xref: /dragonfly/sys/kern/kern_exit.c (revision e96fb831)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
39  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
40  * $DragonFly: src/sys/kern/kern_exit.c,v 1.91 2008/05/18 20:02:02 nth Exp $
41  */
42 
43 #include "opt_compat.h"
44 #include "opt_ktrace.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/sysproto.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/proc.h>
52 #include <sys/ktrace.h>
53 #include <sys/pioctl.h>
54 #include <sys/tty.h>
55 #include <sys/wait.h>
56 #include <sys/vnode.h>
57 #include <sys/resourcevar.h>
58 #include <sys/signalvar.h>
59 #include <sys/taskqueue.h>
60 #include <sys/ptrace.h>
61 #include <sys/acct.h>		/* for acct_process() function prototype */
62 #include <sys/filedesc.h>
63 #include <sys/shm.h>
64 #include <sys/sem.h>
65 #include <sys/jail.h>
66 #include <sys/kern_syscall.h>
67 #include <sys/upcall.h>
68 #include <sys/caps.h>
69 #include <sys/unistd.h>
70 #include <sys/eventhandler.h>
71 #include <sys/dsched.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <sys/lock.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_extern.h>
79 #include <sys/user.h>
80 
81 #include <sys/refcount.h>
82 #include <sys/thread2.h>
83 #include <sys/sysref2.h>
84 #include <sys/mplock2.h>
85 
86 static void reaplwps(void *context, int dummy);
87 static void reaplwp(struct lwp *lp);
88 static void killlwps(struct lwp *lp);
89 
90 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
91 static MALLOC_DEFINE(M_ZOMBIE, "zombie", "zombie proc status");
92 
93 static struct lwkt_token deadlwp_token = LWKT_TOKEN_INITIALIZER(deadlwp_token);
94 
95 /*
96  * callout list for things to do at exit time
97  */
98 struct exitlist {
99 	exitlist_fn function;
100 	TAILQ_ENTRY(exitlist) next;
101 };
102 
103 TAILQ_HEAD(exit_list_head, exitlist);
104 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
105 
106 /*
107  * LWP reaper data
108  */
109 struct task *deadlwp_task[MAXCPU];
110 struct lwplist deadlwp_list[MAXCPU];
111 
112 /*
113  * exit --
114  *	Death of process.
115  *
116  * SYS_EXIT_ARGS(int rval)
117  */
118 int
119 sys_exit(struct exit_args *uap)
120 {
121 	exit1(W_EXITCODE(uap->rval, 0));
122 	/* NOTREACHED */
123 }
124 
125 /*
126  * Extended exit --
127  *	Death of a lwp or process with optional bells and whistles.
128  *
129  * MPALMOSTSAFE
130  */
131 int
132 sys_extexit(struct extexit_args *uap)
133 {
134 	struct proc *p = curproc;
135 	int action, who;
136 	int error;
137 
138 	action = EXTEXIT_ACTION(uap->how);
139 	who = EXTEXIT_WHO(uap->how);
140 
141 	/* Check parameters before we might perform some action */
142 	switch (who) {
143 	case EXTEXIT_PROC:
144 	case EXTEXIT_LWP:
145 		break;
146 	default:
147 		return (EINVAL);
148 	}
149 
150 	switch (action) {
151 	case EXTEXIT_SIMPLE:
152 		break;
153 	case EXTEXIT_SETINT:
154 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
155 		if (error)
156 			return (error);
157 		break;
158 	default:
159 		return (EINVAL);
160 	}
161 
162 	lwkt_gettoken(&p->p_token);
163 
164 	switch (who) {
165 	case EXTEXIT_LWP:
166 		/*
167 		 * Be sure only to perform a simple lwp exit if there is at
168 		 * least one more lwp in the proc, which will call exit1()
169 		 * later, otherwise the proc will be an UNDEAD and not even a
170 		 * SZOMB!
171 		 */
172 		if (p->p_nthreads > 1) {
173 			lwp_exit(0);	/* called w/ p_token held */
174 			/* NOT REACHED */
175 		}
176 		/* else last lwp in proc:  do the real thing */
177 		/* FALLTHROUGH */
178 	default:	/* to help gcc */
179 	case EXTEXIT_PROC:
180 		lwkt_reltoken(&p->p_token);
181 		exit1(W_EXITCODE(uap->status, 0));
182 		/* NOTREACHED */
183 	}
184 
185 	/* NOTREACHED */
186 	lwkt_reltoken(&p->p_token);	/* safety */
187 }
188 
189 /*
190  * Kill all lwps associated with the current process except the
191  * current lwp.   Return an error if we race another thread trying to
192  * do the same thing and lose the race.
