 		if (sig != SIGUSR1 && sig != SIGCHLD)
612 			sig = SIGCHLD;
613 	        ksignal(pp, sig);
614 	} else {
615 	        ksignal(pp, SIGCHLD);
616 	}
617 	p->p_flags &= ~P_TRACED;
618 	PRELE(pp);
619 
620 	/*
621 	 * cpu_exit is responsible for clearing curproc, since
622 	 * it is heavily integrated with the thread/switching sequence.
623 	 *
624 	 * Other substructures are freed from wait().
625 	 */
626 	plimit_free(p);
627 
628 	/*
629 	 * Finally, call machine-dependent code to release as many of the
630 	 * lwp's resources as we can and halt execution of this thread.
631 	 *
632 	 * pp is a wild pointer now but still the correct wakeup() target.
633 	 * lwp_exit() only uses it to send the wakeup() signal to the likely
634 	 * parent.  Any reparenting race that occurs will get a signal
635 	 * automatically and not be an issue.
636 	 */
637 	lwp_exit(1, pp);
638 }
639 
640 /*
641  * Eventually called by every exiting LWP
642  *
643  * p->p_token must be held.  mplock may be held and will be released.
644  */
645 void
646 lwp_exit(int masterexit, void *waddr)
647 {
648 	struct thread *td = curthread;
649 	struct lwp *lp = td->td_lwp;
650 	struct proc *p = lp->lwp_proc;
651 	int dowake = 0;
652 
653 	/*
654 	 * Release the current user process designation on the process so
655 	 * the userland scheduler can work in someone else.
656 	 */
657 	p->p_usched->release_curproc(lp);
658 
659 	/*
660 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
661 	 * make sure it is set here.
662 	 */
663 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
664 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
665 
666 	/*
667 	 * Clean up any virtualization
668 	 */
669 	if (lp->lwp_vkernel)
670 		vkernel_lwp_exit(lp);
671 
672 	if (td->td_vmm)
673 		vmm_vmdestroy();
674 
675 	/*
676 	 * Clean up select/poll support
677 	 */
678 	kqueue_terminate(&lp->lwp_kqueue);
679 
680 	/*
681 	 * Clean up any syscall-cached ucred
682 	 */
683 	if (td->td_ucred) {
684 		crfree(td->td_ucred);
685 		td->td_ucred = NULL;
686 	}
687 
688 	/*
689 	 * Nobody actually wakes us when the lock
690 	 * count reaches zero, so just wait one tick.
691 	 */
692 	while (lp->lwp_lock > 0)
693 		tsleep(lp, 0, "lwpexit", 1);
694 
695 	/* Hand down resource usage to our proc */
696 	ruadd(&p->p_ru, &lp->lwp_ru);
697 
698 	/*
699 	 * If we don't hold the process until the LWP is reaped wait*()
700 	 * may try to dispose of its vmspace before all the LWPs have
701 	 * actually terminated.
702 	 */
703 	PHOLD(p);
704 
705 	/*
706 	 * Do any remaining work that might block on us.  We should be
707 	 * coded such that further blocking is ok after decrementing
708 	 * p_nthreads but don't take the chance.
709 	 */
710 	dsched_exit_thread(td);
711 	biosched_done(curthread);
712 
713 	/*
714 	 * We have to use the reaper for all the LWPs except the one doing
715 	 * the master exit.  The LWP doing the master exit can just be
716 	 * left on p_lwps and the process reaper will deal with it
717 	 * synchronously, which is much faster.
718 	 *
719 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
720 	 *
721 	 * The process is left held until the reaper calls lwp_dispose() on
722 	 * the lp (after calling lwp_wait()).
723 	 */
724 	if (masterexit == 0) {
725 		int cpu = mycpuid;
726 
727 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
728 		--p->p_nthreads;
729 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
730 			dowake = 1;
731 		lwkt_gettoken(&deadlwp_token[cpu]);
732 		LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
733 		taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
734 		lwkt_reltoken(&deadlwp_token[cpu]);
735 	} else {
736 		--p->p_nthreads;
737 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
738 			dowake = 1;
739 	}
740 
741 	/*
742 	 * We no longer need p_token.
