xref: /dragonfly/sys/kern/kern_exit.c (revision a4c31683)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h>		/* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
71 #include <sys/user.h>
72 
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/sysref2.h>
76 #include <sys/mplock2.h>
77 
78 #include <machine/vmm.h>
79 
80 static void reaplwps(void *context, int dummy);
81 static void reaplwp(struct lwp *lp);
82 static void killlwps(struct lwp *lp);
83 
84 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
85 
86 /*
87  * callout list for things to do at exit time
88  */
89 struct exitlist {
90 	exitlist_fn function;
91 	TAILQ_ENTRY(exitlist) next;
92 };
93 
94 TAILQ_HEAD(exit_list_head, exitlist);
95 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
96 
97 /*
98  * LWP reaper data
99  */
100 static struct task *deadlwp_task[MAXCPU];
101 static struct lwplist deadlwp_list[MAXCPU];
102 static struct lwkt_token deadlwp_token[MAXCPU];
103 
104 /*
105  * exit --
106  *	Death of process.
107  *
108  * SYS_EXIT_ARGS(int rval)
109  */
110 int
111 sys_exit(struct exit_args *uap)
112 {
113 	exit1(W_EXITCODE(uap->rval, 0));
114 	/* NOTREACHED */
115 }
116 
117 /*
118  * Extended exit --
119  *	Death of a lwp or process with optional bells and whistles.
120  */
121 int
122 sys_extexit(struct extexit_args *uap)
123 {
124 	struct proc *p = curproc;
125 	int action, who;
126 	int error;
127 
128 	action = EXTEXIT_ACTION(uap->how);
129 	who = EXTEXIT_WHO(uap->how);
130 
131 	/* Check parameters before we might perform some action */
132 	switch (who) {
133 	case EXTEXIT_PROC:
134 	case EXTEXIT_LWP:
135 		break;
136 	default:
137 		return (EINVAL);
138 	}
139 
140 	switch (action) {
141 	case EXTEXIT_SIMPLE:
142 		break;
143 	case EXTEXIT_SETINT:
144 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
145 		if (error)
146 			return (error);
147 		break;
148 	default:
149 		return (EINVAL);
150 	}
151 
152 	lwkt_gettoken(&p->p_token);
153 
154 	switch (who) {
155 	case EXTEXIT_LWP:
156 		/*
157 		 * Be sure only to perform a simple lwp exit if there is at
158 		 * least one more lwp in the proc, which will call exit1()
159 		 * later, otherwise the proc will be an UNDEAD and not even a
160 		 * SZOMB!
161 		 */
162 		if (p->p_nthreads > 1) {
163 			lwp_exit(0, NULL);	/* called w/ p_token held */
164 			/* NOT REACHED */
165 		}
166 		/* else last lwp in proc:  do the real thing */
167 		/* FALLTHROUGH */
168 	default:	/* to help gcc */
169 	case EXTEXIT_PROC:
170 		lwkt_reltoken(&p->p_token);
171 		exit1(W_EXITCODE(uap->status, 0));
172 		/* NOTREACHED */
173 	}
174 
175 	/* NOTREACHED */
176 	lwkt_reltoken(&p->p_token);	/* safety */
177 }
178 
179 /*
180  * Kill all lwps associated with the current process except the
181  * current lwp.   Return an error if we race another thread trying to
182  * do the same thing and lose the race.
183  *
184  * If forexec is non-zero the current thread and process flags are
185  * cleaned up so they can be reused.
186  *
187  * Caller must hold curproc->p_token
188  */
189 int
190 killalllwps(int forexec)
191 {
192 	struct lwp *lp = curthread->td_lwp;
193 	struct proc *p = lp->lwp_proc;
194 	int fakestop;
195 
196 	/*
197 	 * Interlock against P_WEXIT.  Only one of the process's thread
198 	 * is allowed to do the master exit.
199 	 */
200 	if (p->p_flags & P_WEXIT)
201 		return (EALREADY);
202 	p->p_flags |= P_WEXIT;
203 
204 	/*
205 	 * Set temporary stopped state in case we are racing a coredump.
206 	 * Otherwise the coredump may hang forever.
207 	 */
208 	if (lp->lwp_mpflags & LWP_MP_WSTOP) {
209 		fakestop = 0;
210 	} else {
211 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
212 		++p->p_nstopped;
213 		fakestop = 1;
214 		wakeup(&p->p_nstopped);
215 	}
216 
217 	/*
218 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
219 	 */
220 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
221 	if (p->p_nthreads > 1)
222 		killlwps(lp);
223 
224 	/*
225 	 * Undo temporary stopped state
226 	 */
227 	if (fakestop) {
228 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
229 		--p->p_nstopped;
230 	}
231 
232 	/*
233 	 * If doing this for an exec, clean up the remaining thread
234 	 * (us) for continuing operation after all the other threads
235 	 * have been killed.
236 	 */
237 	if (forexec) {
238 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
239 		p->p_flags &= ~P_WEXIT;
240 	}
241 	return(0);
242 }
243 
244 /*
245  * Kill all LWPs except the current one.  Do not try to signal
246  * LWPs which have exited on their own or have already been
247  * signaled.
