xref: /dragonfly/sys/kern/kern_exit.c (revision d650e218)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h>		/* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
71 #include <sys/user.h>
72 
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/spinlock2.h>
76 #include <sys/mplock2.h>
77 
78 #include <machine/vmm.h>
79 
80 static void reaplwps(void *context, int dummy);
81 static void reaplwp(struct lwp *lp);
82 static void killlwps(struct lwp *lp);
83 
84 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
85 
86 /*
87  * callout list for things to do at exit time
88  */
89 struct exitlist {
90 	exitlist_fn function;
91 	TAILQ_ENTRY(exitlist) next;
92 };
93 
94 TAILQ_HEAD(exit_list_head, exitlist);
95 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
96 
97 /*
98  * LWP reaper data
99  */
100 static struct task *deadlwp_task[MAXCPU];
101 static struct lwplist deadlwp_list[MAXCPU];
102 static struct lwkt_token deadlwp_token[MAXCPU];
103 
104 /*
105  * exit --
106  *	Death of process.
107  *
108  * SYS_EXIT_ARGS(int rval)
109  */
110 int
111 sys_exit(struct exit_args *uap)
112 {
113 	exit1(W_EXITCODE(uap->rval, 0));
114 	/* NOTREACHED */
115 }
116 
117 /*
118  * Extended exit --
119  *	Death of a lwp or process with optional bells and whistles.
120  */
121 int
122 sys_extexit(struct extexit_args *uap)
123 {
124 	struct proc *p = curproc;
125 	int action, who;
126 	int error;
127 
128 	action = EXTEXIT_ACTION(uap->how);
129 	who = EXTEXIT_WHO(uap->how);
130 
131 	/* Check parameters before we might perform some action */
132 	switch (who) {
133 	case EXTEXIT_PROC:
134 	case EXTEXIT_LWP:
135 		break;
136 	default:
137 		return (EINVAL);
138 	}
139 
140 	switch (action) {
141 	case EXTEXIT_SIMPLE:
142 		break;
143 	case EXTEXIT_SETINT:
144 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
145 		if (error)
146 			return (error);
147 		break;
148 	default:
149 		return (EINVAL);
150 	}
151 
152 	lwkt_gettoken(&p->p_token);
153 
154 	switch (who) {
155 	case EXTEXIT_LWP:
156 		/*
157 		 * Be sure only to perform a simple lwp exit if there is at
158 		 * least one more lwp in the proc, which will call exit1()
159 		 * later, otherwise the proc will be an UNDEAD and not even a
160 		 * SZOMB!
161 		 */
162 		if (p->p_nthreads > 1) {
163 			lwp_exit(0, NULL);	/* called w/ p_token held */
164 			/* NOT REACHED */
165 		}
166 		/* else last lwp in proc:  do the real thing */
167 		/* FALLTHROUGH */
168 	default:	/* to help gcc */
169 	case EXTEXIT_PROC:
170 		lwkt_reltoken(&p->p_token);
171 		exit1(W_EXITCODE(uap->status, 0));
172 		/* NOTREACHED */
173 	}
174 
175 	/* NOTREACHED */
176 	lwkt_reltoken(&p->p_token);	/* safety */
177 }
178 
179 /*
180  * Kill all lwps associated with the current process except the
181  * current lwp.   Return an error if we race another thread trying to
182  * do the same thing and lose the race.
183  *
184  * If forexec is non-zero the current thread and process flags are
185  * cleaned up so they can be reused.
186  *
187  * Caller must hold curproc->p_token
188  */
189 int
190 killalllwps(int forexec)
191 {
192 	struct lwp *lp = curthread->td_lwp;
193 	struct proc *p = lp->lwp_proc;
194 	int fakestop;
195 
196 	/*
197 	 * Interlock against P_WEXIT.  Only one of the process's thread
198 	 * is allowed to do the master exit.
199 	 */
200 	if (p->p_flags & P_WEXIT)
201 		return (EALREADY);
202 	p->p_flags |= P_WEXIT;
203 
204 	/*
205 	 * Set temporary stopped state in case we are racing a coredump.
206 	 * Otherwise the coredump may hang forever.
207 	 */
208 	if (lp->lwp_mpflags & LWP_MP_WSTOP) {
209 		fakestop = 0;
210 	} else {
211 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
212 		++p->p_nstopped;
213 		fakestop = 1;
214 		wakeup(&p->p_nstopped);
215 	}
216 
217 	/*
218 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
219 	 */
220 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
221 	if (p->p_nthreads > 1)
222 		killlwps(lp);
223 
224 	/*
225 	 * Undo temporary stopped state
226 	 */
227 	if (fakestop) {
228 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
229 		--p->p_nstopped;
230 	}
231 
232 	/*
233 	 * If doing this for an exec, clean up the remaining thread
234 	 * (us) for continuing operation after all the other threads
235 	 * have been killed.
236 	 */
237 	if (forexec) {
238 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
239 		p->p_flags &= ~P_WEXIT;
240 	}
241 	return(0);
242 }
243 
244 /*
245  * Kill all LWPs except the current one.  Do not try to signal
246  * LWPs which have exited on their own or have already been
247  * signaled.
248  */
249 static void
250 killlwps(struct lwp *lp)
251 {
252 	struct proc *p = lp->lwp_proc;
253 	struct lwp *tlp;
254 
255 	/*
256 	 * Kill the remaining LWPs.  We must send the signal before setting
257 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
258 	 * races.  tlp must be held across the call as it might block and
259 	 * allow the target lwp to rip itself out from under our loop.
260 	 */
261 	FOREACH_LWP_IN_PROC(tlp, p) {
262 		LWPHOLD(tlp);
263 		lwkt_gettoken(&tlp->lwp_token);
264 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
265 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
266 			lwpsignal(p, tlp, SIGKILL);
267 		}
268 		lwkt_reltoken(&tlp->lwp_token);
269 		LWPRELE(tlp);
270 	}
271 
272 	/*
273 	 * Wait for everything to clear out.  Also make sure any tstop()s
274 	 * are signalled (we are holding p_token for the interlock).
