xref: /dragonfly/sys/kern/kern_exit.c (revision e98bdfd3)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysproto.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/proc.h>
47 #include <sys/ktrace.h>
48 #include <sys/pioctl.h>
49 #include <sys/tty.h>
50 #include <sys/wait.h>
51 #include <sys/vnode.h>
52 #include <sys/resourcevar.h>
53 #include <sys/signalvar.h>
54 #include <sys/taskqueue.h>
55 #include <sys/ptrace.h>
56 #include <sys/acct.h>		/* for acct_process() function prototype */
57 #include <sys/filedesc.h>
58 #include <sys/shm.h>
59 #include <sys/sem.h>
60 #include <sys/jail.h>
61 #include <sys/kern_syscall.h>
62 #include <sys/unistd.h>
63 #include <sys/eventhandler.h>
64 #include <sys/dsched.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <sys/lock.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_extern.h>
72 #include <sys/user.h>
73 
74 #include <sys/refcount.h>
75 #include <sys/thread2.h>
76 #include <sys/sysref2.h>
77 #include <sys/mplock2.h>
78 
79 #include <machine/vmm.h>
80 
81 static void reaplwps(void *context, int dummy);
82 static void reaplwp(struct lwp *lp);
83 static void killlwps(struct lwp *lp);
84 
85 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
86 
87 /*
88  * callout list for things to do at exit time
89  */
90 struct exitlist {
91 	exitlist_fn function;
92 	TAILQ_ENTRY(exitlist) next;
93 };
94 
95 TAILQ_HEAD(exit_list_head, exitlist);
96 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
97 
98 /*
99  * LWP reaper data
100  */
101 static struct task *deadlwp_task[MAXCPU];
102 static struct lwplist deadlwp_list[MAXCPU];
103 static struct lwkt_token deadlwp_token[MAXCPU];
104 
105 /*
106  * exit --
107  *	Death of process.
108  *
109  * SYS_EXIT_ARGS(int rval)
110  */
111 int
112 sys_exit(struct exit_args *uap)
113 {
114 	exit1(W_EXITCODE(uap->rval, 0));
115 	/* NOTREACHED */
116 }
117 
118 /*
119  * Extended exit --
120  *	Death of a lwp or process with optional bells and whistles.
121  */
122 int
123 sys_extexit(struct extexit_args *uap)
124 {
125 	struct proc *p = curproc;
126 	int action, who;
127 	int error;
128 
129 	action = EXTEXIT_ACTION(uap->how);
130 	who = EXTEXIT_WHO(uap->how);
131 
132 	/* Check parameters before we might perform some action */
133 	switch (who) {
134 	case EXTEXIT_PROC:
135 	case EXTEXIT_LWP:
136 		break;
137 	default:
138 		return (EINVAL);
139 	}
140 
141 	switch (action) {
142 	case EXTEXIT_SIMPLE:
143 		break;
144 	case EXTEXIT_SETINT:
145 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
146 		if (error)
147 			return (error);
148 		break;
149 	default:
150 		return (EINVAL);
151 	}
152 
153 	lwkt_gettoken(&p->p_token);
154 
155 	switch (who) {
156 	case EXTEXIT_LWP:
157 		/*
158 		 * Be sure only to perform a simple lwp exit if there is at
159 		 * least one more lwp in the proc, which will call exit1()
160 		 * later, otherwise the proc will be an UNDEAD and not even a
161 		 * SZOMB!
162 		 */
163 		if (p->p_nthreads > 1) {
164 			lwp_exit(0, NULL);	/* called w/ p_token held */
165 			/* NOT REACHED */
166 		}
167 		/* else last lwp in proc:  do the real thing */
168 		/* FALLTHROUGH */
169 	default:	/* to help gcc */
170 	case EXTEXIT_PROC:
171 		lwkt_reltoken(&p->p_token);
172 		exit1(W_EXITCODE(uap->status, 0));
173 		/* NOTREACHED */
174 	}
175 
176 	/* NOTREACHED */
177 	lwkt_reltoken(&p->p_token);	/* safety */
178 }
179 
180 /*
181  * Kill all lwps associated with the current process except the
182  * current lwp.   Return an error if we race another thread trying to
183  * do the same thing and lose the race.