248  */
249 static void
250 killlwps(struct lwp *lp)
251 {
252 	struct proc *p = lp->lwp_proc;
253 	struct lwp *tlp;
254 
255 	/*
256 	 * Kill the remaining LWPs.  We must send the signal before setting
257 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
258 	 * races.  tlp must be held across the call as it might block and
259 	 * allow the target lwp to rip itself out from under our loop.
260 	 */
261 	FOREACH_LWP_IN_PROC(tlp, p) {
262 		LWPHOLD(tlp);
263 		lwkt_gettoken(&tlp->lwp_token);
264 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
265 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
266 			lwpsignal(p, tlp, SIGKILL);
267 		}
268 		lwkt_reltoken(&tlp->lwp_token);
269 		LWPRELE(tlp);
270 	}
271 
272 	/*
273 	 * Wait for everything to clear out.  Also make sure any tstop()s
274 	 * are signalled (we are holding p_token for the interlock).
275 	 */
276 	wakeup(p);
277 	while (p->p_nthreads > 1)
278 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
279 }
280 
281 /*
282  * Exit: deallocate address space and other resources, change proc state
283  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
284  * status and rusage for wait().  Check for child processes and orphan them.
285  */
286 void
287 exit1(int rv)
288 {
289 	struct thread *td = curthread;
290 	struct proc *p = td->td_proc;
291 	struct lwp *lp = td->td_lwp;
292 	struct proc *q;
293 	struct proc *pp;
294 	struct proc *reproc;
295 	struct sysreaper *reap;
296 	struct vmspace *vm;
297 	struct vnode *vtmp;
298 	struct exitlist *ep;
299 	int error;
300 
301 	lwkt_gettoken(&p->p_token);
302 
303 	if (p->p_pid == 1) {
304 		kprintf("init died (signal %d, exit %d)\n",
305 		    WTERMSIG(rv), WEXITSTATUS(rv));
306 		panic("Going nowhere without my init!");
307 	}
308 	varsymset_clean(&p->p_varsymset);
309 	lockuninit(&p->p_varsymset.vx_lock);
310 
311 	/*
312 	 * Kill all lwps associated with the current process, return an
313 	 * error if we race another thread trying to do the same thing
314 	 * and lose the race.
315 	 */
316 	error = killalllwps(0);
317 	if (error) {
318 		lwp_exit(0, NULL);
319 		/* NOT REACHED */
320 	}
321 
322 	/* are we a task leader? */
323 	if (p == p->p_leader) {
324         	struct kill_args killArgs;
325 		killArgs.signum = SIGKILL;
326 		q = p->p_peers;
327 		while(q) {
328 			killArgs.pid = q->p_pid;
329 			/*
330 		         * The interface for kill is better
331 			 * than the internal signal
332 			 */
333 			sys_kill(&killArgs);
334 			q = q->p_peers;
335 		}
336 		while (p->p_peers)
337 			tsleep((caddr_t)p, 0, "exit1", 0);
338 	}
339 
340 #ifdef PGINPROF
341 	vmsizmon();
342 #endif
343 	STOPEVENT(p, S_EXIT, rv);
344 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
345 
346 	/*
347 	 * Check if any loadable modules need anything done at process exit.
348 	 * e.g. SYSV IPC stuff
349 	 * XXX what if one of these generates an error?
350 	 */
351 	p->p_xstat = rv;
352 
353 	/*
354 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
355 	 *	Maybe we should move everything to use eventhandler.
356 	 */
357 	TAILQ_FOREACH(ep, &exit_list, next)
358 		(*ep->function)(td);
359 
360 	if (p->p_flags & P_PROFIL)
361 		stopprofclock(p);
362 
363 	SIGEMPTYSET(p->p_siglist);
364 	SIGEMPTYSET(lp->lwp_siglist);
365 	if (timevalisset(&p->p_realtimer.it_value))
366 		callout_stop_sync(&p->p_ithandle);
367 
368 	/*
369 	 * Reset any sigio structures pointing to us as a result of
370 	 * F_SETOWN with our pid.
371 	 */
372 	funsetownlst(&p->p_sigiolst);
373 
374 	/*
375 	 * Close open files and release open-file table.
376 	 * This may block!
377 	 */
378 	fdfree(p, NULL);
379 
380 	if (p->p_leader->p_peers) {
381 		q = p->p_leader;
382 		while(q->p_peers != p)
383 			q = q->p_peers;
384 		q->p_peers = p->p_peers;
385 		wakeup((caddr_t)p->p_leader);
386 	}
387 
388 	/*
389 	 * XXX Shutdown SYSV semaphores
390 	 */
391 	semexit(p);
392 
393 	KKASSERT(p->p_numposixlocks == 0);
394 
395 	/* The next two chunks should probably be moved to vmspace_exit. */
396 	vm = p->p_vmspace;
397 
398 	/*
399 	 * Clean up data related to virtual kernel operation.  Clean up
400 	 * any vkernel context related to the current lwp now so we can
401 	 * destroy p_vkernel.
402 	 */
403 	if (p->p_vkernel) {
404 		vkernel_lwp_exit(lp);
405 		vkernel_exit(p);
406 	}
407 
408 	/*
409 	 * Release the user portion of address space.  The exitbump prevents
410 	 * the vmspace from being completely eradicated (using holdcnt).