743 	 *
744 	 * Tell the userland scheduler that we are going away
745 	 */
746 	lwkt_reltoken(&p->p_token);
747 	p->p_usched->heuristic_exiting(lp, p);
748 
749 	/*
750 	 * Issue late wakeups after releasing our token to give us a chance
751 	 * to deschedule and switch away before another cpu in a wait*()
752 	 * reaps us.  This is done as late as possible to reduce contention.
753 	 */
754 	if (dowake)
755 		wakeup(&p->p_nthreads);
756 	if (waddr)
757 		wakeup(waddr);
758 
759 	cpu_lwp_exit();
760 }
761 
762 /*
763  * Wait until a lwp is completely dead.  The final interlock in this drama
764  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
765  * switchout.
766  *
767  * At the point TDF_EXITING is set a complete exit is accomplished when
768  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
769  * post-switch interlock flags that can be used to wait for the TDF_
770  * flags to clear.
771  *
772  * Returns non-zero on success, and zero if the caller needs to retry
773  * the lwp_wait().
774  */
775 static int
776 lwp_wait(struct lwp *lp)
777 {
778 	struct thread *td = lp->lwp_thread;
779 	u_int mpflags;
780 
781 	KKASSERT(lwkt_preempted_proc() != lp);
782 
783 	/*
784 	 * This bit of code uses the thread destruction interlock
785 	 * managed by lwkt_switch_return() to wait for the lwp's
786 	 * thread to completely disengage.
787 	 *
788 	 * It is possible for us to race another cpu core so we
789 	 * have to do this correctly.
790 	 */
791 	for (;;) {
792 		mpflags = td->td_mpflags;
793 		cpu_ccfence();
794 		if (mpflags & TDF_MP_EXITSIG)
795 			break;
796 		tsleep_interlock(td, 0);
797 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
798 				      mpflags | TDF_MP_EXITWAIT)) {
799 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
800 		}
801 	}
802 
803 	/*
804 	 * We've already waited for the core exit but there can still
805 	 * be other refs from e.g. process scans and such.
806 	 */
807 	if (lp->lwp_lock > 0) {
808 		tsleep(lp, 0, "lwpwait1", 1);
809 		return(0);
810 	}
811 	if (td->td_refs) {
812 		tsleep(td, 0, "lwpwait2", 1);
813 		return(0);
814 	}
815 
816 	/*
817 	 * Now that we have the thread destruction interlock these flags
818 	 * really should already be cleaned up, keep a check for safety.
819 	 *
820 	 * We can't rip its stack out from under it until TDF_EXITING is
821 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
822 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
823 	 * will be cleared temporarily if a thread gets preempted.
824 	 */
825 	while ((td->td_flags & (TDF_RUNNING |
826 				TDF_RUNQ |
827 			        TDF_PREEMPT_LOCK |
828 			        TDF_EXITING)) != TDF_EXITING) {
829 		tsleep(lp, 0, "lwpwait3", 1);
830 		return (0);
831 	}
832 
833 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
834 		("lwp_wait: td %p (%s) still on run or sleep queue",
835 		td, td->td_comm));
836 	return (1);
837 }
838 
839 /*
840  * Release the resources associated with a lwp.
841  * The lwp must be completely dead.