184  *
185  * If forexec is non-zero the current thread and process flags are
186  * cleaned up so they can be reused.
187  *
188  * Caller must hold curproc->p_token
189  */
190 int
191 killalllwps(int forexec)
192 {
193 	struct lwp *lp = curthread->td_lwp;
194 	struct proc *p = lp->lwp_proc;
195 	int fakestop;
196 
197 	/*
198 	 * Interlock against P_WEXIT.  Only one of the process's thread
199 	 * is allowed to do the master exit.
200 	 */
201 	if (p->p_flags & P_WEXIT)
202 		return (EALREADY);
203 	p->p_flags |= P_WEXIT;
204 
205 	/*
206 	 * Set temporary stopped state in case we are racing a coredump.
207 	 * Otherwise the coredump may hang forever.
208 	 */
209 	if (lp->lwp_mpflags & LWP_MP_WSTOP) {
210 		fakestop = 0;
211 	} else {
212 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
213 		++p->p_nstopped;
214 		fakestop = 1;
215 		wakeup(&p->p_nstopped);
216 	}
217 
218 	/*
219 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
220 	 */
221 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
222 	if (p->p_nthreads > 1)
223 		killlwps(lp);
224 
225 	/*
226 	 * Undo temporary stopped state
227 	 */
228 	if (fakestop) {
229 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
230 		--p->p_nstopped;
231 	}
232 
233 	/*
234 	 * If doing this for an exec, clean up the remaining thread
235 	 * (us) for continuing operation after all the other threads
236 	 * have been killed.
237 	 */
238 	if (forexec) {
239 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
240 		p->p_flags &= ~P_WEXIT;
241 	}
242 	return(0);
243 }
244 
245 /*
246  * Kill all LWPs except the current one.  Do not try to signal
247  * LWPs which have exited on their own or have already been
248  * signaled.
249  */
250 static void
251 killlwps(struct lwp *lp)
252 {
253 	struct proc *p = lp->lwp_proc;
254 	struct lwp *tlp;
255 
256 	/*
257 	 * Kill the remaining LWPs.  We must send the signal before setting
258 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
259 	 * races.  tlp must be held across the call as it might block and
260 	 * allow the target lwp to rip itself out from under our loop.
261 	 */
262 	FOREACH_LWP_IN_PROC(tlp, p) {
263 		LWPHOLD(tlp);
264 		lwkt_gettoken(&tlp->lwp_token);
265 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
266 			lwpsignal(p, tlp, SIGKILL);
267 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
268 		}
269 		lwkt_reltoken(&tlp->lwp_token);
270 		LWPRELE(tlp);
271 	}
272 
273 	/*
274 	 * Wait for everything to clear out.
275 	 */
276 	while (p->p_nthreads > 1)
277 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
278 }
279 
280 /*
281  * Exit: deallocate address space and other resources, change proc state
282  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
283  * status and rusage for wait().  Check for child processes and orphan them.
284  */
285 void
286 exit1(int rv)
287 {
288 	struct thread *td = curthread;
289 	struct proc *p = td->td_proc;
290 	struct lwp *lp = td->td_lwp;
291 	struct proc *q;
292 	struct proc *pp;
293 	struct proc *reproc;
294 	struct sysreaper *reap;
295 	struct vmspace *vm;
296 	struct vnode *vtmp;
297 	struct exitlist *ep;
298 	int error;
299 
300 	lwkt_gettoken(&p->p_token);
301 
302 	if (p->p_pid == 1) {
303 		kprintf("init died (signal %d, exit %d)\n",
304 		    WTERMSIG(rv), WEXITSTATUS(rv));
305 		panic("Going nowhere without my init!");
306 	}
307 	varsymset_clean(&p->p_varsymset);
308 	lockuninit(&p->p_varsymset.vx_lock);
309 
310 	/*
311 	 * Kill all lwps associated with the current process, return an
312 	 * error if we race another thread trying to do the same thing
313 	 * and lose the race.