411 	 * This releases references to vnodes, which could cause I/O if the
412 	 * file has been unlinked.  We need to do this early enough that
413 	 * we can still sleep.
414 	 *
415 	 * We can't free the entire vmspace as the kernel stack may be mapped
416 	 * within that space also.
417 	 *
418 	 * Processes sharing the same vmspace may exit in one order, and
419 	 * get cleaned up by vmspace_exit() in a different order.  The
420 	 * last exiting process to reach this point releases as much of
421 	 * the environment as it can, and the last process cleaned up
422 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
423 	 * remainder.
424 	 *
425 	 * NOTE: Releasing p_token around this call is helpful if the
426 	 *	 vmspace had a huge RSS.  Otherwise some other process
427 	 *	 trying to do an allproc or other scan (like 'ps') may
428 	 *	 stall for a long time.
429 	 */
430 	lwkt_reltoken(&p->p_token);
431 	vmspace_relexit(vm);
432 	lwkt_gettoken(&p->p_token);
433 
434 	if (SESS_LEADER(p)) {
435 		struct session *sp = p->p_session;
436 
437 		if (sp->s_ttyvp) {
438 			/*
439 			 * We are the controlling process.  Signal the
440 			 * foreground process group, drain the controlling
441 			 * terminal, and revoke access to the controlling
442 			 * terminal.
443 			 *
444 			 * NOTE: while waiting for the process group to exit
445 			 * it is possible that one of the processes in the
446 			 * group will revoke the tty, so the ttyclosesession()
447 			 * function will re-check sp->s_ttyvp.
448 			 */
449 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
450 				if (sp->s_ttyp->t_pgrp)
451 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
452 				ttywait(sp->s_ttyp);
453 				ttyclosesession(sp, 1); /* also revoke */
454 			}
455 			/*
456 			 * Release the tty.  If someone has it open via
457 			 * /dev/tty then close it (since they no longer can
458 			 * once we've NULL'd it out).
459 			 */
460 			ttyclosesession(sp, 0);
461 
462 			/*
463 			 * s_ttyp is not zero'd; we use this to indicate
464 			 * that the session once had a controlling terminal.
465 			 * (for logging and informational purposes)
466 			 */
467 		}
468 		sp->s_leader = NULL;
469 	}
470 	fixjobc(p, p->p_pgrp, 0);
471 	(void)acct_process(p);
472 #ifdef KTRACE
473 	/*
474 	 * release trace file
475 	 */
476 	if (p->p_tracenode)
477 		ktrdestroy(&p->p_tracenode);
478 	p->p_traceflag = 0;
479 #endif
480 	/*
481 	 * Release reference to text vnode
482 	 */
483 	if ((vtmp = p->p_textvp) != NULL) {
484 		p->p_textvp = NULL;
485 		vrele(vtmp);
486 	}
487 
488 	/* Release namecache handle to text file */
489 	if (p->p_textnch.ncp)
490 		cache_drop(&p->p_textnch);
491 
492 	/*
493 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
494 	 * will block on the PHOLD() the parent is doing.
495 	 *
496 	 * We are using the flag as an interlock so an atomic op is
497 	 * necessary to synchronize with the parent's cpu.
498 	 */
499 	if (p->p_flags & P_PPWAIT) {
500 		if (p->p_pptr && p->p_pptr->p_upmap)
501 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
502 		atomic_clear_int(&p->p_flags, P_PPWAIT);
503 		wakeup(p->p_pptr);
504 	}
505 
506 	/*
507 	 * Move the process to the zombie list.  This will block
508 	 * until the process p_lock count reaches 0.  The process will
509 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
510 	 * which is called from cpu_proc_exit().
511 	 *
512 	 * Interlock against waiters using p_waitgen.  We increment
513 	 * p_waitgen after completing the move of our process to the
514 	 * zombie list.
515 	 *
516 	 * WARNING: pp becomes stale when we block, clear it now as a
517 	 *	    reminder.
518 	 */
519 	proc_move_allproc_zombie(p);
520 	pp = p->p_pptr;
521 	atomic_add_long(&pp->p_waitgen, 1);
522 	pp = NULL;
523 
524 	/*
525 	 * release controlled reaper for exit if we own it and return the
526 	 * remaining reaper (the one for us), which we will drop after we
527 	 * are done.
528 	 */
529 	reap = reaper_exit(p);
530 
531 	/*
532 	 * Reparent all of this process's children to the init process or
533 	 * to the designated reaper.  We must hold the reaper's p_token in
534 	 * order to safely mess with p_children.
535 	 *
536 	 * We already hold p->p_token (to remove the children from our list).
537 	 */
538 	reproc = NULL;
539 	q = LIST_FIRST(&p->p_children);
540 	if (q) {
541 		reproc = reaper_get(reap);
542 		lwkt_gettoken(&reproc->p_token);
543 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
544 			PHOLD(q);
545 			lwkt_gettoken(&q->p_token);
546 			if (q != LIST_FIRST(&p->p_children)) {
547 				lwkt_reltoken(&q->p_token);
548 				PRELE(q);
549 				continue;
550 			}
551 			LIST_REMOVE(q, p_sibling);
552 			LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
553 			q->p_pptr = reproc;
554 			q->p_sigparent = SIGCHLD;
555 
556 			/*
557 			 * Traced processes are killed
558 			 * since their existence means someone is screwing up.