275 	 */
276 	wakeup(p);
277 	while (p->p_nthreads > 1)
278 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
279 }
280 
281 /*
282  * Exit: deallocate address space and other resources, change proc state
283  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
284  * status and rusage for wait().  Check for child processes and orphan them.
285  */
286 void
287 exit1(int rv)
288 {
289 	struct thread *td = curthread;
290 	struct proc *p = td->td_proc;
291 	struct lwp *lp = td->td_lwp;
292 	struct proc *q;
293 	struct proc *pp;
294 	struct proc *reproc;
295 	struct sysreaper *reap;
296 	struct vmspace *vm;
297 	struct vnode *vtmp;
298 	struct exitlist *ep;
299 	int error;
300 
301 	lwkt_gettoken(&p->p_token);
302 
303 	if (p->p_pid == 1) {
304 		kprintf("init died (signal %d, exit %d)\n",
305 		    WTERMSIG(rv), WEXITSTATUS(rv));
306 		panic("Going nowhere without my init!");
307 	}
308 	varsymset_clean(&p->p_varsymset);
309 	lockuninit(&p->p_varsymset.vx_lock);
310 
311 	/*
312 	 * Kill all lwps associated with the current process, return an
313 	 * error if we race another thread trying to do the same thing
314 	 * and lose the race.
315 	 */
316 	error = killalllwps(0);
317 	if (error) {
318 		lwp_exit(0, NULL);
319 		/* NOT REACHED */
320 	}
321 
322 	/* are we a task leader? */
323 	if (p == p->p_leader) {
324         	struct kill_args killArgs;
325 		killArgs.signum = SIGKILL;
326 		q = p->p_peers;
327 		while(q) {
328 			killArgs.pid = q->p_pid;
329 			/*
330 		         * The interface for kill is better
331 			 * than the internal signal
332 			 */
333 			sys_kill(&killArgs);
334 			q = q->p_peers;
335 		}
336 		while (p->p_peers)
337 			tsleep((caddr_t)p, 0, "exit1", 0);
338 	}
339 
340 #ifdef PGINPROF
341 	vmsizmon();
342 #endif
343 	STOPEVENT(p, S_EXIT, rv);
344 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
345 
346 	/*
347 	 * Check if any loadable modules need anything done at process exit.
348 	 * e.g. SYSV IPC stuff
349 	 * XXX what if one of these generates an error?
350 	 */
351 	p->p_xstat = rv;
352 
353 	/*
354 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
355 	 *	Maybe we should move everything to use eventhandler.
356 	 */
357 	TAILQ_FOREACH(ep, &exit_list, next)
358 		(*ep->function)(td);
359 
360 	if (p->p_flags & P_PROFIL)
361 		stopprofclock(p);
362 
363 	SIGEMPTYSET(p->p_siglist);
364 	SIGEMPTYSET(lp->lwp_siglist);
365 	if (timevalisset(&p->p_realtimer.it_value))
366 		callout_stop_sync(&p->p_ithandle);
367 
368 	/*
369 	 * Reset any sigio structures pointing to us as a result of
370 	 * F_SETOWN with our pid.
371 	 */
372 	funsetownlst(&p->p_sigiolst);
373 
374 	/*
375 	 * Close open files and release open-file table.
376 	 * This may block!
377 	 */
378 	fdfree(p, NULL);
379 
380 	if (p->p_leader->p_peers) {
381 		q = p->p_leader;
382 		while(q->p_peers != p)
383 			q = q->p_peers;
384 		q->p_peers = p->p_peers;
385 		wakeup((caddr_t)p->p_leader);
386 	}
387 
388 	/*
389 	 * XXX Shutdown SYSV semaphores
390 	 */
391 	semexit(p);
392 
393 	/* The next two chunks should probably be moved to vmspace_exit. */
394 	vm = p->p_vmspace;
395 
396 	/*
397 	 * Clean up data related to virtual kernel operation.  Clean up
398 	 * any vkernel context related to the current lwp now so we can
399 	 * destroy p_vkernel.
400 	 */
401 	if (p->p_vkernel) {
402 		vkernel_lwp_exit(lp);
403 		vkernel_exit(p);
404 	}
405 
406 	/*
407 	 * Release the user portion of address space.  The exitbump prevents
408 	 * the vmspace from being completely eradicated (using holdcnt).
409 	 * This releases references to vnodes, which could cause I/O if the
410 	 * file has been unlinked.  We need to do this early enough that
411 	 * we can still sleep.
412 	 *
413 	 * We can't free the entire vmspace as the kernel stack may be mapped
414 	 * within that space also.
415 	 *
416 	 * Processes sharing the same vmspace may exit in one order, and
417 	 * get cleaned up by vmspace_exit() in a different order.  The
418 	 * last exiting process to reach this point releases as much of
419 	 * the environment as it can, and the last process cleaned up
420 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
421 	 * remainder.
422 	 *
423 	 * NOTE: Releasing p_token around this call is helpful if the
424 	 *	 vmspace had a huge RSS.  Otherwise some other process
425 	 *	 trying to do an allproc or other scan (like 'ps') may
426 	 *	 stall for a long time.
427 	 */
428 	lwkt_reltoken(&p->p_token);
429 	vmspace_relexit(vm);
430 	lwkt_gettoken(&p->p_token);
431 
432 	if (SESS_LEADER(p)) {
433 		struct session *sp = p->p_session;
434 
435 		if (sp->s_ttyvp) {
436 			/*
437 			 * We are the controlling process.  Signal the
438 			 * foreground process group, drain the controlling
439 			 * terminal, and revoke access to the controlling
440 			 * terminal.
441 			 *
442 			 * NOTE: while waiting for the process group to exit
443 			 * it is possible that one of the processes in the
444 			 * group will revoke the tty, so the ttyclosesession()
445 			 * function will re-check sp->s_ttyvp.
446 			 */
447 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
448 				if (sp->s_ttyp->t_pgrp)
449 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
450 				ttywait(sp->s_ttyp);
451 				ttyclosesession(sp, 1); /* also revoke */
452 			}
453 			/*
454 			 * Release the tty.  If someone has it open via
455 			 * /dev/tty then close it (since they no longer can
456 			 * once we've NULL'd it out).