193  *
194  * If forexec is non-zero the current thread and process flags are
195  * cleaned up so they can be reused.
196  *
197  * Caller must hold curproc->p_token
198  */
199 int
200 killalllwps(int forexec)
201 {
202 	struct lwp *lp = curthread->td_lwp;
203 	struct proc *p = lp->lwp_proc;
204 
205 	/*
206 	 * Interlock against P_WEXIT.  Only one of the process's thread
207 	 * is allowed to do the master exit.
208 	 */
209 	if (p->p_flags & P_WEXIT)
210 		return (EALREADY);
211 	p->p_flags |= P_WEXIT;
212 
213 	/*
214 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
215 	 */
216 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
217 	if (p->p_nthreads > 1)
218 		killlwps(lp);
219 
220 	/*
221 	 * If doing this for an exec, clean up the remaining thread
222 	 * (us) for continuing operation after all the other threads
223 	 * have been killed.
224 	 */
225 	if (forexec) {
226 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
227 		p->p_flags &= ~P_WEXIT;
228 	}
229 	return(0);
230 }
231 
232 /*
233  * Kill all LWPs except the current one.  Do not try to signal
234  * LWPs which have exited on their own or have already been
235  * signaled.
236  */
237 static void
238 killlwps(struct lwp *lp)
239 {
240 	struct proc *p = lp->lwp_proc;
241 	struct lwp *tlp;
242 
243 	/*
244 	 * Kill the remaining LWPs.  We must send the signal before setting
245 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
246 	 * races.  tlp must be held across the call as it might block and
247 	 * allow the target lwp to rip itself out from under our loop.
248 	 */
249 	FOREACH_LWP_IN_PROC(tlp, p) {
250 		LWPHOLD(tlp);
251 		lwkt_gettoken(&tlp->lwp_token);
252 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
253 			lwpsignal(p, tlp, SIGKILL);
254 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
255 		}
256 		lwkt_reltoken(&tlp->lwp_token);
257 		LWPRELE(tlp);
258 	}
259 
260 	/*
261 	 * Wait for everything to clear out.
262 	 */
263 	while (p->p_nthreads > 1) {
264 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
265 	}
266 }
267 
268 /*
269  * Exit: deallocate address space and other resources, change proc state
270  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
271  * status and rusage for wait().  Check for child processes and orphan them.
272  */
273 void
274 exit1(int rv)
275 {
276 	struct thread *td = curthread;
277 	struct proc *p = td->td_proc;
278 	struct lwp *lp = td->td_lwp;
279 	struct proc *q, *nq;
280 	struct vmspace *vm;
281 	struct vnode *vtmp;
282 	struct exitlist *ep;
283 	int error;
284 
285 	lwkt_gettoken(&p->p_token);
286 
287 	if (p->p_pid == 1) {
288 		kprintf("init died (signal %d, exit %d)\n",
289 		    WTERMSIG(rv), WEXITSTATUS(rv));
290 		panic("Going nowhere without my init!");
291 	}
292 	varsymset_clean(&p->p_varsymset);
293 	lockuninit(&p->p_varsymset.vx_lock);
294 
295 	/*
296 	 * Kill all lwps associated with the current process, return an
297 	 * error if we race another thread trying to do the same thing
298 	 * and lose the race.
299 	 */
300 	error = killalllwps(0);
301 	if (error) {
302 		lwp_exit(0);
303 		/* NOT REACHED */
304 	}
305 
306 	caps_exit(lp->lwp_thread);
307 
308 	/* are we a task leader? */
309 	if (p == p->p_leader) {
310         	struct kill_args killArgs;
311 		killArgs.signum = SIGKILL;
312 		q = p->p_peers;
313 		while(q) {
314 			killArgs.pid = q->p_pid;
315 			/*
316 		         * The interface for kill is better
317 			 * than the internal signal
318 			 */
319 			sys_kill(&killArgs);
320 			nq = q;
321 			q = q->p_peers;
322 		}
323 		while (p->p_peers)
324 			tsleep((caddr_t)p, 0, "exit1", 0);
325 	}
326 
327 #ifdef PGINPROF
328 	vmsizmon();
329 #endif
330 	STOPEVENT(p, S_EXIT, rv);
331 	wakeup(&p->p_stype);	/* Wakeup anyone in procfs' PIOCWAIT */
332 
333 	/*
334 	 * Check if any loadable modules need anything done at process exit.
335 	 * e.g. SYSV IPC stuff
336 	 * XXX what if one of these generates an error?