559 			 */
560 			if (q->p_flags & P_TRACED) {
561 				q->p_flags &= ~P_TRACED;
562 				ksignal(q, SIGKILL);
563 			}
564 			lwkt_reltoken(&q->p_token);
565 			PRELE(q);
566 		}
567 		lwkt_reltoken(&reproc->p_token);
568 		wakeup(reproc);
569 	}
570 
571 	/*
572 	 * Save exit status and final rusage info, adding in child rusage
573 	 * info and self times.
574 	 */
575 	calcru_proc(p, &p->p_ru);
576 	ruadd(&p->p_ru, &p->p_cru);
577 
578 	/*
579 	 * notify interested parties of our demise.
580 	 */
581 	KNOTE(&p->p_klist, NOTE_EXIT);
582 
583 	/*
584 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
585 	 * flag set, or if the handler is set to SIG_IGN, notify the reaper
586 	 * instead (it will handle this situation).
587 	 *
588 	 * NOTE: The reaper can still be the parent process.
589 	 *
590 	 * (must reload pp)
591 	 */
592 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
593 		if (reproc == NULL)
594 			reproc = reaper_get(reap);
595 		proc_reparent(p, reproc);
596 	}
597 	if (reproc)
598 		PRELE(reproc);
599 	if (reap)
600 		reaper_drop(reap);
601 
602 	/*
603 	 * Signal (possibly new) parent.
604 	 */
605 	pp = p->p_pptr;
606 	PHOLD(pp);
607 	if (p->p_sigparent && pp != initproc) {
608 		int sig = p->p_sigparent;
609 
610 		if (sig != SIGUSR1 && sig != SIGCHLD)
611 			sig = SIGCHLD;
612 	        ksignal(pp, sig);
613 	} else {
614 	        ksignal(pp, SIGCHLD);
615 	}
616 	p->p_flags &= ~P_TRACED;
617 	PRELE(pp);
618 
619 	/*
620 	 * cpu_exit is responsible for clearing curproc, since
621 	 * it is heavily integrated with the thread/switching sequence.
622 	 *
623 	 * Other substructures are freed from wait().
624 	 */
625 	plimit_free(p);
626 
627 	/*
628 	 * Finally, call machine-dependent code to release as many of the
629 	 * lwp's resources as we can and halt execution of this thread.
630 	 *
631 	 * pp is a wild pointer now but still the correct wakeup() target.
632 	 * lwp_exit() only uses it to send the wakeup() signal to the likely
633 	 * parent.  Any reparenting race that occurs will get a signal
634 	 * automatically and not be an issue.
635 	 */
636 	lwp_exit(1, pp);
637 }
638 
639 /*
640  * Eventually called by every exiting LWP
641  *
642  * p->p_token must be held.  mplock may be held and will be released.
643  */
644 void
645 lwp_exit(int masterexit, void *waddr)
646 {
647 	struct thread *td = curthread;
648 	struct lwp *lp = td->td_lwp;
649 	struct proc *p = lp->lwp_proc;
650 	int dowake = 0;
651 
652 	/*
653 	 * Release the current user process designation on the process so
654 	 * the userland scheduler can work in someone else.
655 	 */
656 	p->p_usched->release_curproc(lp);
657 
658 	/*
659 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
660 	 * make sure it is set here.
661 	 */
662 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
663 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
664 
665 	/*
666 	 * Clean up any virtualization
667 	 */
668 	if (lp->lwp_vkernel)
669 		vkernel_lwp_exit(lp);
670 
671 	if (td->td_vmm)
672 		vmm_vmdestroy();
673 
674 	/*
675 	 * Clean up select/poll support
676 	 */
677 	kqueue_terminate(&lp->lwp_kqueue);
678 
679 	/*
680 	 * Clean up any syscall-cached ucred
681 	 */
682 	if (td->td_ucred) {
683 		crfree(td->td_ucred);
684 		td->td_ucred = NULL;
685 	}
686 
687 	/*
688 	 * Nobody actually wakes us when the lock
689 	 * count reaches zero, so just wait one tick.
690 	 */
691 	while (lp->lwp_lock > 0)
692 		tsleep(lp, 0, "lwpexit", 1);
693 
694 	/* Hand down resource usage to our proc */
695 	ruadd(&p->p_ru, &lp->lwp_ru);
696 
697 	/*
698 	 * If we don't hold the process until the LWP is reaped wait*()
699 	 * may try to dispose of its vmspace before all the LWPs have
700 	 * actually terminated.
701 	 */
702 	PHOLD(p);
703 
704 	/*
705 	 * Do any remaining work that might block on us.  We should be
706 	 * coded such that further blocking is ok after decrementing
707 	 * p_nthreads but don't take the chance.
708 	 */
709 	dsched_exit_thread(td);
710 	biosched_done(curthread);
711 
712 	/*
713 	 * We have to use the reaper for all the LWPs except the one doing
714 	 * the master exit.  The LWP doing the master exit can just be
715 	 * left on p_lwps and the process reaper will deal with it
716 	 * synchronously, which is much faster.