457 			 */
458 			ttyclosesession(sp, 0);
459 
460 			/*
461 			 * s_ttyp is not zero'd; we use this to indicate
462 			 * that the session once had a controlling terminal.
463 			 * (for logging and informational purposes)
464 			 */
465 		}
466 		sp->s_leader = NULL;
467 	}
468 	fixjobc(p, p->p_pgrp, 0);
469 	(void)acct_process(p);
470 #ifdef KTRACE
471 	/*
472 	 * release trace file
473 	 */
474 	if (p->p_tracenode)
475 		ktrdestroy(&p->p_tracenode);
476 	p->p_traceflag = 0;
477 #endif
478 	/*
479 	 * Release reference to text vnode
480 	 */
481 	if ((vtmp = p->p_textvp) != NULL) {
482 		p->p_textvp = NULL;
483 		vrele(vtmp);
484 	}
485 
486 	/* Release namecache handle to text file */
487 	if (p->p_textnch.ncp)
488 		cache_drop(&p->p_textnch);
489 
490 	/*
491 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
492 	 * will block on the PHOLD() the parent is doing.
493 	 *
494 	 * We are using the flag as an interlock so an atomic op is
495 	 * necessary to synchronize with the parent's cpu.
496 	 */
497 	if (p->p_flags & P_PPWAIT) {
498 		if (p->p_pptr && p->p_pptr->p_upmap)
499 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
500 		atomic_clear_int(&p->p_flags, P_PPWAIT);
501 		wakeup(p->p_pptr);
502 	}
503 
504 	/*
505 	 * Move the process to the zombie list.  This will block
506 	 * until the process p_lock count reaches 0.  The process will
507 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
508 	 * which is called from cpu_proc_exit().
509 	 *
510 	 * Interlock against waiters using p_waitgen.  We increment
511 	 * p_waitgen after completing the move of our process to the
512 	 * zombie list.
513 	 *
514 	 * WARNING: pp becomes stale when we block, clear it now as a
515 	 *	    reminder.
516 	 */
517 	proc_move_allproc_zombie(p);
518 	pp = p->p_pptr;
519 	atomic_add_long(&pp->p_waitgen, 1);
520 	pp = NULL;
521 
522 	/*
523 	 * release controlled reaper for exit if we own it and return the
524 	 * remaining reaper (the one for us), which we will drop after we
525 	 * are done.
526 	 */
527 	reap = reaper_exit(p);
528 
529 	/*
530 	 * Reparent all of this process's children to the init process or
531 	 * to the designated reaper.  We must hold the reaper's p_token in
532 	 * order to safely mess with p_children.
533 	 *
534 	 * We already hold p->p_token (to remove the children from our list).
535 	 */
536 	reproc = NULL;
537 	q = LIST_FIRST(&p->p_children);
538 	if (q) {
539 		reproc = reaper_get(reap);
540 		lwkt_gettoken(&reproc->p_token);
541 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
542 			PHOLD(q);
543 			lwkt_gettoken(&q->p_token);
544 			if (q != LIST_FIRST(&p->p_children)) {
545 				lwkt_reltoken(&q->p_token);
546 				PRELE(q);
547 				continue;
548 			}
549 			LIST_REMOVE(q, p_sibling);
550 			LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
551 			q->p_pptr = reproc;
552 			q->p_ppid = reproc->p_pid;
553 			q->p_sigparent = SIGCHLD;
554 
555 			/*
556 			 * Traced processes are killed
557 			 * since their existence means someone is screwing up.
558 			 */
559 			if (q->p_flags & P_TRACED) {
560 				q->p_flags &= ~P_TRACED;
561 				ksignal(q, SIGKILL);
562 			}
563 			lwkt_reltoken(&q->p_token);
564 			PRELE(q);
565 		}
566 		lwkt_reltoken(&reproc->p_token);
567 		wakeup(reproc);
568 	}
569 
570 	/*
571 	 * Save exit status and final rusage info.  We no longer add
572 	 * child rusage info into self times, wait4() and kern_wait()
573 	 * handles it in order to properly support wait6().
574 	 */
575 	calcru_proc(p, &p->p_ru);
576 	/*ruadd(&p->p_ru, &p->p_cru); REMOVED */
577 
578 	/*
579 	 * notify interested parties of our demise.
580 	 */
581 	KNOTE(&p->p_klist, NOTE_EXIT);
582 
583 	/*
584 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
585 	 * flag set, or if the handler is set to SIG_IGN, notify the reaper
586 	 * instead (it will handle this situation).
587 	 *
588 	 * NOTE: The reaper can still be the parent process.
589 	 *
590 	 * (must reload pp)
591 	 */
592 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
593 		if (reproc == NULL)
594 			reproc = reaper_get(reap);
595 		proc_reparent(p, reproc);
596 	}
597 	if (reproc)
598 		PRELE(reproc);
599 	if (reap)
600 		reaper_drop(reap);
601 
602 	/*
603 	 * Signal (possibly new) parent.
604 	 */
605 	pp = p->p_pptr;
606 	PHOLD(pp);
607 	if (p->p_sigparent && pp != initproc) {
608 		int sig = p->p_sigparent;
609 
610 		if (sig != SIGUSR1 && sig != SIGCHLD)
611 			sig = SIGCHLD;
612 	        ksignal(pp, sig);
613 	} else {
614 	        ksignal(pp, SIGCHLD);
615 	}
616 	p->p_flags &= ~P_TRACED;
617 	PRELE(pp);
618 
619 	/*
620 	 * cpu_exit is responsible for clearing curproc, since
621 	 * it is heavily integrated with the thread/switching sequence.
622 	 *
623 	 * Other substructures are freed from wait().
624 	 */
625 	if (p->p_limit) {
626 		struct plimit *rlimit;
627 
628 		rlimit = p->p_limit;
629 		p->p_limit = NULL;
630 		plimit_free(rlimit);
631 	}
632 
633 	/*
634 	 * Finally, call machine-dependent code to release as many of the
635 	 * lwp's resources as we can and halt execution of this thread.