337 	 */
338 	p->p_xstat = rv;
339 	EVENTHANDLER_INVOKE(process_exit, p);
340 
341 	/*
342 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
343 	 *	Maybe we should move everything to use eventhandler.
344 	 */
345 	TAILQ_FOREACH(ep, &exit_list, next)
346 		(*ep->function)(td);
347 
348 	if (p->p_flags & P_PROFIL)
349 		stopprofclock(p);
350 
351 	SIGEMPTYSET(p->p_siglist);
352 	SIGEMPTYSET(lp->lwp_siglist);
353 	if (timevalisset(&p->p_realtimer.it_value))
354 		callout_stop_sync(&p->p_ithandle);
355 
356 	/*
357 	 * Reset any sigio structures pointing to us as a result of
358 	 * F_SETOWN with our pid.
359 	 */
360 	funsetownlst(&p->p_sigiolst);
361 
362 	/*
363 	 * Close open files and release open-file table.
364 	 * This may block!
365 	 */
366 	fdfree(p, NULL);
367 
368 	if(p->p_leader->p_peers) {
369 		q = p->p_leader;
370 		while(q->p_peers != p)
371 			q = q->p_peers;
372 		q->p_peers = p->p_peers;
373 		wakeup((caddr_t)p->p_leader);
374 	}
375 
376 	/*
377 	 * XXX Shutdown SYSV semaphores
378 	 */
379 	semexit(p);
380 
381 	KKASSERT(p->p_numposixlocks == 0);
382 
383 	/* The next two chunks should probably be moved to vmspace_exit. */
384 	vm = p->p_vmspace;
385 
386 	/*
387 	 * Release upcalls associated with this process
388 	 */
389 	if (vm->vm_upcalls)
390 		upc_release(vm, lp);
391 
392 	/*
393 	 * Clean up data related to virtual kernel operation.  Clean up
394 	 * any vkernel context related to the current lwp now so we can
395 	 * destroy p_vkernel.
396 	 */
397 	if (p->p_vkernel) {
398 		vkernel_lwp_exit(lp);
399 		vkernel_exit(p);
400 	}
401 
402 	/*
403 	 * Release user portion of address space.
404 	 * This releases references to vnodes,
405 	 * which could cause I/O if the file has been unlinked.
406 	 * Need to do this early enough that we can still sleep.
407 	 * Can't free the entire vmspace as the kernel stack
408 	 * may be mapped within that space also.
409 	 *
410 	 * Processes sharing the same vmspace may exit in one order, and
411 	 * get cleaned up by vmspace_exit() in a different order.  The
412 	 * last exiting process to reach this point releases as much of
413 	 * the environment as it can, and the last process cleaned up
414 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
415 	 * remainder.
416 	 */
417 	vmspace_exitbump(vm);
418 	sysref_put(&vm->vm_sysref);
419 
420 	if (SESS_LEADER(p)) {
421 		struct session *sp = p->p_session;
422 
423 		if (sp->s_ttyvp) {
424 			/*
425 			 * We are the controlling process.  Signal the
426 			 * foreground process group, drain the controlling
427 			 * terminal, and revoke access to the controlling
428 			 * terminal.
429 			 *
430 			 * NOTE: while waiting for the process group to exit
431 			 * it is possible that one of the processes in the
432 			 * group will revoke the tty, so the ttyclosesession()
433 			 * function will re-check sp->s_ttyvp.
434 			 */
435 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
436 				if (sp->s_ttyp->t_pgrp)
437 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
438 				ttywait(sp->s_ttyp);
439 				ttyclosesession(sp, 1); /* also revoke */
440 			}
441 			/*
442 			 * Release the tty.  If someone has it open via
443 			 * /dev/tty then close it (since they no longer can
444 			 * once we've NULL'd it out).
445 			 */
446 			ttyclosesession(sp, 0);
447 
448 			/*
449 			 * s_ttyp is not zero'd; we use this to indicate
450 			 * that the session once had a controlling terminal.
451 			 * (for logging and informational purposes)
452 			 */
453 		}
454 		sp->s_leader = NULL;
455 	}
456 	fixjobc(p, p->p_pgrp, 0);
457 	(void)acct_process(p);
458 #ifdef KTRACE
459 	/*
460 	 * release trace file
461 	 */
462 	if (p->p_tracenode)
463 		ktrdestroy(&p->p_tracenode);
464 	p->p_traceflag = 0;
465 #endif
466 	/*
467 	 * Release reference to text vnode
468 	 */
469 	if ((vtmp = p->p_textvp) != NULL) {
470 		p->p_textvp = NULL;
471 		vrele(vtmp);
472 	}
473 
474 	/* Release namecache handle to text file */
475 	if (p->p_textnch.ncp)
476 		cache_drop(&p->p_textnch);
477 
478 	/*
479 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
480 	 * will block on the PHOLD() the parent is doing.