314 	 */
315 	error = killalllwps(0);
316 	if (error) {
317 		lwp_exit(0, NULL);
318 		/* NOT REACHED */
319 	}
320 
321 	/* are we a task leader? */
322 	if (p == p->p_leader) {
323         	struct kill_args killArgs;
324 		killArgs.signum = SIGKILL;
325 		q = p->p_peers;
326 		while(q) {
327 			killArgs.pid = q->p_pid;
328 			/*
329 		         * The interface for kill is better
330 			 * than the internal signal
331 			 */
332 			sys_kill(&killArgs);
333 			q = q->p_peers;
334 		}
335 		while (p->p_peers)
336 			tsleep((caddr_t)p, 0, "exit1", 0);
337 	}
338 
339 #ifdef PGINPROF
340 	vmsizmon();
341 #endif
342 	STOPEVENT(p, S_EXIT, rv);
343 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
344 
345 	/*
346 	 * Check if any loadable modules need anything done at process exit.
347 	 * e.g. SYSV IPC stuff
348 	 * XXX what if one of these generates an error?
349 	 */
350 	p->p_xstat = rv;
351 	EVENTHANDLER_INVOKE(process_exit, p);
352 
353 	/*
354 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
355 	 *	Maybe we should move everything to use eventhandler.
356 	 */
357 	TAILQ_FOREACH(ep, &exit_list, next)
358 		(*ep->function)(td);
359 
360 	if (p->p_flags & P_PROFIL)
361 		stopprofclock(p);
362 
363 	SIGEMPTYSET(p->p_siglist);
364 	SIGEMPTYSET(lp->lwp_siglist);
365 	if (timevalisset(&p->p_realtimer.it_value))
366 		callout_stop_sync(&p->p_ithandle);
367 
368 	/*
369 	 * Reset any sigio structures pointing to us as a result of
370 	 * F_SETOWN with our pid.
371 	 */
372 	funsetownlst(&p->p_sigiolst);
373 
374 	/*
375 	 * Close open files and release open-file table.
376 	 * This may block!
377 	 */
378 	fdfree(p, NULL);
379 
380 	if (p->p_leader->p_peers) {
381 		q = p->p_leader;
382 		while(q->p_peers != p)
383 			q = q->p_peers;
384 		q->p_peers = p->p_peers;
385 		wakeup((caddr_t)p->p_leader);
386 	}
387 
388 	/*
389 	 * XXX Shutdown SYSV semaphores
390 	 */
391 	semexit(p);
392 
393 	KKASSERT(p->p_numposixlocks == 0);
394 
395 	/* The next two chunks should probably be moved to vmspace_exit. */
396 	vm = p->p_vmspace;
397 
398 	/*
399 	 * Clean up data related to virtual kernel operation.  Clean up
400 	 * any vkernel context related to the current lwp now so we can
401 	 * destroy p_vkernel.
402 	 */
403 	if (p->p_vkernel) {
404 		vkernel_lwp_exit(lp);
405 		vkernel_exit(p);
406 	}
407 
408 	/*
409 	 * Release the user portion of address space.  The exitbump prevents
410 	 * the vmspace from being completely eradicated (using holdcnt).
411 	 * This releases references to vnodes, which could cause I/O if the
412 	 * file has been unlinked.  We need to do this early enough that
413 	 * we can still sleep.
414 	 *
415 	 * We can't free the entire vmspace as the kernel stack may be mapped
416 	 * within that space also.
417 	 *
418 	 * Processes sharing the same vmspace may exit in one order, and
419 	 * get cleaned up by vmspace_exit() in a different order.  The
420 	 * last exiting process to reach this point releases as much of
421 	 * the environment as it can, and the last process cleaned up
422 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
423 	 * remainder.
424 	 */
425 	vmspace_relexit(vm);
426 
427 	if (SESS_LEADER(p)) {
428 		struct session *sp = p->p_session;
429 
430 		if (sp->s_ttyvp) {
431 			/*
432 			 * We are the controlling process.  Signal the
433 			 * foreground process group, drain the controlling
434 			 * terminal, and revoke access to the controlling
435 			 * terminal.