636 	 *
637 	 * pp is a wild pointer now but still the correct wakeup() target.
638 	 * lwp_exit() only uses it to send the wakeup() signal to the likely
639 	 * parent.  Any reparenting race that occurs will get a signal
640 	 * automatically and not be an issue.
641 	 */
642 	lwp_exit(1, pp);
643 }
644 
645 /*
646  * Eventually called by every exiting LWP
647  *
648  * p->p_token must be held.  mplock may be held and will be released.
649  */
650 void
651 lwp_exit(int masterexit, void *waddr)
652 {
653 	struct thread *td = curthread;
654 	struct lwp *lp = td->td_lwp;
655 	struct proc *p = lp->lwp_proc;
656 	int dowake = 0;
657 
658 	/*
659 	 * Release the current user process designation on the process so
660 	 * the userland scheduler can work in someone else.
661 	 */
662 	p->p_usched->release_curproc(lp);
663 
664 	/*
665 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
666 	 * make sure it is set here.
667 	 */
668 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
669 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
670 
671 	/*
672 	 * Clean up any virtualization
673 	 */
674 	if (lp->lwp_vkernel)
675 		vkernel_lwp_exit(lp);
676 
677 	if (td->td_vmm)
678 		vmm_vmdestroy();
679 
680 	/*
681 	 * Clean up select/poll support
682 	 */
683 	kqueue_terminate(&lp->lwp_kqueue);
684 
685 	/*
686 	 * Clean up any syscall-cached ucred or rlimit.
687 	 */
688 	if (td->td_ucred) {
689 		crfree(td->td_ucred);
690 		td->td_ucred = NULL;
691 	}
692 	if (td->td_limit) {
693 		struct plimit *rlimit;
694 
695 		rlimit = td->td_limit;
696 		td->td_limit = NULL;
697 		plimit_free(rlimit);
698         }
699 
700 	/*
701 	 * Cleanup any cached descriptors for this thread
702 	 */
703 	if (p->p_fd)
704 		fexitcache(td);
705 
706 	/*
707 	 * Nobody actually wakes us when the lock
708 	 * count reaches zero, so just wait one tick.
709 	 */
710 	while (lp->lwp_lock > 0)
711 		tsleep(lp, 0, "lwpexit", 1);
712 
713 	/* Hand down resource usage to our proc */
714 	ruadd(&p->p_ru, &lp->lwp_ru);
715 
716 	/*
717 	 * If we don't hold the process until the LWP is reaped wait*()
718 	 * may try to dispose of its vmspace before all the LWPs have
719 	 * actually terminated.
720 	 */
721 	PHOLD(p);
722 
723 	/*
724 	 * Do any remaining work that might block on us.  We should be
725 	 * coded such that further blocking is ok after decrementing
726 	 * p_nthreads but don't take the chance.
727 	 */
728 	dsched_exit_thread(td);
729 	biosched_done(curthread);
730 
731 	/*
732 	 * We have to use the reaper for all the LWPs except the one doing
733 	 * the master exit.  The LWP doing the master exit can just be
734 	 * left on p_lwps and the process reaper will deal with it
735 	 * synchronously, which is much faster.
736 	 *
737 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
738 	 *
739 	 * The process is left held until the reaper calls lwp_dispose() on
740 	 * the lp (after calling lwp_wait()).
741 	 */
742 	if (masterexit == 0) {
743 		int cpu = mycpuid;
744 
745 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
746 		--p->p_nthreads;
747 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
748 			dowake = 1;
749 		lwkt_gettoken(&deadlwp_token[cpu]);
750 		LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
751 		taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
752 		lwkt_reltoken(&deadlwp_token[cpu]);
753 	} else {
754 		--p->p_nthreads;
755 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
756 			dowake = 1;
757 	}
758 
759 	/*
760 	 * We no longer need p_token.
761 	 *
762 	 * Tell the userland scheduler that we are going away
763 	 */
764 	lwkt_reltoken(&p->p_token);
765 	p->p_usched->heuristic_exiting(lp, p);
766 
767 	/*
768 	 * Issue late wakeups after releasing our token to give us a chance
769 	 * to deschedule and switch away before another cpu in a wait*()
770 	 * reaps us.  This is done as late as possible to reduce contention.
771 	 */
772 	if (dowake)
773 		wakeup(&p->p_nthreads);
774 	if (waddr)
775 		wakeup(waddr);
776 
777 	cpu_lwp_exit();
778 }
779 
780 /*
781  * Wait until a lwp is completely dead.  The final interlock in this drama
782  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
783  * switchout.
784  *
785  * At the point TDF_EXITING is set a complete exit is accomplished when
786  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
787  * post-switch interlock flags that can be used to wait for the TDF_
788  * flags to clear.
789  *
790  * Returns non-zero on success, and zero if the caller needs to retry
791  * the lwp_wait().
792  */
793 static int
794 lwp_wait(struct lwp *lp)
795 {
796 	struct thread *td = lp->lwp_thread;
797 	u_int mpflags;
798 
799 	KKASSERT(lwkt_preempted_proc() != lp);
800 
801 	/*
802 	 * This bit of code uses the thread destruction interlock
803 	 * managed by lwkt_switch_return() to wait for the lwp's
804 	 * thread to completely disengage.
805 	 *
806 	 * It is possible for us to race another cpu core so we
807 	 * have to do this correctly.
808 	 */
809 	for (;;) {
810 		mpflags = td->td_mpflags;
811 		cpu_ccfence();
812 		if (mpflags & TDF_MP_EXITSIG)
813 			break;
814 		tsleep_interlock(td, 0);
815 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
816 				      mpflags | TDF_MP_EXITWAIT)) {
817 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
818 		}
819 	}
820 
821 	/*
822 	 * We've already waited for the core exit but there can still
823 	 * be other refs from e.g. process scans and such.