481 	 */
482 	if (p->p_flags & P_PPWAIT) {
483 		p->p_flags &= ~P_PPWAIT;
484 		wakeup(p->p_pptr);
485 	}
486 
487 	/*
488 	 * Move the process to the zombie list.  This will block
489 	 * until the process p_lock count reaches 0.  The process will
490 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
491 	 * which is called from cpu_proc_exit().
492 	 */
493 	proc_move_allproc_zombie(p);
494 
495 	/*
496 	 * Reparent all of this process's children to the init process.
497 	 * We must hold initproc->p_token in order to mess with
498 	 * initproc->p_children.  We already hold p->p_token (to remove
499 	 * the children from our list).
500 	 */
501 	q = LIST_FIRST(&p->p_children);
502 	if (q) {
503 		lwkt_gettoken(&initproc->p_token);
504 		while (q) {
505 			nq = LIST_NEXT(q, p_sibling);
506 			LIST_REMOVE(q, p_sibling);
507 			LIST_INSERT_HEAD(&initproc->p_children, q, p_sibling);
508 			q->p_pptr = initproc;
509 			q->p_sigparent = SIGCHLD;
510 			/*
511 			 * Traced processes are killed
512 			 * since their existence means someone is screwing up.
513 			 */
514 			if (q->p_flags & P_TRACED) {
515 				q->p_flags &= ~P_TRACED;
516 				ksignal(q, SIGKILL);
517 			}
518 			q = nq;
519 		}
520 		lwkt_reltoken(&initproc->p_token);
521 		wakeup(initproc);
522 	}
523 
524 	/*
525 	 * Save exit status and final rusage info, adding in child rusage
526 	 * info and self times.
527 	 */
528 	calcru_proc(p, &p->p_ru);
529 	ruadd(&p->p_ru, &p->p_cru);
530 
531 	/*
532 	 * notify interested parties of our demise.
533 	 */
534 	KNOTE(&p->p_klist, NOTE_EXIT);
535 
536 	/*
537 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
538 	 * flag set, notify process 1 instead (and hope it will handle
539 	 * this situation).
540 	 */
541 	if (p->p_pptr->p_sigacts->ps_flag & PS_NOCLDWAIT) {
542 		struct proc *pp = p->p_pptr;
543 
544 		PHOLD(pp);
545 		proc_reparent(p, initproc);
546 
547 		/*
548 		 * If this was the last child of our parent, notify
549 		 * parent, so in case he was wait(2)ing, he will
550 		 * continue.  This function interlocks with pptr->p_token.
551 		 */
552 		if (LIST_EMPTY(&pp->p_children))
553 			wakeup((caddr_t)pp);
554 		PRELE(pp);
555 	}
556 
557 	/* lwkt_gettoken(&proc_token); */
558 	q = p->p_pptr;
559 	PHOLD(q);
560 	if (p->p_sigparent && q != initproc) {
561 	        ksignal(q, p->p_sigparent);
562 	} else {
563 	        ksignal(q, SIGCHLD);
564 	}
565 
566 	p->p_flags &= ~P_TRACED;
567 	wakeup(p->p_pptr);
568 
569 	PRELE(q);
570 	/* lwkt_reltoken(&proc_token); */
571 	/* NOTE: p->p_pptr can get ripped out */
572 	/*
573 	 * cpu_exit is responsible for clearing curproc, since
574 	 * it is heavily integrated with the thread/switching sequence.
575 	 *
576 	 * Other substructures are freed from wait().
577 	 */
578 	plimit_free(p);
579 
580 	/*
581 	 * Release the current user process designation on the process so
582 	 * the userland scheduler can work in someone else.
583 	 */
584 	p->p_usched->release_curproc(lp);
585 
586 	/*
587 	 * Finally, call machine-dependent code to release as many of the
588 	 * lwp's resources as we can and halt execution of this thread.
589 	 */
590 	lwp_exit(1);
591 }
592 
593 /*
594  * Eventually called by every exiting LWP
595  *
596  * p->p_token must be held.  mplock may be held and will be released.
597  */
598 void
599 lwp_exit(int masterexit)
600 {
601 	struct thread *td = curthread;
602 	struct lwp *lp = td->td_lwp;
603 	struct proc *p = lp->lwp_proc;
604 	int dowake = 0;
605 
606 	/*
607 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
608 	 * make sure it is set here.