436 			 *
437 			 * NOTE: while waiting for the process group to exit
438 			 * it is possible that one of the processes in the
439 			 * group will revoke the tty, so the ttyclosesession()
440 			 * function will re-check sp->s_ttyvp.
441 			 */
442 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
443 				if (sp->s_ttyp->t_pgrp)
444 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
445 				ttywait(sp->s_ttyp);
446 				ttyclosesession(sp, 1); /* also revoke */
447 			}
448 			/*
449 			 * Release the tty.  If someone has it open via
450 			 * /dev/tty then close it (since they no longer can
451 			 * once we've NULL'd it out).
452 			 */
453 			ttyclosesession(sp, 0);
454 
455 			/*
456 			 * s_ttyp is not zero'd; we use this to indicate
457 			 * that the session once had a controlling terminal.
458 			 * (for logging and informational purposes)
459 			 */
460 		}
461 		sp->s_leader = NULL;
462 	}
463 	fixjobc(p, p->p_pgrp, 0);
464 	(void)acct_process(p);
465 #ifdef KTRACE
466 	/*
467 	 * release trace file
468 	 */
469 	if (p->p_tracenode)
470 		ktrdestroy(&p->p_tracenode);
471 	p->p_traceflag = 0;
472 #endif
473 	/*
474 	 * Release reference to text vnode
475 	 */
476 	if ((vtmp = p->p_textvp) != NULL) {
477 		p->p_textvp = NULL;
478 		vrele(vtmp);
479 	}
480 
481 	/* Release namecache handle to text file */
482 	if (p->p_textnch.ncp)
483 		cache_drop(&p->p_textnch);
484 
485 	/*
486 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
487 	 * will block on the PHOLD() the parent is doing.
488 	 *
489 	 * We are using the flag as an interlock so an atomic op is
490 	 * necessary to synchronize with the parent's cpu.
491 	 */
492 	if (p->p_flags & P_PPWAIT) {
493 		if (p->p_pptr && p->p_pptr->p_upmap)
494 			p->p_pptr->p_upmap->invfork = 0;
495 		atomic_clear_int(&p->p_flags, P_PPWAIT);
496 		wakeup(p->p_pptr);
497 	}
498 
499 	/*
500 	 * Move the process to the zombie list.  This will block
501 	 * until the process p_lock count reaches 0.  The process will
502 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
503 	 * which is called from cpu_proc_exit().
504 	 *
505 	 * Interlock against waiters using p_waitgen.  We increment
506 	 * p_waitgen after completing the move of our process to the
507 	 * zombie list.
508 	 *
509 	 * WARNING: pp becomes stale when we block, clear it now as a
510 	 *	    reminder.
511 	 */
512 	proc_move_allproc_zombie(p);
513 	pp = p->p_pptr;
514 	atomic_add_long(&pp->p_waitgen, 1);
515 	pp = NULL;
516 
517 	/*
518 	 * release controlled reaper for exit if we own it and return the
519 	 * remaining reaper (the one for us), which we will drop after we
520 	 * are done.
521 	 */
522 	reap = reaper_exit(p);
523 
524 	/*
525 	 * Reparent all of this process's children to the init process or
526 	 * to the designated reaper.  We must hold the reaper's p_token in
527 	 * order to safely mess with p_children.
528 	 *
529 	 * We already hold p->p_token (to remove the children from our list).
530 	 */
531 	reproc = NULL;
532 	q = LIST_FIRST(&p->p_children);
533 	if (q) {
534 		reproc = reaper_get(reap);
535 		lwkt_gettoken(&reproc->p_token);
536 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
537 			PHOLD(q);
538 			lwkt_gettoken(&q->p_token);
539 			if (q != LIST_FIRST(&p->p_children)) {
540 				lwkt_reltoken(&q->p_token);
541 				PRELE(q);
542 				continue;
543 			}
544 			LIST_REMOVE(q, p_sibling);
545 			LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
546 			q->p_pptr = reproc;
547 			q->p_sigparent = SIGCHLD;
548 
549 			/*
550 			 * Traced processes are killed
551 			 * since their existence means someone is screwing up.