824 	 */
825 	if (lp->lwp_lock > 0) {
826 		tsleep(lp, 0, "lwpwait1", 1);
827 		return(0);
828 	}
829 	if (td->td_refs) {
830 		tsleep(td, 0, "lwpwait2", 1);
831 		return(0);
832 	}
833 
834 	/*
835 	 * Now that we have the thread destruction interlock these flags
836 	 * really should already be cleaned up, keep a check for safety.
837 	 *
838 	 * We can't rip its stack out from under it until TDF_EXITING is
839 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
840 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
841 	 * will be cleared temporarily if a thread gets preempted.
842 	 */
843 	while ((td->td_flags & (TDF_RUNNING |
844 				TDF_RUNQ |
845 			        TDF_PREEMPT_LOCK |
846 			        TDF_EXITING)) != TDF_EXITING) {
847 		tsleep(lp, 0, "lwpwait3", 1);
848 		return (0);
849 	}
850 
851 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
852 		("lwp_wait: td %p (%s) still on run or sleep queue",
853 		td, td->td_comm));
854 	return (1);
855 }
856 
857 /*
858  * Release the resources associated with a lwp.
859  * The lwp must be completely dead.
860  */
861 void
862 lwp_dispose(struct lwp *lp)
863 {
864 	struct thread *td = lp->lwp_thread;
865 
866 	KKASSERT(lwkt_preempted_proc() != lp);
867 	KKASSERT(lp->lwp_lock == 0);
868 	KKASSERT(td->td_refs == 0);
869 	KKASSERT((td->td_flags & (TDF_RUNNING |
870 				  TDF_RUNQ |
871 				  TDF_PREEMPT_LOCK |
872 				  TDF_EXITING)) == TDF_EXITING);
873 
874 	PRELE(lp->lwp_proc);
875 	lp->lwp_proc = NULL;
876 	if (td != NULL) {
877 		td->td_proc = NULL;
878 		td->td_lwp = NULL;
879 		lp->lwp_thread = NULL;
880 		lwkt_free_thread(td);
881 	}
882 	kfree(lp, M_LWP);
883 }
884 
885 int
886 sys_wait4(struct wait_args *uap)
887 {
888 	struct __wrusage wrusage;
889 	int error;
890 	int status;
891 	int options;
892 	id_t id;
893 	idtype_t idtype;
894 
895 	options = uap->options | WEXITED | WTRAPPED;
896 	id = uap->pid;
897 
898 	if (id == WAIT_ANY) {
899 		idtype = P_ALL;
900 	} else if (id == WAIT_MYPGRP) {
901 		idtype = P_PGID;
902 		id = curproc->p_pgid;
903 	} else if (id < 0) {
904 		idtype = P_PGID;
905 		id = -id;
906 	} else {
907 		idtype = P_PID;
908 	}
909 
910 	error = kern_wait(idtype, id, &status, options, &wrusage,
911 			  NULL, &uap->sysmsg_result);
912 
913 	if (error == 0 && uap->status)
914 		error = copyout(&status, uap->status, sizeof(*uap->status));
915 	if (error == 0 && uap->rusage) {
916 		ruadd(&wrusage.wru_self, &wrusage.wru_children);
917 		error = copyout(&wrusage.wru_self, uap->rusage, sizeof(*uap->rusage));
918 	}
919 	return (error);
920 }
921 
922 int
923 sys_wait6(struct wait6_args *uap)
924 {
925 	struct __wrusage wrusage;
926 	struct __siginfo info;
927 	struct __siginfo *infop;
928 	int error;
929 	int status;
930 	int options;
931 	id_t id;
932 	idtype_t idtype;
933 
934 	/*
935 	 * NOTE: wait6() requires WEXITED and WTRAPPED to be specified if
936 	 *	 desired.
937 	 */
938 	options = uap->options;
939 	idtype = uap->idtype;
940 	id = uap->id;
941 	infop = uap->info ? &info : NULL;
942 
943 	switch(idtype) {
944 	case P_PID:
945 	case P_PGID:
946 		if (id == WAIT_MYPGRP) {
947 			idtype = P_PGID;
948 			id = curproc->p_pgid;
949 		}
950 		break;
951 	default:
952 		/* let kern_wait deal with the remainder */
953 		break;
954 	}
955 
956 	error = kern_wait(idtype, id, &status, options,
957 			  &wrusage, infop, &uap->sysmsg_result);
958 
959 	if (error == 0 && uap->status)
960 		error = copyout(&status, uap->status, sizeof(*uap->status));
961 	if (error == 0 && uap->wrusage)
962 		error = copyout(&wrusage, uap->wrusage, sizeof(*uap->wrusage));
963 	if (error == 0 && uap->info)
964 		error = copyout(&info, uap->info, sizeof(*uap->info));
965 	return (error);
966 }
967 
968 /*
969  * kernel wait*() system call support
970  */
971 int
972 kern_wait(idtype_t idtype, id_t id, int *status, int options,
973 	  struct __wrusage *wrusage, struct __siginfo *info, int *res)
974 {
975 	struct thread *td = curthread;
976 	struct lwp *lp;
977 	struct proc *q = td->td_proc;
978 	struct proc *p, *t;
979 	struct ucred *cr;
980 	struct pargs *pa;
981 	struct sigacts *ps;
982 	int nfound, error;
983 	long waitgen;
984 
985 	/*
986 	 * Must not have extraneous options.  Must have at least one
987 	 * matchable option.
988 	 */
989 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE|WSTOPPED|
990 			WEXITED|WTRAPPED|WNOWAIT)) {
991 		return (EINVAL);
992 	}
993 	if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
994 		return (EINVAL);
995 	}
996 
997 	/*
998 	 * Protect the q->p_children list
999 	 */
1000 	lwkt_gettoken(&q->p_token);
1001 loop:
1002 	/*
1003 	 * All sorts of things can change due to blocking so we have to loop
1004 	 * all the way back up here.
1005 	 *
1006 	 * The problem is that if a process group is stopped and the parent
1007 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
1008 	 * of the child and then stop itself when it tries to return from the
1009 	 * system call.  When the process group is resumed the parent will
1010 	 * then get the STOP status even though the child has now resumed
1011 	 * (a followup wait*() will get the CONT status).