609 	 */
610 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
611 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
612 
613 	/*
614 	 * Clean up any virtualization
615 	 */
616 	if (lp->lwp_vkernel)
617 		vkernel_lwp_exit(lp);
618 
619 	/*
620 	 * Clean up select/poll support
621 	 */
622 	kqueue_terminate(&lp->lwp_kqueue);
623 
624 	/*
625 	 * Clean up any syscall-cached ucred
626 	 */
627 	if (td->td_ucred) {
628 		crfree(td->td_ucred);
629 		td->td_ucred = NULL;
630 	}
631 
632 	/*
633 	 * Nobody actually wakes us when the lock
634 	 * count reaches zero, so just wait one tick.
635 	 */
636 	while (lp->lwp_lock > 0)
637 		tsleep(lp, 0, "lwpexit", 1);
638 
639 	/* Hand down resource usage to our proc */
640 	ruadd(&p->p_ru, &lp->lwp_ru);
641 
642 	/*
643 	 * If we don't hold the process until the LWP is reaped wait*()
644 	 * may try to dispose of its vmspace before all the LWPs have
645 	 * actually terminated.
646 	 */
647 	PHOLD(p);
648 
649 	/*
650 	 * Do any remaining work that might block on us.  We should be
651 	 * coded such that further blocking is ok after decrementing
652 	 * p_nthreads but don't take the chance.
653 	 */
654 	dsched_exit_thread(td);
655 	biosched_done(curthread);
656 
657 	/*
658 	 * We have to use the reaper for all the LWPs except the one doing
659 	 * the master exit.  The LWP doing the master exit can just be
660 	 * left on p_lwps and the process reaper will deal with it
661 	 * synchronously, which is much faster.
662 	 *
663 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
664 	 *
665 	 * The process is left held until the reaper calls lwp_dispose() on
666 	 * the lp (after calling lwp_wait()).
667 	 */
668 	if (masterexit == 0) {
669 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
670 		--p->p_nthreads;
671 		if (p->p_nthreads <= 1)
672 			dowake = 1;
673 		lwkt_gettoken(&deadlwp_token);
674 		LIST_INSERT_HEAD(&deadlwp_list[mycpuid], lp, u.lwp_reap_entry);
675 		taskqueue_enqueue(taskqueue_thread[mycpuid],
676 				  deadlwp_task[mycpuid]);
677 		lwkt_reltoken(&deadlwp_token);
678 	} else {
679 		--p->p_nthreads;
680 		if (p->p_nthreads <= 1)
681 			dowake = 1;
682 	}
683 
684 	/*
685 	 * Release p_token.  Issue the wakeup() on p_nthreads if necessary,
686 	 * as late as possible to give us a chance to actually deschedule and
687 	 * switch away before another cpu core hits reaplwp().
688 	 */
689 	lwkt_reltoken(&p->p_token);
690 	if (dowake)
691 		wakeup(&p->p_nthreads);
692 	cpu_lwp_exit();
693 }
694 
695 /*
696  * Wait until a lwp is completely dead.  The final interlock in this drama
697  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
698  * switchout.
699  *
700  * At the point TDF_EXITING is set a complete exit is accomplished when
701  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.
702  *
703  * Returns non-zero on success, and zero if the caller needs to retry
704  * the lwp_wait().
705  */
706 static int
707 lwp_wait(struct lwp *lp)
708 {
709 	struct thread *td = lp->lwp_thread;;
710 
711 	KKASSERT(lwkt_preempted_proc() != lp);
712 
713 	/*
714 	 * Wait until the lp has entered its low level exit and wait
715 	 * until other cores with refs on the lp (e.g. for ps or signaling)
716 	 * release them.
717 	 */
718 	if (lp->lwp_lock > 0) {
719 		tsleep(lp, 0, "lwpwait1", 1);
720 		return(0);
721 	}
722 
723 	/*
724 	 * Wait until the thread is no longer references and no longer
725 	 * runnable or preempted (i.e. finishes its low level exit).
726 	 */
727 	if (td->td_refs) {
728 		tsleep(td, 0, "lwpwait2", 1);
729 		return(0);
730 	}
731 
732 	/*
733 	 * The lwp's thread may still be in the middle
734 	 * of switching away, we can't rip its stack out from
735 	 * under it until TDF_EXITING is set and both
736 	 * TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
737 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
738 	 * will be cleared temporarily if a thread gets
739 	 * preempted.