717 	 *
718 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
719 	 *
720 	 * The process is left held until the reaper calls lwp_dispose() on
721 	 * the lp (after calling lwp_wait()).
722 	 */
723 	if (masterexit == 0) {
724 		int cpu = mycpuid;
725 
726 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
727 		--p->p_nthreads;
728 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
729 			dowake = 1;
730 		lwkt_gettoken(&deadlwp_token[cpu]);
731 		LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
732 		taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
733 		lwkt_reltoken(&deadlwp_token[cpu]);
734 	} else {
735 		--p->p_nthreads;
736 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
737 			dowake = 1;
738 	}
739 
740 	/*
741 	 * We no longer need p_token.
742 	 *
743 	 * Tell the userland scheduler that we are going away
744 	 */
745 	lwkt_reltoken(&p->p_token);
746 	p->p_usched->heuristic_exiting(lp, p);
747 
748 	/*
749 	 * Issue late wakeups after releasing our token to give us a chance
750 	 * to deschedule and switch away before another cpu in a wait*()
751 	 * reaps us.  This is done as late as possible to reduce contention.
752 	 */
753 	if (dowake)
754 		wakeup(&p->p_nthreads);
755 	if (waddr)
756 		wakeup(waddr);
757 
758 	cpu_lwp_exit();
759 }
760 
761 /*
762  * Wait until a lwp is completely dead.  The final interlock in this drama
763  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
764  * switchout.
765  *
766  * At the point TDF_EXITING is set a complete exit is accomplished when
767  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
768  * post-switch interlock flags that can be used to wait for the TDF_
769  * flags to clear.
770  *
771  * Returns non-zero on success, and zero if the caller needs to retry
772  * the lwp_wait().
773  */
774 static int
775 lwp_wait(struct lwp *lp)
776 {
777 	struct thread *td = lp->lwp_thread;
778 	u_int mpflags;
779 
780 	KKASSERT(lwkt_preempted_proc() != lp);
781 
782 	/*
783 	 * This bit of code uses the thread destruction interlock
784 	 * managed by lwkt_switch_return() to wait for the lwp's
785 	 * thread to completely disengage.
786 	 *
787 	 * It is possible for us to race another cpu core so we
788 	 * have to do this correctly.
789 	 */
790 	for (;;) {
791 		mpflags = td->td_mpflags;
792 		cpu_ccfence();
793 		if (mpflags & TDF_MP_EXITSIG)
794 			break;
795 		tsleep_interlock(td, 0);
796 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
797 				      mpflags | TDF_MP_EXITWAIT)) {
798 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
799 		}
800 	}
801 
802 	/*
803 	 * We've already waited for the core exit but there can still
804 	 * be other refs from e.g. process scans and such.
805 	 */
806 	if (lp->lwp_lock > 0) {
807 		tsleep(lp, 0, "lwpwait1", 1);
808 		return(0);
809 	}
810 	if (td->td_refs) {
811 		tsleep(td, 0, "lwpwait2", 1);
812 		return(0);
813 	}
814 
815 	/*
816 	 * Now that we have the thread destruction interlock these flags
817 	 * really should already be cleaned up, keep a check for safety.
818 	 *
819 	 * We can't rip its stack out from under it until TDF_EXITING is
820 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
821 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
822 	 * will be cleared temporarily if a thread gets preempted.
823 	 */
824 	while ((td->td_flags & (TDF_RUNNING |
825 				TDF_RUNQ |
826 			        TDF_PREEMPT_LOCK |
827 			        TDF_EXITING)) != TDF_EXITING) {
828 		tsleep(lp, 0, "lwpwait3", 1);
829 		return (0);
830 	}
831 
832 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
833 		("lwp_wait: td %p (%s) still on run or sleep queue",
834 		td, td->td_comm));
835 	return (1);
836 }
837 
838 /*
839  * Release the resources associated with a lwp.
840  * The lwp must be completely dead.
841  */
842 void
843 lwp_dispose(struct lwp *lp)
844 {
845 	struct thread *td = lp->lwp_thread;
846 
847 	KKASSERT(lwkt_preempted_proc() != lp);
848 	KKASSERT(lp->lwp_lock == 0);
849 	KKASSERT(td->td_refs == 0);
850 	KKASSERT((td->td_flags & (TDF_RUNNING |
851 				  TDF_RUNQ |
852 				  TDF_PREEMPT_LOCK |
853 				  TDF_EXITING)) == TDF_EXITING);
854 
855 	PRELE(lp->lwp_proc);
856 	lp->lwp_proc = NULL;
857 	if (td != NULL) {
858 		td->td_proc = NULL;
859 		td->td_lwp = NULL;
860 		lp->lwp_thread = NULL;
861 		lwkt_free_thread(td);
862 	}
863 	kfree(lp, M_LWP);
864 }
865 
866 int
867 sys_wait4(struct wait_args *uap)
868 {
869 	struct rusage rusage;
870 	int error, status;
871 
872 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
873 			  uap->options, (uap->rusage ? &rusage : NULL),
874 			  &uap->sysmsg_result);
875 
876 	if (error == 0 && uap->status)
877 		error = copyout(&status, uap->status, sizeof(*uap->status));
878 	if (error == 0 && uap->rusage)
879 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
880 	return (error);
881 }
882 
883 /*
884  * wait1()
885  *
886  * wait_args(int pid, int *status, int options, struct rusage *rusage)
887  */
888 int
889 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
890 {
891 	struct thread *td = curthread;
892 	struct lwp *lp;
893 	struct proc *q = td->td_proc;
894 	struct proc *p, *t;
895 	struct pargs *pa;
896 	struct sigacts *ps;
897 	int nfound, error;
898 	long waitgen;
899 
900 	if (pid == 0)
901 		pid = -q->p_pgid;
902 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
903 		return (EINVAL);
904 
905 	/*
906 	 * Protect the q->p_children list
907 	 */
908 	lwkt_gettoken(&q->p_token);
909 loop:
910 	/*
911 	 * All sorts of things can change due to blocking so we have to loop
912 	 * all the way back up here.