842  */
843 void
844 lwp_dispose(struct lwp *lp)
845 {
846 	struct thread *td = lp->lwp_thread;
847 
848 	KKASSERT(lwkt_preempted_proc() != lp);
849 	KKASSERT(lp->lwp_lock == 0);
850 	KKASSERT(td->td_refs == 0);
851 	KKASSERT((td->td_flags & (TDF_RUNNING |
852 				  TDF_RUNQ |
853 				  TDF_PREEMPT_LOCK |
854 				  TDF_EXITING)) == TDF_EXITING);
855 
856 	PRELE(lp->lwp_proc);
857 	lp->lwp_proc = NULL;
858 	if (td != NULL) {
859 		td->td_proc = NULL;
860 		td->td_lwp = NULL;
861 		lp->lwp_thread = NULL;
862 		lwkt_free_thread(td);
863 	}
864 	kfree(lp, M_LWP);
865 }
866 
867 int
868 sys_wait4(struct wait_args *uap)
869 {
870 	struct rusage rusage;
871 	int error, status;
872 
873 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
874 			  uap->options, (uap->rusage ? &rusage : NULL),
875 			  &uap->sysmsg_result);
876 
877 	if (error == 0 && uap->status)
878 		error = copyout(&status, uap->status, sizeof(*uap->status));
879 	if (error == 0 && uap->rusage)
880 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
881 	return (error);
882 }
883 
884 /*
885  * wait1()
886  *
887  * wait_args(int pid, int *status, int options, struct rusage *rusage)
888  */
889 int
890 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
891 {
892 	struct thread *td = curthread;
893 	struct lwp *lp;
894 	struct proc *q = td->td_proc;
895 	struct proc *p, *t;
896 	struct pargs *pa;
897 	struct sigacts *ps;
898 	int nfound, error;
899 	long waitgen;
900 
901 	if (pid == 0)
902 		pid = -q->p_pgid;
903 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
904 		return (EINVAL);
905 
906 	/*
907 	 * Protect the q->p_children list
908 	 */
909 	lwkt_gettoken(&q->p_token);
910 loop:
911 	/*
912 	 * All sorts of things can change due to blocking so we have to loop
913 	 * all the way back up here.
914 	 *
915 	 * The problem is that if a process group is stopped and the parent
916 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
917 	 * of the child and then stop itself when it tries to return from the
918 	 * system call.  When the process group is resumed the parent will
919 	 * then get the STOP status even though the child has now resumed
920 	 * (a followup wait*() will get the CONT status).
921 	 *
922 	 * Previously the CONT would overwrite the STOP because the tstop
923 	 * was handled within tsleep(), and the parent would only see
924 	 * the CONT when both are stopped and continued together.  This little
925 	 * two-line hack restores this effect.
926 	 */
927 	if (STOPLWP(q, td->td_lwp))
928             tstop();
929 
930 	nfound = 0;
931 
932 	/*
933 	 * Loop on children.
934 	 *
935 	 * NOTE: We don't want to break q's p_token in the loop for the
936 	 *	 case where no children are found or we risk breaking the
937 	 *	 interlock between child and parent.
938 	 */
939 	waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
940 	LIST_FOREACH(p, &q->p_children, p_sibling) {
941 		if (pid != WAIT_ANY &&
942 		    p->p_pid != pid && p->p_pgid != -pid) {
943 			continue;
944 		}
945 
946 		/*
947 		 * This special case handles a kthread spawned by linux_clone
948 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
949 		 * functions need to be able to distinguish between waiting
950 		 * on a process and waiting on a thread.  It is a thread if
951 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
952 		 * signifies we want to wait for threads and not processes.
953 		 */
954 		if ((p->p_sigparent != SIGCHLD) ^
955 		    ((options & WLINUXCLONE) != 0)) {
956 			continue;
957 		}
958 
959 		nfound++;
960 		if (p->p_stat == SZOMB) {
961 			/*
962 			 * We may go into SZOMB with threads still present.
963 			 * We must wait for them to exit before we can reap
964 			 * the master thread, otherwise we may race reaping
965 			 * non-master threads.
966 			 *
967 			 * Only this routine can remove a process from
968 			 * the zombie list and destroy it, use PACQUIREZOMB()
969 			 * to serialize us and loop if it blocks (interlocked
970 			 * by the parent's q->p_token).
971 			 *
972 			 * WARNING!  (p) can be invalid when PHOLDZOMB(p)
973 			 *	     returns non-zero.  Be sure not to
974 			 *	     mess with it.