740 	 *
741 	 * YYY no wakeup occurs, so we simply return failure
742 	 * and let the caller deal with sleeping and calling
743 	 * us again.
744 	 */
745 	if ((td->td_flags & (TDF_RUNNING |
746 			     TDF_PREEMPT_LOCK |
747 			     TDF_EXITING)) != TDF_EXITING) {
748 		tsleep(lp, 0, "lwpwait2", 1);
749 		return (0);
750 	}
751 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
752 		("lwp_wait: td %p (%s) still on run or sleep queue",
753 		td, td->td_comm));
754 	return (1);
755 }
756 
757 /*
758  * Release the resources associated with a lwp.
759  * The lwp must be completely dead.
760  */
761 void
762 lwp_dispose(struct lwp *lp)
763 {
764 	struct thread *td = lp->lwp_thread;;
765 
766 	KKASSERT(lwkt_preempted_proc() != lp);
767 	KKASSERT(td->td_refs == 0);
768 	KKASSERT((td->td_flags & (TDF_RUNNING |
769 				  TDF_PREEMPT_LOCK |
770 				  TDF_EXITING)) == TDF_EXITING);
771 
772 	PRELE(lp->lwp_proc);
773 	lp->lwp_proc = NULL;
774 	if (td != NULL) {
775 		td->td_proc = NULL;
776 		td->td_lwp = NULL;
777 		lp->lwp_thread = NULL;
778 		lwkt_free_thread(td);
779 	}
780 	kfree(lp, M_LWP);
781 }
782 
783 /*
784  * MPSAFE
785  */
786 int
787 sys_wait4(struct wait_args *uap)
788 {
789 	struct rusage rusage;
790 	int error, status;
791 
792 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
793 			  uap->options, (uap->rusage ? &rusage : NULL),
794 			  &uap->sysmsg_result);
795 
796 	if (error == 0 && uap->status)
797 		error = copyout(&status, uap->status, sizeof(*uap->status));
798 	if (error == 0 && uap->rusage)
799 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
800 	return (error);
801 }
802 
803 /*
804  * wait1()
805  *
806  * wait_args(int pid, int *status, int options, struct rusage *rusage)
807  *
808  * MPALMOSTSAFE
809  */
810 int
811 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
812 {
813 	struct thread *td = curthread;
814 	struct lwp *lp;
815 	struct proc *q = td->td_proc;
816 	struct proc *p, *t;
817 	struct pargs *pa;
818 	struct sigacts *ps;
819 	int nfound, error;
820 
821 	if (pid == 0)
822 		pid = -q->p_pgid;
823 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
824 		return (EINVAL);
825 
826 	lwkt_gettoken(&q->p_token);
827 loop:
828 	/*
829 	 * All sorts of things can change due to blocking so we have to loop
830 	 * all the way back up here.
831 	 *
832 	 * The problem is that if a process group is stopped and the parent
833 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
834 	 * of the child and then stop itself when it tries to return from the
835 	 * system call.  When the process group is resumed the parent will
836 	 * then get the STOP status even though the child has now resumed
837 	 * (a followup wait*() will get the CONT status).
838 	 *
839 	 * Previously the CONT would overwrite the STOP because the tstop
840 	 * was handled within tsleep(), and the parent would only see
841 	 * the CONT when both are stopped and continued together.  This little
842 	 * two-line hack restores this effect.
843 	 */
844 	while (q->p_stat == SSTOP)
845             tstop();
846 
847 	nfound = 0;
848 
849 	/*
850 	 * Loop on children.
851 	 *
852 	 * NOTE: We don't want to break q's p_token in the loop for the
853 	 *	 case where no children are found or we risk breaking the
854 	 *	 interlock between child and parent.
855 	 */
856 	LIST_FOREACH(p, &q->p_children, p_sibling) {
857 		if (pid != WAIT_ANY &&
858 		    p->p_pid != pid && p->p_pgid != -pid) {
859 			continue;
860 		}
861 
862 		/*
863 		 * This special case handles a kthread spawned by linux_clone
864 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
865 		 * functions need to be able to distinguish between waiting
866 		 * on a process and waiting on a thread.  It is a thread if
867 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
868 		 * signifies we want to wait for threads and not processes.
869 		 */
870 		if ((p->p_sigparent != SIGCHLD) ^
871 		    ((options & WLINUXCLONE) != 0)) {
872 			continue;
873 		}
874 
875 		nfound++;
876 		if (p->p_stat == SZOMB) {
877 			/*
878 			 * We may go into SZOMB with threads still present.
879 			 * We must wait for them to exit before we can reap
880 			 * the master thread, otherwise we may race reaping
881 			 * non-master threads.