913 	 *
914 	 * The problem is that if a process group is stopped and the parent
915 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
916 	 * of the child and then stop itself when it tries to return from the
917 	 * system call.  When the process group is resumed the parent will
918 	 * then get the STOP status even though the child has now resumed
919 	 * (a followup wait*() will get the CONT status).
920 	 *
921 	 * Previously the CONT would overwrite the STOP because the tstop
922 	 * was handled within tsleep(), and the parent would only see
923 	 * the CONT when both are stopped and continued together.  This little
924 	 * two-line hack restores this effect.
925 	 */
926 	if (STOPLWP(q, td->td_lwp))
927             tstop();
928 
929 	nfound = 0;
930 
931 	/*
932 	 * Loop on children.
933 	 *
934 	 * NOTE: We don't want to break q's p_token in the loop for the
935 	 *	 case where no children are found or we risk breaking the
936 	 *	 interlock between child and parent.
937 	 */
938 	waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
939 	LIST_FOREACH(p, &q->p_children, p_sibling) {
940 		if (pid != WAIT_ANY &&
941 		    p->p_pid != pid && p->p_pgid != -pid) {
942 			continue;
943 		}
944 
945 		/*
946 		 * This special case handles a kthread spawned by linux_clone
947 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
948 		 * functions need to be able to distinguish between waiting
949 		 * on a process and waiting on a thread.  It is a thread if
950 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
951 		 * signifies we want to wait for threads and not processes.
952 		 */
953 		if ((p->p_sigparent != SIGCHLD) ^
954 		    ((options & WLINUXCLONE) != 0)) {
955 			continue;
956 		}
957 
958 		nfound++;
959 		if (p->p_stat == SZOMB) {
960 			/*
961 			 * We may go into SZOMB with threads still present.
962 			 * We must wait for them to exit before we can reap
963 			 * the master thread, otherwise we may race reaping
964 			 * non-master threads.
965 			 *
966 			 * Only this routine can remove a process from
967 			 * the zombie list and destroy it, use PACQUIREZOMB()
968 			 * to serialize us and loop if it blocks (interlocked
969 			 * by the parent's q->p_token).
970 			 *
971 			 * WARNING!  (p) can be invalid when PHOLDZOMB(p)
972 			 *	     returns non-zero.  Be sure not to
973 			 *	     mess with it.
974 			 */
975 			if (PHOLDZOMB(p))
976 				goto loop;
977 			lwkt_gettoken(&p->p_token);
978 			if (p->p_pptr != q) {
979 				lwkt_reltoken(&p->p_token);
980 				PRELEZOMB(p);
981 				goto loop;
982 			}
983 			while (p->p_nthreads > 0) {
984 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
985 			}
986 
987 			/*
988 			 * Reap any LWPs left in p->p_lwps.  This is usually
989 			 * just the last LWP.  This must be done before
990 			 * we loop on p_lock since the lwps hold a ref on
991 			 * it as a vmspace interlock.
992 			 *
993 			 * Once that is accomplished p_nthreads had better
994 			 * be zero.
995 			 */
996 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
997 				/*
998 				 * Make sure no one is using this lwp, before
999 				 * it is removed from the tree.  If we didn't
1000 				 * wait it here, lwp tree iteration with
1001 				 * blocking operation would be broken.
1002 				 */
1003 				while (lp->lwp_lock > 0)
1004 					tsleep(lp, 0, "zomblwp", 1);
1005 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1006 				reaplwp(lp);
1007 			}
1008 			KKASSERT(p->p_nthreads == 0);
1009 
1010 			/*
1011 			 * Don't do anything really bad until all references
1012 			 * to the process go away.  This may include other
1013 			 * LWPs which are still in the process of being
1014 			 * reaped.  We can't just pull the rug out from under
1015 			 * them because they may still be using the VM space.
1016 			 *
1017 			 * Certain kernel facilities such as /proc will also
1018 			 * put a hold on the process for short periods of
1019 			 * time.
1020 			 */
1021 			PRELE(p);
1022 			PSTALL(p, "reap3", 0);
1023 
1024 			/* Take care of our return values. */
1025 			*res = p->p_pid;
1026 
1027 			if (status)
1028 				*status = p->p_xstat;
1029 			if (rusage)
1030 				*rusage = p->p_ru;
1031 
1032 			/*
1033 			 * If we got the child via a ptrace 'attach',
1034 			 * we need to give it back to the old parent.