975 			 */
976 			if (PHOLDZOMB(p))
977 				goto loop;
978 			lwkt_gettoken(&p->p_token);
979 			if (p->p_pptr != q) {
980 				lwkt_reltoken(&p->p_token);
981 				PRELEZOMB(p);
982 				goto loop;
983 			}
984 			while (p->p_nthreads > 0) {
985 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
986 			}
987 
988 			/*
989 			 * Reap any LWPs left in p->p_lwps.  This is usually
990 			 * just the last LWP.  This must be done before
991 			 * we loop on p_lock since the lwps hold a ref on
992 			 * it as a vmspace interlock.
993 			 *
994 			 * Once that is accomplished p_nthreads had better
995 			 * be zero.
996 			 */
997 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
998 				/*
999 				 * Make sure no one is using this lwp, before
1000 				 * it is removed from the tree.  If we didn't
1001 				 * wait it here, lwp tree iteration with
1002 				 * blocking operation would be broken.
1003 				 */
1004 				while (lp->lwp_lock > 0)
1005 					tsleep(lp, 0, "zomblwp", 1);
1006 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1007 				reaplwp(lp);
1008 			}
1009 			KKASSERT(p->p_nthreads == 0);
1010 
1011 			/*
1012 			 * Don't do anything really bad until all references
1013 			 * to the process go away.  This may include other
1014 			 * LWPs which are still in the process of being
1015 			 * reaped.  We can't just pull the rug out from under
1016 			 * them because they may still be using the VM space.
1017 			 *
1018 			 * Certain kernel facilities such as /proc will also
1019 			 * put a hold on the process for short periods of
1020 			 * time.
1021 			 */
1022 			PRELE(p);
1023 			PSTALL(p, "reap3", 0);
1024 
1025 			/* Take care of our return values. */
1026 			*res = p->p_pid;
1027 
1028 			if (status)
1029 				*status = p->p_xstat;
1030 			if (rusage)
1031 				*rusage = p->p_ru;
1032 
1033 			/*
1034 			 * If we got the child via a ptrace 'attach',
1035 			 * we need to give it back to the old parent.
1036 			 */
1037 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1038 				PHOLD(p);
1039 				p->p_oppid = 0;
1040 				proc_reparent(p, t);
1041 				ksignal(t, SIGCHLD);
1042 				wakeup((caddr_t)t);
1043 				error = 0;
1044 				PRELE(t);
1045 				lwkt_reltoken(&p->p_token);
1046 				PRELEZOMB(p);
1047 				goto done;
1048 			}
1049 
1050 			/*
1051 			 * Unlink the proc from its process group so that
1052 			 * the following operations won't lead to an
1053 			 * inconsistent state for processes running down
1054 			 * the zombie list.
1055 			 */
1056 			proc_remove_zombie(p);
1057 			proc_userunmap(p);
1058 			lwkt_reltoken(&p->p_token);
1059 			leavepgrp(p);
1060 
1061 			p->p_xstat = 0;
1062 			ruadd(&q->p_cru, &p->p_ru);
1063 
1064 			/*
1065 			 * Decrement the count of procs running with this uid.
1066 			 */
1067 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1068 
1069 			/*
1070 			 * Free up credentials.
1071 			 */
1072 			crfree(p->p_ucred);
1073 			p->p_ucred = NULL;
1074 
1075 			/*
1076 			 * Remove unused arguments
1077 			 */
1078 			pa = p->p_args;
1079 			p->p_args = NULL;
1080 			if (pa && refcount_release(&pa->ar_ref)) {
1081 				kfree(pa, M_PARGS);
1082 				pa = NULL;
1083 			}
1084 
1085 			ps = p->p_sigacts;
1086 			p->p_sigacts = NULL;
1087 			if (ps && refcount_release(&ps->ps_refcnt)) {
1088 				kfree(ps, M_SUBPROC);
1089 				ps = NULL;
1090 			}
1091 
1092 			/*
1093 			 * Our exitingcount was incremented when the process
1094 			 * became a zombie, now that the process has been
1095 			 * removed from (almost) all lists we should be able
1096 			 * to safely destroy its vmspace.  Wait for any current
1097 			 * holders to go away (so the vmspace remains stable),
1098 			 * then scrap it.