552 			 */
553 			if (q->p_flags & P_TRACED) {
554 				q->p_flags &= ~P_TRACED;
555 				ksignal(q, SIGKILL);
556 			}
557 			lwkt_reltoken(&q->p_token);
558 			PRELE(q);
559 		}
560 		lwkt_reltoken(&reproc->p_token);
561 		wakeup(reproc);
562 	}
563 
564 	/*
565 	 * Save exit status and final rusage info, adding in child rusage
566 	 * info and self times.
567 	 */
568 	calcru_proc(p, &p->p_ru);
569 	ruadd(&p->p_ru, &p->p_cru);
570 
571 	/*
572 	 * notify interested parties of our demise.
573 	 */
574 	KNOTE(&p->p_klist, NOTE_EXIT);
575 
576 	/*
577 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
578 	 * flag set, or if the handler is set to SIG_IGN, notify the reaper
579 	 * instead (it will handle this situation).
580 	 *
581 	 * NOTE: The reaper can still be the parent process.
582 	 *
583 	 * (must reload pp)
584 	 */
585 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
586 		if (reproc == NULL)
587 			reproc = reaper_get(reap);
588 		proc_reparent(p, reproc);
589 	}
590 	if (reproc)
591 		PRELE(reproc);
592 	if (reap)
593 		reaper_drop(reap);
594 
595 	/*
596 	 * Signal (possibly new) parent.
597 	 */
598 	pp = p->p_pptr;
599 	PHOLD(pp);
600 	if (p->p_sigparent && pp != initproc) {
601 		int sig = p->p_sigparent;
602 
603 		if (sig != SIGUSR1 && sig != SIGCHLD)
604 			sig = SIGCHLD;
605 	        ksignal(pp, sig);
606 	} else {
607 	        ksignal(pp, SIGCHLD);
608 	}
609 	p->p_flags &= ~P_TRACED;
610 	PRELE(pp);
611 
612 	/*
613 	 * cpu_exit is responsible for clearing curproc, since
614 	 * it is heavily integrated with the thread/switching sequence.
615 	 *
616 	 * Other substructures are freed from wait().
617 	 */
618 	plimit_free(p);
619 
620 	/*
621 	 * Finally, call machine-dependent code to release as many of the
622 	 * lwp's resources as we can and halt execution of this thread.
623 	 *
624 	 * pp is a wild pointer now but still the correct wakeup() target.
625 	 * lwp_exit() only uses it to send the wakeup() signal to the likely
626 	 * parent.  Any reparenting race that occurs will get a signal
627 	 * automatically and not be an issue.
628 	 */
629 	lwp_exit(1, pp);
630 }
631 
632 /*
633  * Eventually called by every exiting LWP
634  *
635  * p->p_token must be held.  mplock may be held and will be released.
636  */
637 void
638 lwp_exit(int masterexit, void *waddr)
639 {
640 	struct thread *td = curthread;
641 	struct lwp *lp = td->td_lwp;
642 	struct proc *p = lp->lwp_proc;
643 	int dowake = 0;
644 
645 	/*
646 	 * Release the current user process designation on the process so
647 	 * the userland scheduler can work in someone else.
648 	 */
649 	p->p_usched->release_curproc(lp);
650 
651 	/*
652 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
653 	 * make sure it is set here.
654 	 */
655 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
656 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
657 
658 	/*
659 	 * Clean up any virtualization
660 	 */
661 	if (lp->lwp_vkernel)
662 		vkernel_lwp_exit(lp);
663 
664 	if (td->td_vmm)
665 		vmm_vmdestroy();
666 
667 	/*
668 	 * Clean up select/poll support
669 	 */
670 	kqueue_terminate(&lp->lwp_kqueue);
671 
672 	/*
673 	 * Clean up any syscall-cached ucred
674 	 */
675 	if (td->td_ucred) {
676 		crfree(td->td_ucred);
677 		td->td_ucred = NULL;
678 	}
679 
680 	/*
681 	 * Nobody actually wakes us when the lock
682 	 * count reaches zero, so just wait one tick.