1035 			 */
1036 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1037 				PHOLD(p);
1038 				p->p_oppid = 0;
1039 				proc_reparent(p, t);
1040 				ksignal(t, SIGCHLD);
1041 				wakeup((caddr_t)t);
1042 				error = 0;
1043 				PRELE(t);
1044 				lwkt_reltoken(&p->p_token);
1045 				PRELEZOMB(p);
1046 				goto done;
1047 			}
1048 
1049 			/*
1050 			 * Unlink the proc from its process group so that
1051 			 * the following operations won't lead to an
1052 			 * inconsistent state for processes running down
1053 			 * the zombie list.
1054 			 */
1055 			proc_remove_zombie(p);
1056 			proc_userunmap(p);
1057 			lwkt_reltoken(&p->p_token);
1058 			leavepgrp(p);
1059 
1060 			p->p_xstat = 0;
1061 			ruadd(&q->p_cru, &p->p_ru);
1062 
1063 			/*
1064 			 * Decrement the count of procs running with this uid.
1065 			 */
1066 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1067 
1068 			/*
1069 			 * Free up credentials.
1070 			 */
1071 			crfree(p->p_ucred);
1072 			p->p_ucred = NULL;
1073 
1074 			/*
1075 			 * Remove unused arguments
1076 			 */
1077 			pa = p->p_args;
1078 			p->p_args = NULL;
1079 			if (pa && refcount_release(&pa->ar_ref)) {
1080 				kfree(pa, M_PARGS);
1081 				pa = NULL;
1082 			}
1083 
1084 			ps = p->p_sigacts;
1085 			p->p_sigacts = NULL;
1086 			if (ps && refcount_release(&ps->ps_refcnt)) {
1087 				kfree(ps, M_SUBPROC);
1088 				ps = NULL;
1089 			}
1090 
1091 			/*
1092 			 * Our exitingcount was incremented when the process
1093 			 * became a zombie, now that the process has been
1094 			 * removed from (almost) all lists we should be able
1095 			 * to safely destroy its vmspace.  Wait for any current
1096 			 * holders to go away (so the vmspace remains stable),
1097 			 * then scrap it.
1098 			 *
1099 			 * NOTE: Releasing the parent process (q) p_token
1100 			 *	 across the vmspace_exitfree() call is
1101 			 *	 important here to reduce stalls on
1102 			 *	 interactions with (q) (such as
1103 			 *	 fork/exec/wait or 'ps').
1104 			 */
1105 			PSTALL(p, "reap4", 0);
1106 			lwkt_reltoken(&q->p_token);
1107 			vmspace_exitfree(p);
1108 			lwkt_gettoken(&q->p_token);
1109 			PSTALL(p, "reap5", 0);
1110 
1111 			/*
1112 			 * NOTE: We have to officially release ZOMB in order
1113 			 *	 to ensure that a racing thread in kern_wait()
1114 			 *	 which blocked on ZOMB is woken up.
1115 			 */
1116 			PHOLD(p);
1117 			PRELEZOMB(p);
1118 			kfree(p, M_PROC);
1119 			atomic_add_int(&nprocs, -1);
1120 			error = 0;
1121 			goto done;
1122 		}
1123 		if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1124 		    (p->p_flags & P_WAITED) == 0 &&
1125 		    ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1126 			PHOLD(p);
1127 			lwkt_gettoken(&p->p_token);
1128 			if (p->p_pptr != q) {
1129 				lwkt_reltoken(&p->p_token);
1130 				PRELE(p);
1131 				goto loop;
1132 			}
1133 			if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1134 			    (p->p_flags & P_WAITED) != 0 ||
1135 			    ((p->p_flags & P_TRACED) == 0 &&
1136 			     (options & WUNTRACED) == 0)) {
1137 				lwkt_reltoken(&p->p_token);
1138 				PRELE(p);
1139 				goto loop;
1140 			}
1141 
1142 			p->p_flags |= P_WAITED;
1143 
1144 			*res = p->p_pid;
1145 			if (status)
1146 				*status = W_STOPCODE(p->p_xstat);
1147 			/* Zero rusage so we get something consistent. */
1148 			if (rusage)
1149 				bzero(rusage, sizeof(*rusage));
1150 			error = 0;
1151 			lwkt_reltoken(&p->p_token);
1152 			PRELE(p);
1153 			goto done;
1154 		}
1155 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1156 			PHOLD(p);
1157 			lwkt_gettoken(&p->p_token);
1158 			if (p->p_pptr != q) {
1159 				lwkt_reltoken(&p->p_token);
1160 				PRELE(p);
1161 				goto loop;
1162 			}
1163 			if ((p->p_flags & P_CONTINUED) == 0) {
1164 				lwkt_reltoken(&p->p_token);
1165 				PRELE(p);
1166 				goto loop;
1167 			}
1168 
1169 			*res = p->p_pid;
1170 			p->p_flags &= ~P_CONTINUED;
1171 
1172 			if (status)
1173 				*status = SIGCONT;
1174 			error = 0;
1175 			lwkt_reltoken(&p->p_token);
1176 			PRELE(p);
1177 			goto done;
1178 		}
1179 	}
1180 	if (nfound == 0) {
1181 		error = ECHILD;
1182 		goto done;
1183 	}
1184 	if (options & WNOHANG) {
1185 		*res = 0;
1186 		error = 0;
1187 		goto done;
1188 	}
1189 
1190 	/*
1191 	 * Wait for signal - interlocked using q->p_waitgen.