1099 			 *
1100 			 * NOTE: Releasing the parent process (q) p_token
1101 			 *	 across the vmspace_exitfree() call is
1102 			 *	 important here to reduce stalls on
1103 			 *	 interactions with (q) (such as
1104 			 *	 fork/exec/wait or 'ps').
1105 			 */
1106 			PSTALL(p, "reap4", 0);
1107 			lwkt_reltoken(&q->p_token);
1108 			vmspace_exitfree(p);
1109 			lwkt_gettoken(&q->p_token);
1110 			PSTALL(p, "reap5", 0);
1111 
1112 			/*
1113 			 * NOTE: We have to officially release ZOMB in order
1114 			 *	 to ensure that a racing thread in kern_wait()
1115 			 *	 which blocked on ZOMB is woken up.
1116 			 */
1117 			PHOLD(p);
1118 			PRELEZOMB(p);
1119 			kfree(p, M_PROC);
1120 			atomic_add_int(&nprocs, -1);
1121 			error = 0;
1122 			goto done;
1123 		}
1124 		if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1125 		    (p->p_flags & P_WAITED) == 0 &&
1126 		    ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1127 			PHOLD(p);
1128 			lwkt_gettoken(&p->p_token);
1129 			if (p->p_pptr != q) {
1130 				lwkt_reltoken(&p->p_token);
1131 				PRELE(p);
1132 				goto loop;
1133 			}
1134 			if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1135 			    (p->p_flags & P_WAITED) != 0 ||
1136 			    ((p->p_flags & P_TRACED) == 0 &&
1137 			     (options & WUNTRACED) == 0)) {
1138 				lwkt_reltoken(&p->p_token);
1139 				PRELE(p);
1140 				goto loop;
1141 			}
1142 
1143 			p->p_flags |= P_WAITED;
1144 
1145 			*res = p->p_pid;
1146 			if (status)
1147 				*status = W_STOPCODE(p->p_xstat);
1148 			/* Zero rusage so we get something consistent. */
1149 			if (rusage)
1150 				bzero(rusage, sizeof(*rusage));
1151 			error = 0;
1152 			lwkt_reltoken(&p->p_token);
1153 			PRELE(p);
1154 			goto done;
1155 		}
1156 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1157 			PHOLD(p);
1158 			lwkt_gettoken(&p->p_token);
1159 			if (p->p_pptr != q) {
1160 				lwkt_reltoken(&p->p_token);
1161 				PRELE(p);
1162 				goto loop;
1163 			}
1164 			if ((p->p_flags & P_CONTINUED) == 0) {
1165 				lwkt_reltoken(&p->p_token);
1166 				PRELE(p);
1167 				goto loop;
1168 			}
1169 
1170 			*res = p->p_pid;
1171 			p->p_flags &= ~P_CONTINUED;
1172 
1173 			if (status)
1174 				*status = SIGCONT;
1175 			error = 0;
1176 			lwkt_reltoken(&p->p_token);
1177 			PRELE(p);
1178 			goto done;
1179 		}
1180 	}
1181 	if (nfound == 0) {
1182 		error = ECHILD;
1183 		goto done;
1184 	}
1185 	if (options & WNOHANG) {
1186 		*res = 0;
1187 		error = 0;
1188 		goto done;
1189 	}
1190 
1191 	/*
1192 	 * Wait for signal - interlocked using q->p_waitgen.
1193 	 */
1194 	error = 0;
1195 	while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1196 		tsleep_interlock(q, PCATCH);
1197 		waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1198 		if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1199 			error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1200 			break;
1201 		}
1202 	}
1203 	if (error) {
1204 done:
1205 		lwkt_reltoken(&q->p_token);
1206 		return (error);
1207 	}
1208 	goto loop;
1209 }
1210 
1211 /*
1212  * Change child's parent process to parent.
1213  *
1214  * p_children/p_sibling requires the parent's token, and
1215  * changing pptr requires the child's token, so we have to
1216  * get three tokens to do this operation.  We also need to
1217  * hold pointers that might get ripped out from under us to
1218  * preserve structural integrity.