1012 	 *
1013 	 * Previously the CONT would overwrite the STOP because the tstop
1014 	 * was handled within tsleep(), and the parent would only see
1015 	 * the CONT when both are stopped and continued together.  This little
1016 	 * two-line hack restores this effect.
1017 	 */
1018 	if (STOPLWP(q, td->td_lwp))
1019             tstop();
1020 
1021 	nfound = 0;
1022 
1023 	/*
1024 	 * Loop on children.
1025 	 *
1026 	 * NOTE: We don't want to break q's p_token in the loop for the
1027 	 *	 case where no children are found or we risk breaking the
1028 	 *	 interlock between child and parent.
1029 	 */
1030 	waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1031 	LIST_FOREACH(p, &q->p_children, p_sibling) {
1032 		/*
1033 		 * Filter, (p) will be held on fall-through.  Try to optimize
1034 		 * this to avoid the atomic op until we are pretty sure we
1035 		 * want this process.
1036 		 */
1037 		switch(idtype) {
1038 		case P_ALL:
1039 			PHOLD(p);
1040 			break;
1041 		case P_PID:
1042 			if (p->p_pid != (pid_t)id)
1043 				continue;
1044 			PHOLD(p);
1045 			break;
1046 		case P_PGID:
1047 			if (p->p_pgid != (pid_t)id)
1048 				continue;
1049 			PHOLD(p);
1050 			break;
1051 		case P_SID:
1052 			PHOLD(p);
1053 			if (p->p_session && p->p_session->s_sid != (pid_t)id) {
1054 				PRELE(p);
1055 				continue;
1056 			}
1057 			break;
1058 		case P_UID:
1059 			PHOLD(p);
1060 			if (p->p_ucred->cr_uid != (uid_t)id) {
1061 				PRELE(p);
1062 				continue;
1063 			}
1064 			break;
1065 		case P_GID:
1066 			PHOLD(p);
1067 			if (p->p_ucred->cr_gid != (gid_t)id) {
1068 				PRELE(p);
1069 				continue;
1070 			}
1071 			break;
1072 		case P_JAILID:
1073 			PHOLD(p);
1074 			if (p->p_ucred->cr_prison &&
1075 			    p->p_ucred->cr_prison->pr_id != (int)id) {
1076 				PRELE(p);
1077 				continue;
1078 			}
1079 			break;
1080 		default:
1081 			/* unsupported filter */
1082 			continue;
1083 		}
1084 		/* (p) is held at this point */
1085 
1086 		/*
1087 		 * This special case handles a kthread spawned by linux_clone
1088 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
1089 		 * functions need to be able to distinguish between waiting
1090 		 * on a process and waiting on a thread.  It is a thread if
1091 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
1092 		 * signifies we want to wait for threads and not processes.
1093 		 */
1094 		if ((p->p_sigparent != SIGCHLD) ^
1095 		    ((options & WLINUXCLONE) != 0)) {
1096 			PRELE(p);
1097 			continue;
1098 		}
1099 
1100 		nfound++;
1101 		if (p->p_stat == SZOMB && (options & WEXITED)) {
1102 			/*
1103 			 * We may go into SZOMB with threads still present.
1104 			 * We must wait for them to exit before we can reap
1105 			 * the master thread, otherwise we may race reaping
1106 			 * non-master threads.
1107 			 *
1108 			 * Only this routine can remove a process from
1109 			 * the zombie list and destroy it.
1110 			 */
1111 			if (PHOLDZOMB(p)) {
1112 				PRELE(p);
1113 				goto loop;
1114 			}
1115 			lwkt_gettoken(&p->p_token);
1116 			if (p->p_pptr != q) {
1117 				lwkt_reltoken(&p->p_token);
1118 				PRELE(p);
1119 				PRELEZOMB(p);
1120 				goto loop;
1121 			}
1122 			while (p->p_nthreads > 0) {
1123 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
1124 			}
1125 
1126 			/*
1127 			 * Reap any LWPs left in p->p_lwps.  This is usually
1128 			 * just the last LWP.  This must be done before
1129 			 * we loop on p_lock since the lwps hold a ref on
1130 			 * it as a vmspace interlock.
1131 			 *
1132 			 * Once that is accomplished p_nthreads had better
1133 			 * be zero.
1134 			 */
1135 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
1136 				/*
1137 				 * Make sure no one is using this lwp, before
1138 				 * it is removed from the tree.  If we didn't
1139 				 * wait it here, lwp tree iteration with
1140 				 * blocking operation would be broken.
1141 				 */
1142 				while (lp->lwp_lock > 0)
1143 					tsleep(lp, 0, "zomblwp", 1);
1144 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1145 				reaplwp(lp);
1146 			}
1147 			KKASSERT(p->p_nthreads == 0);
1148 
1149 			/*
1150 			 * Don't do anything really bad until all references
1151 			 * to the process go away.  This may include other
1152 			 * LWPs which are still in the process of being
1153 			 * reaped.  We can't just pull the rug out from under
1154 			 * them because they may still be using the VM space.
1155 			 *
1156 			 * Certain kernel facilities such as /proc will also
1157 			 * put a hold on the process for short periods of
1158 			 * time.
1159 			 */
1160 			PRELE(p);		/* from top of loop */
1161 			PSTALL(p, "reap3", 1);	/* 1 ref (for PZOMBHOLD) */
1162 
1163 			/* Take care of our return values. */
1164 			*res = p->p_pid;
1165 
1166 			*status = p->p_xstat;
1167 			wrusage->wru_self = p->p_ru;
1168 			wrusage->wru_children = p->p_cru;
1169 
1170 			if (info) {
1171 				bzero(info, sizeof(*info));
1172 				info->si_errno = 0;
1173 				info->si_signo = SIGCHLD;
1174 				if (p->p_xstat)
1175 					info->si_code = CLD_KILLED;
1176 				else
1177 					info->si_code = CLD_EXITED;
1178 				info->si_status = p->p_xstat;
1179 				info->si_pid = p->p_pid;
1180 				info->si_uid = p->p_ucred->cr_uid;
1181 			}
1182 
1183 			/*
1184 			 * WNOWAIT shortcuts to done here, leaving the
1185 			 * child on the zombie list.