1192 	 */
1193 	error = 0;
1194 	while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1195 		tsleep_interlock(q, PCATCH);
1196 		waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1197 		if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1198 			error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1199 			break;
1200 		}
1201 	}
1202 	if (error) {
1203 done:
1204 		lwkt_reltoken(&q->p_token);
1205 		return (error);
1206 	}
1207 	goto loop;
1208 }
1209 
1210 /*
1211  * Change child's parent process to parent.
1212  *
1213  * p_children/p_sibling requires the parent's token, and
1214  * changing pptr requires the child's token, so we have to
1215  * get three tokens to do this operation.  We also need to
1216  * hold pointers that might get ripped out from under us to
1217  * preserve structural integrity.
1218  *
1219  * It is possible to race another reparent or disconnect or other
1220  * similar operation.  We must retry when this situation occurs.
1221  * Once we successfully reparent the process we no longer care
1222  * about any races.
1223  */
1224 void
1225 proc_reparent(struct proc *child, struct proc *parent)
1226 {
1227 	struct proc *opp;
1228 
1229 	PHOLD(parent);
1230 	while ((opp = child->p_pptr) != parent) {
1231 		PHOLD(opp);
1232 		lwkt_gettoken(&opp->p_token);
1233 		lwkt_gettoken(&child->p_token);
1234 		lwkt_gettoken(&parent->p_token);
1235 		if (child->p_pptr != opp) {
1236 			lwkt_reltoken(&parent->p_token);
1237 			lwkt_reltoken(&child->p_token);
1238 			lwkt_reltoken(&opp->p_token);
1239 			PRELE(opp);
1240 			continue;
1241 		}
1242 		LIST_REMOVE(child, p_sibling);
1243 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1244 		child->p_pptr = parent;
1245 		lwkt_reltoken(&parent->p_token);
1246 		lwkt_reltoken(&child->p_token);
1247 		lwkt_reltoken(&opp->p_token);
1248 		if (LIST_EMPTY(&opp->p_children))
1249 			wakeup(opp);
1250 		PRELE(opp);
1251 		break;
1252 	}
1253 	PRELE(parent);
1254 }
1255 
1256 /*
1257  * The next two functions are to handle adding/deleting items on the
1258  * exit callout list
1259  *
1260  * at_exit():
1261  * Take the arguments given and put them onto the exit callout list,
1262  * However first make sure that it's not already there.
1263  * returns 0 on success.
1264  */
1265 
1266 int
1267 at_exit(exitlist_fn function)
1268 {
1269 	struct exitlist *ep;
1270 
1271 #ifdef INVARIANTS
1272 	/* Be noisy if the programmer has lost track of things */
1273 	if (rm_at_exit(function))
1274 		kprintf("WARNING: exit callout entry (%p) already present\n",
1275 		    function);
1276 #endif
1277 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1278 	if (ep == NULL)
1279 		return (ENOMEM);
1280 	ep->function = function;
1281 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1282 	return (0);
1283 }
1284 
1285 /*
1286  * Scan the exit callout list for the given item and remove it.
1287  * Returns the number of items removed (0 or 1)
1288  */
1289 int
1290 rm_at_exit(exitlist_fn function)
1291 {
1292 	struct exitlist *ep;
1293 
1294 	TAILQ_FOREACH(ep, &exit_list, next) {
1295 		if (ep->function == function) {
1296 			TAILQ_REMOVE(&exit_list, ep, next);
1297 			kfree(ep, M_ATEXIT);
1298 			return(1);
1299 		}
1300 	}
1301 	return (0);
1302 }
1303 
1304 /*
1305  * LWP reaper related code.
1306  */
1307 static void
1308 reaplwps(void *context, int dummy)
1309 {
1310 	struct lwplist *lwplist = context;
1311 	struct lwp *lp;
1312 	int cpu = mycpuid;
1313 
1314 	lwkt_gettoken(&deadlwp_token[cpu]);
1315 	while ((lp = LIST_FIRST(lwplist))) {
1316 		LIST_REMOVE(lp, u.lwp_reap_entry);
1317 		reaplwp(lp);
1318 	}
1319 	lwkt_reltoken(&deadlwp_token[cpu]);
1320 }
1321 
1322 static void
1323 reaplwp(struct lwp *lp)
1324 {
1325 	while (lwp_wait(lp) == 0)
1326 		;
1327 	lwp_dispose(lp);
1328 }
1329 
1330 static void
1331 deadlwp_init(void)
1332 {
1333 	int cpu;
1334 
1335 	for (cpu = 0; cpu < ncpus; cpu++) {
1336 		lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1337 		LIST_INIT(&deadlwp_list[cpu]);
1338 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1339 					    M_DEVBUF, M_WAITOK);
1340 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1341 	}
1342 }
1343 
1344 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1345