882 			 */
883 			lwkt_gettoken(&p->p_token);
884 			while (p->p_nthreads > 0) {
885 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
886 			}
887 
888 			/*
889 			 * Reap any LWPs left in p->p_lwps.  This is usually
890 			 * just the last LWP.  This must be done before
891 			 * we loop on p_lock since the lwps hold a ref on
892 			 * it as a vmspace interlock.
893 			 *
894 			 * Once that is accomplished p_nthreads had better
895 			 * be zero.
896 			 */
897 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
898 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
899 				reaplwp(lp);
900 			}
901 			KKASSERT(p->p_nthreads == 0);
902 
903 			/*
904 			 * Don't do anything really bad until all references
905 			 * to the process go away.  This may include other
906 			 * LWPs which are still in the process of being
907 			 * reaped.  We can't just pull the rug out from under
908 			 * them because they may still be using the VM space.
909 			 *
910 			 * Certain kernel facilities such as /proc will also
911 			 * put a hold on the process for short periods of
912 			 * time.
913 			 */
914 			PSTALL(p, "reap3", 0);
915 
916 			/* Take care of our return values. */
917 			*res = p->p_pid;
918 			p->p_usched->heuristic_exiting(td->td_lwp, p);
919 
920 			if (status)
921 				*status = p->p_xstat;
922 			if (rusage)
923 				*rusage = p->p_ru;
924 			/*
925 			 * If we got the child via a ptrace 'attach',
926 			 * we need to give it back to the old parent.
927 			 */
928 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
929 				p->p_oppid = 0;
930 				proc_reparent(p, t);
931 				ksignal(t, SIGCHLD);
932 				wakeup((caddr_t)t);
933 				error = 0;
934 				PRELE(t);
935 				lwkt_reltoken(&p->p_token);
936 				goto done;
937 			}
938 
939 			/*
940 			 * Unlink the proc from its process group so that
941 			 * the following operations won't lead to an
942 			 * inconsistent state for processes running down
943 			 * the zombie list.
944 			 */
945 			proc_remove_zombie(p);
946 			lwkt_reltoken(&p->p_token);
947 			leavepgrp(p);
948 
949 			p->p_xstat = 0;
950 			ruadd(&q->p_cru, &p->p_ru);
951 
952 			/*
953 			 * Decrement the count of procs running with this uid.
954 			 */
955 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
956 
957 			/*
958 			 * Free up credentials.
959 			 */
960 			crfree(p->p_ucred);
961 			p->p_ucred = NULL;
962 
963 			/*
964 			 * Remove unused arguments
965 			 */
966 			pa = p->p_args;
967 			p->p_args = NULL;
968 			if (pa && refcount_release(&pa->ar_ref)) {
969 				kfree(pa, M_PARGS);
970 				pa = NULL;
971 			}
972 
973 			ps = p->p_sigacts;
974 			p->p_sigacts = NULL;
975 			if (ps && refcount_release(&ps->ps_refcnt)) {
976 				kfree(ps, M_SUBPROC);
977 				ps = NULL;
978 			}
979 
980 			/*
981 			 * Our exitingcount was incremented when the process
982 			 * became a zombie, now that the process has been
983 			 * removed from (almost) all lists we should be able
984 			 * to safely destroy its vmspace.  Wait for any current
985 			 * holders to go away (so the vmspace remains stable),
986 			 * then scrap it.
987 			 */
988 			PSTALL(p, "reap4", 0);
989 			vmspace_exitfree(p);
990 			PSTALL(p, "reap5", 0);
991 
992 			kfree(p, M_PROC);
993 			atomic_add_int(&nprocs, -1);
994 			error = 0;
995 			goto done;
996 		}
997 		if (p->p_stat == SSTOP && (p->p_flags & P_WAITED) == 0 &&
998 		    ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
999 			lwkt_gettoken(&p->p_token);
1000 			p->p_flags |= P_WAITED;
1001 
1002 			*res = p->p_pid;
1003 			p->p_usched->heuristic_exiting(td->td_lwp, p);
1004 			if (status)
1005 				*status = W_STOPCODE(p->p_xstat);
1006 			/* Zero rusage so we get something consistent. */
1007 			if (rusage)
1008 				bzero(rusage, sizeof(rusage));
1009 			error = 0;
1010 			lwkt_reltoken(&p->p_token);
1011 			goto done;
1012 		}
1013 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1014 			lwkt_gettoken(&p->p_token);
1015 			*res = p->p_pid;
1016 			p->p_usched->heuristic_exiting(td->td_lwp, p);
1017 			p->p_flags &= ~P_CONTINUED;
1018 
1019 			if (status)
1020 				*status = SIGCONT;
1021 			error = 0;
1022 			lwkt_reltoken(&p->p_token);
1023 			goto done;
1024 		}
1025 	}
1026 	if (nfound == 0) {
1027 		error = ECHILD;
1028 		goto done;
1029 	}
1030 	if (options & WNOHANG) {
1031 		*res = 0;
1032 		error = 0;
1033 		goto done;
1034 	}
1035 
1036 	/*
1037 	 * Wait for signal - interlocked using q->p_token.