1186 			 */
1187 			if (options & WNOWAIT) {
1188 				lwkt_reltoken(&p->p_token);
1189 				PRELEZOMB(p);
1190 				error = 0;
1191 				goto done;
1192 			}
1193 
1194 			/*
1195 			 * If we got the child via a ptrace 'attach',
1196 			 * we need to give it back to the old parent.
1197 			 */
1198 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1199 				p->p_oppid = 0;
1200 				proc_reparent(p, t);
1201 				ksignal(t, SIGCHLD);
1202 				wakeup((caddr_t)t);
1203 				PRELE(t);
1204 				lwkt_reltoken(&p->p_token);
1205 				PRELEZOMB(p);
1206 				error = 0;
1207 				goto done;
1208 			}
1209 
1210 			/*
1211 			 * Unlink the proc from its process group so that
1212 			 * the following operations won't lead to an
1213 			 * inconsistent state for processes running down
1214 			 * the zombie list.
1215 			 */
1216 			proc_remove_zombie(p);
1217 			proc_userunmap(p);
1218 			lwkt_reltoken(&p->p_token);
1219 			leavepgrp(p);
1220 
1221 			p->p_xstat = 0;
1222 			ruadd(&q->p_cru, &p->p_ru);
1223 			ruadd(&q->p_cru, &p->p_cru);
1224 
1225 			/*
1226 			 * Decrement the count of procs running with this uid.
1227 			 */
1228 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1229 
1230 			/*
1231 			 * Free up credentials.  p_spin is required to
1232 			 * avoid races against allproc scans.
1233 			 */
1234 			spin_lock(&p->p_spin);
1235 			cr = p->p_ucred;
1236 			p->p_ucred = NULL;
1237 			spin_unlock(&p->p_spin);
1238 			crfree(cr);
1239 
1240 			/*
1241 			 * Remove unused arguments
1242 			 */
1243 			pa = p->p_args;
1244 			p->p_args = NULL;
1245 			if (pa && refcount_release(&pa->ar_ref)) {
1246 				kfree(pa, M_PARGS);
1247 				pa = NULL;
1248 			}
1249 
1250 			ps = p->p_sigacts;
1251 			p->p_sigacts = NULL;
1252 			if (ps && refcount_release(&ps->ps_refcnt)) {
1253 				kfree(ps, M_SUBPROC);
1254 				ps = NULL;
1255 			}
1256 
1257 			/*
1258 			 * Our exitingcount was incremented when the process
1259 			 * became a zombie, now that the process has been
1260 			 * removed from (almost) all lists we should be able
1261 			 * to safely destroy its vmspace.  Wait for any current
1262 			 * holders to go away (so the vmspace remains stable),
1263 			 * then scrap it.
1264 			 *
1265 			 * NOTE: Releasing the parent process (q) p_token
1266 			 *	 across the vmspace_exitfree() call is
1267 			 *	 important here to reduce stalls on
1268 			 *	 interactions with (q) (such as
1269 			 *	 fork/exec/wait or 'ps').
1270 			 */
1271 			PSTALL(p, "reap4", 1);
1272 			lwkt_reltoken(&q->p_token);
1273 			vmspace_exitfree(p);
1274 			lwkt_gettoken(&q->p_token);
1275 			PSTALL(p, "reap5", 1);
1276 
1277 			/*
1278 			 * NOTE: We have to officially release ZOMB in order
1279 			 *	 to ensure that a racing thread in kern_wait()
1280 			 *	 which blocked on ZOMB is woken up.
1281 			 */
1282 			PRELEZOMB(p);
1283 			kfree(p->p_uidpcpu, M_SUBPROC);
1284 			kfree(p, M_PROC);
1285 			atomic_add_int(&nprocs, -1);
1286 			error = 0;
1287 			goto done;
1288 		}
1289 
1290 		/*
1291 		 * Process has not yet exited
1292 		 */
1293 		if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1294 		    (p->p_flags & P_WAITED) == 0 &&
1295 		    (((p->p_flags & P_TRACED) && (options & WTRAPPED)) ||
1296 		     (options & WSTOPPED))) {
1297 			lwkt_gettoken(&p->p_token);
1298 			if (p->p_pptr != q) {
1299 				lwkt_reltoken(&p->p_token);
1300 				PRELE(p);
1301 				goto loop;
1302 			}
1303 			if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1304 			    (p->p_flags & P_WAITED) != 0 ||
1305 			    ((p->p_flags & P_TRACED) == 0 &&
1306 			     (options & WUNTRACED) == 0)) {
1307 				lwkt_reltoken(&p->p_token);
1308 				PRELE(p);
1309 				goto loop;
1310 			}
1311 
1312 			/*
1313 			 * Don't set P_WAITED if WNOWAIT specified, leaving
1314 			 * the process in a waitable state.
1315 			 */
1316 			if ((options & WNOWAIT) == 0)
1317 				p->p_flags |= P_WAITED;
1318 
1319 			*res = p->p_pid;
1320 			*status = W_STOPCODE(p->p_xstat);
1321 			/* Zero rusage so we get something consistent. */
1322 			bzero(wrusage, sizeof(*wrusage));
1323 			error = 0;
1324 			if (info) {
1325 				bzero(info, sizeof(*info));
1326 				if (p->p_flags & P_TRACED)
1327 					info->si_code = CLD_TRAPPED;
1328 				else
1329 					info->si_code = CLD_STOPPED;
1330 				info->si_status = p->p_xstat;
1331 			}
1332 			lwkt_reltoken(&p->p_token);
1333 			PRELE(p);
1334 			goto done;
1335 		}
1336 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1337 			lwkt_gettoken(&p->p_token);
1338 			if (p->p_pptr != q) {
1339 				lwkt_reltoken(&p->p_token);
1340 				PRELE(p);
1341 				goto loop;
1342 			}
1343 			if ((p->p_flags & P_CONTINUED) == 0) {
1344 				lwkt_reltoken(&p->p_token);
1345 				PRELE(p);
1346 				goto loop;
1347 			}
1348 
1349 			*res = p->p_pid;
1350 
1351 			/*
1352 			 * Don't set P_WAITED if WNOWAIT specified, leaving
1353 			 * the process in a waitable state.