1219  *
1220  * It is possible to race another reparent or disconnect or other
1221  * similar operation.  We must retry when this situation occurs.
1222  * Once we successfully reparent the process we no longer care
1223  * about any races.
1224  */
1225 void
1226 proc_reparent(struct proc *child, struct proc *parent)
1227 {
1228 	struct proc *opp;
1229 
1230 	PHOLD(parent);
1231 	while ((opp = child->p_pptr) != parent) {
1232 		PHOLD(opp);
1233 		lwkt_gettoken(&opp->p_token);
1234 		lwkt_gettoken(&child->p_token);
1235 		lwkt_gettoken(&parent->p_token);
1236 		if (child->p_pptr != opp) {
1237 			lwkt_reltoken(&parent->p_token);
1238 			lwkt_reltoken(&child->p_token);
1239 			lwkt_reltoken(&opp->p_token);
1240 			PRELE(opp);
1241 			continue;
1242 		}
1243 		LIST_REMOVE(child, p_sibling);
1244 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1245 		child->p_pptr = parent;
1246 		lwkt_reltoken(&parent->p_token);
1247 		lwkt_reltoken(&child->p_token);
1248 		lwkt_reltoken(&opp->p_token);
1249 		if (LIST_EMPTY(&opp->p_children))
1250 			wakeup(opp);
1251 		PRELE(opp);
1252 		break;
1253 	}
1254 	PRELE(parent);
1255 }
1256 
1257 /*
1258  * The next two functions are to handle adding/deleting items on the
1259  * exit callout list
1260  *
1261  * at_exit():
1262  * Take the arguments given and put them onto the exit callout list,
1263  * However first make sure that it's not already there.
1264  * returns 0 on success.
1265  */
1266 
1267 int
1268 at_exit(exitlist_fn function)
1269 {
1270 	struct exitlist *ep;
1271 
1272 #ifdef INVARIANTS
1273 	/* Be noisy if the programmer has lost track of things */
1274 	if (rm_at_exit(function))
1275 		kprintf("WARNING: exit callout entry (%p) already present\n",
1276 		    function);
1277 #endif
1278 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1279 	if (ep == NULL)
1280 		return (ENOMEM);
1281 	ep->function = function;
1282 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1283 	return (0);
1284 }
1285 
1286 /*
1287  * Scan the exit callout list for the given item and remove it.
1288  * Returns the number of items removed (0 or 1)
1289  */
1290 int
1291 rm_at_exit(exitlist_fn function)
1292 {
1293 	struct exitlist *ep;
1294 
1295 	TAILQ_FOREACH(ep, &exit_list, next) {
1296 		if (ep->function == function) {
1297 			TAILQ_REMOVE(&exit_list, ep, next);
1298 			kfree(ep, M_ATEXIT);
1299 			return(1);
1300 		}
1301 	}
1302 	return (0);
1303 }
1304 
1305 /*
1306  * LWP reaper related code.
1307  */
1308 static void
1309 reaplwps(void *context, int dummy)
1310 {
1311 	struct lwplist *lwplist = context;
1312 	struct lwp *lp;
1313 	int cpu = mycpuid;
1314 
1315 	lwkt_gettoken(&deadlwp_token[cpu]);
1316 	while ((lp = LIST_FIRST(lwplist))) {
1317 		LIST_REMOVE(lp, u.lwp_reap_entry);
1318 		reaplwp(lp);
1319 	}
1320 	lwkt_reltoken(&deadlwp_token[cpu]);
1321 }
1322 
1323 static void
1324 reaplwp(struct lwp *lp)
1325 {
1326 	while (lwp_wait(lp) == 0)
1327 		;
1328 	lwp_dispose(lp);
1329 }
1330 
1331 static void
1332 deadlwp_init(void)
1333 {
1334 	int cpu;
1335 
1336 	for (cpu = 0; cpu < ncpus; cpu++) {
1337 		lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1338 		LIST_INIT(&deadlwp_list[cpu]);
1339 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1340 					    M_DEVBUF, M_WAITOK);
1341 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1342 	}
1343 }
1344 
1345 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1346