1038 	 */
1039 	error = tsleep(q, PCATCH, "wait", 0);
1040 	if (error) {
1041 done:
1042 		lwkt_reltoken(&q->p_token);
1043 		return (error);
1044 	}
1045 	goto loop;
1046 }
1047 
1048 /*
1049  * Make process 'parent' the new parent of process 'child'.
1050  *
1051  * p_children/p_sibling requires the parent's token, and
1052  * changing pptr requires the child's token, so we have to
1053  * get three tokens to do this operation.
1054  */
1055 void
1056 proc_reparent(struct proc *child, struct proc *parent)
1057 {
1058 	struct proc *opp = child->p_pptr;
1059 
1060 	if (opp == parent)
1061 		return;
1062 	PHOLD(opp);
1063 	PHOLD(parent);
1064 	lwkt_gettoken(&opp->p_token);
1065 	lwkt_gettoken(&child->p_token);
1066 	lwkt_gettoken(&parent->p_token);
1067 	KKASSERT(child->p_pptr == opp);
1068 	LIST_REMOVE(child, p_sibling);
1069 	LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1070 	child->p_pptr = parent;
1071 	lwkt_reltoken(&parent->p_token);
1072 	lwkt_reltoken(&child->p_token);
1073 	lwkt_reltoken(&opp->p_token);
1074 	PRELE(parent);
1075 	PRELE(opp);
1076 }
1077 
1078 /*
1079  * The next two functions are to handle adding/deleting items on the
1080  * exit callout list
1081  *
1082  * at_exit():
1083  * Take the arguments given and put them onto the exit callout list,
1084  * However first make sure that it's not already there.
1085  * returns 0 on success.
1086  */
1087 
1088 int
1089 at_exit(exitlist_fn function)
1090 {
1091 	struct exitlist *ep;
1092 
1093 #ifdef INVARIANTS
1094 	/* Be noisy if the programmer has lost track of things */
1095 	if (rm_at_exit(function))
1096 		kprintf("WARNING: exit callout entry (%p) already present\n",
1097 		    function);
1098 #endif
1099 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1100 	if (ep == NULL)
1101 		return (ENOMEM);
1102 	ep->function = function;
1103 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1104 	return (0);
1105 }
1106 
1107 /*
1108  * Scan the exit callout list for the given item and remove it.
1109  * Returns the number of items removed (0 or 1)
1110  */
1111 int
1112 rm_at_exit(exitlist_fn function)
1113 {
1114 	struct exitlist *ep;
1115 
1116 	TAILQ_FOREACH(ep, &exit_list, next) {
1117 		if (ep->function == function) {
1118 			TAILQ_REMOVE(&exit_list, ep, next);
1119 			kfree(ep, M_ATEXIT);
1120 			return(1);
1121 		}
1122 	}
1123 	return (0);
1124 }
1125 
1126 /*
1127  * LWP reaper related code.
1128  */
1129 static void
1130 reaplwps(void *context, int dummy)
1131 {
1132 	struct lwplist *lwplist = context;
1133 	struct lwp *lp;
1134 
1135 	lwkt_gettoken(&deadlwp_token);
1136 	while ((lp = LIST_FIRST(lwplist))) {
1137 		LIST_REMOVE(lp, u.lwp_reap_entry);
1138 		reaplwp(lp);
1139 	}
1140 	lwkt_reltoken(&deadlwp_token);
1141 }
1142 
1143 static void
1144 reaplwp(struct lwp *lp)
1145 {
1146 	while (lwp_wait(lp) == 0)
1147 		;
1148 	lwp_dispose(lp);
1149 }
1150 
1151 static void
1152 deadlwp_init(void)
1153 {
1154 	int cpu;
1155 
1156 	for (cpu = 0; cpu < ncpus; cpu++) {
1157 		LIST_INIT(&deadlwp_list[cpu]);
1158 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1159 					    M_DEVBUF, M_WAITOK);
1160 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1161 	}
1162 }
1163 
1164 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1165