1354 			 */
1355 			if ((options & WNOWAIT) == 0)
1356 				p->p_flags &= ~P_CONTINUED;
1357 
1358 			*status = SIGCONT;
1359 			error = 0;
1360 			if (info) {
1361 				bzero(info, sizeof(*info));
1362 				info->si_code = CLD_CONTINUED;
1363 				info->si_status = p->p_xstat;
1364 			}
1365 			lwkt_reltoken(&p->p_token);
1366 			PRELE(p);
1367 			goto done;
1368 		}
1369 		PRELE(p);
1370 	}
1371 	if (nfound == 0) {
1372 		error = ECHILD;
1373 		goto done;
1374 	}
1375 	if (options & WNOHANG) {
1376 		*res = 0;
1377 		error = 0;
1378 		goto done;
1379 	}
1380 
1381 	/*
1382 	 * Wait for signal - interlocked using q->p_waitgen.
1383 	 */
1384 	error = 0;
1385 	while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1386 		tsleep_interlock(q, PCATCH);
1387 		waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1388 		if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1389 			error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1390 			break;
1391 		}
1392 	}
1393 	if (error) {
1394 done:
1395 		lwkt_reltoken(&q->p_token);
1396 		return (error);
1397 	}
1398 	goto loop;
1399 }
1400 
1401 /*
1402  * Change child's parent process to parent.
1403  *
1404  * p_children/p_sibling requires the parent's token, and
1405  * changing pptr requires the child's token, so we have to
1406  * get three tokens to do this operation.  We also need to
1407  * hold pointers that might get ripped out from under us to
1408  * preserve structural integrity.
1409  *
1410  * It is possible to race another reparent or disconnect or other
1411  * similar operation.  We must retry when this situation occurs.
1412  * Once we successfully reparent the process we no longer care
1413  * about any races.
1414  */
1415 void
1416 proc_reparent(struct proc *child, struct proc *parent)
1417 {
1418 	struct proc *opp;
1419 
1420 	PHOLD(parent);
1421 	while ((opp = child->p_pptr) != parent) {
1422 		PHOLD(opp);
1423 		lwkt_gettoken(&opp->p_token);
1424 		lwkt_gettoken(&child->p_token);
1425 		lwkt_gettoken(&parent->p_token);
1426 		if (child->p_pptr != opp) {
1427 			lwkt_reltoken(&parent->p_token);
1428 			lwkt_reltoken(&child->p_token);
1429 			lwkt_reltoken(&opp->p_token);
1430 			PRELE(opp);
1431 			continue;
1432 		}
1433 		LIST_REMOVE(child, p_sibling);
1434 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1435 		child->p_pptr = parent;
1436 		child->p_ppid = parent->p_pid;
1437 		lwkt_reltoken(&parent->p_token);
1438 		lwkt_reltoken(&child->p_token);
1439 		lwkt_reltoken(&opp->p_token);
1440 		if (LIST_EMPTY(&opp->p_children))
1441 			wakeup(opp);
1442 		PRELE(opp);
1443 		break;
1444 	}
1445 	PRELE(parent);
1446 }
1447 
1448 /*
1449  * The next two functions are to handle adding/deleting items on the
1450  * exit callout list
1451  *
1452  * at_exit():
1453  * Take the arguments given and put them onto the exit callout list,
1454  * However first make sure that it's not already there.
1455  * returns 0 on success.
1456  */
1457 
1458 int
1459 at_exit(exitlist_fn function)
1460 {
1461 	struct exitlist *ep;
1462 
1463 #ifdef INVARIANTS
1464 	/* Be noisy if the programmer has lost track of things */
1465 	if (rm_at_exit(function))
1466 		kprintf("WARNING: exit callout entry (%p) already present\n",
1467 		    function);
1468 #endif
1469 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1470 	if (ep == NULL)
1471 		return (ENOMEM);
1472 	ep->function = function;
1473 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1474 	return (0);
1475 }
1476 
1477 /*
1478  * Scan the exit callout list for the given item and remove it.
1479  * Returns the number of items removed (0 or 1)
1480  */
1481 int
1482 rm_at_exit(exitlist_fn function)
1483 {
1484 	struct exitlist *ep;
1485 
1486 	TAILQ_FOREACH(ep, &exit_list, next) {
1487 		if (ep->function == function) {
1488 			TAILQ_REMOVE(&exit_list, ep, next);
1489 			kfree(ep, M_ATEXIT);
1490 			return(1);
1491 		}
1492 	}
1493 	return (0);
1494 }
1495 
1496 /*
1497  * LWP reaper related code.
1498  */
1499 static void
1500 reaplwps(void *context, int dummy)
1501 {
1502 	struct lwplist *lwplist = context;
1503 	struct lwp *lp;
1504 	int cpu = mycpuid;
1505 
1506 	lwkt_gettoken(&deadlwp_token[cpu]);
1507 	while ((lp = LIST_FIRST(lwplist))) {
1508 		LIST_REMOVE(lp, u.lwp_reap_entry);
1509 		reaplwp(lp);
1510 	}
1511 	lwkt_reltoken(&deadlwp_token[cpu]);
1512 }
1513 
1514 static void
1515 reaplwp(struct lwp *lp)
1516 {
1517 	while (lwp_wait(lp) == 0)
1518 		;
1519 	lwp_dispose(lp);
1520 }
1521 
1522 static void
1523 deadlwp_init(void)
1524 {
1525 	int cpu;
1526 
1527 	for (cpu = 0; cpu < ncpus; cpu++) {
1528 		lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1529 		LIST_INIT(&deadlwp_list[cpu]);
1530 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1531 					    M_DEVBUF, M_WAITOK);
1532 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1533 	}
1534 }
1535 
1536 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1537