683 	 */
684 	while (lp->lwp_lock > 0)
685 		tsleep(lp, 0, "lwpexit", 1);
686 
687 	/* Hand down resource usage to our proc */
688 	ruadd(&p->p_ru, &lp->lwp_ru);
689 
690 	/*
691 	 * If we don't hold the process until the LWP is reaped wait*()
692 	 * may try to dispose of its vmspace before all the LWPs have
693 	 * actually terminated.
694 	 */
695 	PHOLD(p);
696 
697 	/*
698 	 * Do any remaining work that might block on us.  We should be
699 	 * coded such that further blocking is ok after decrementing
700 	 * p_nthreads but don't take the chance.
701 	 */
702 	dsched_exit_thread(td);
703 	biosched_done(curthread);
704 
705 	/*
706 	 * We have to use the reaper for all the LWPs except the one doing
707 	 * the master exit.  The LWP doing the master exit can just be
708 	 * left on p_lwps and the process reaper will deal with it
709 	 * synchronously, which is much faster.
710 	 *
711 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
712 	 *
713 	 * The process is left held until the reaper calls lwp_dispose() on
714 	 * the lp (after calling lwp_wait()).
715 	 */
716 	if (masterexit == 0) {
717 		int cpu = mycpuid;
718 
719 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
720 		--p->p_nthreads;
721 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
722 			dowake = 1;
723 		lwkt_gettoken(&deadlwp_token[cpu]);
724 		LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
725 		taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
726 		lwkt_reltoken(&deadlwp_token[cpu]);
727 	} else {
728 		--p->p_nthreads;
729 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
730 			dowake = 1;
731 	}
732 
733 	/*
734 	 * We no longer need p_token.
735 	 *
736 	 * Tell the userland scheduler that we are going away
737 	 */
738 	lwkt_reltoken(&p->p_token);
739 	p->p_usched->heuristic_exiting(lp, p);
740 
741 	/*
742 	 * Issue late wakeups after releasing our token to give us a chance
743 	 * to deschedule and switch away before another cpu in a wait*()
744 	 * reaps us.  This is done as late as possible to reduce contention.
745 	 */
746 	if (dowake)
747 		wakeup(&p->p_nthreads);
748 	if (waddr)
749 		wakeup(waddr);
750 
751 	cpu_lwp_exit();
752 }
753 
754 /*
755  * Wait until a lwp is completely dead.  The final interlock in this drama
756  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
757  * switchout.
758  *
759  * At the point TDF_EXITING is set a complete exit is accomplished when
760  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
761  * post-switch interlock flags that can be used to wait for the TDF_
762  * flags to clear.
763  *
764  * Returns non-zero on success, and zero if the caller needs to retry
765  * the lwp_wait().
766  */
767 static int
768 lwp_wait(struct lwp *lp)
769 {
770 	struct thread *td = lp->lwp_thread;
771 	u_int mpflags;
772 
773 	KKASSERT(lwkt_preempted_proc() != lp);
774 
775 	/*
776 	 * This bit of code uses the thread destruction interlock
777 	 * managed by lwkt_switch_return() to wait for the lwp's
778 	 * thread to completely disengage.
779 	 *
780 	 * It is possible for us to race another cpu core so we
781 	 * have to do this correctly.
782 	 */
783 	for (;;) {
784 		mpflags = td->td_mpflags;
785 		cpu_ccfence();
786 		if (mpflags & TDF_MP_EXITSIG)
787 			break;
788 		tsleep_interlock(td, 0);
789 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
790 				      mpflags | TDF_MP_EXITWAIT)) {
791 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
792 		}
793 	}
794 
795 	/*
796 	 * We've already waited for the core exit but there can still
797 	 * be other refs from e.g. process scans and such.
798 	 */
799 	if (lp->lwp_lock > 0) {
800 		tsleep(lp, 0, "lwpwait1", 1);
801 		return(0);
802 	}
803 	if (td->td_refs) {
804 		tsleep(td, 0, "lwpwait2", 1);
805 		return(0);
806 	}
807 
808 	/*
809 	 * Now that we have the thread destruction interlock these flags
810 	 * really should already be cleaned up, keep a check for safety.
811 	 *
812 	 * We can't rip its stack out from under it until TDF_EXITING is
813 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
814 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
815 	 * will be cleared temporarily if a thread gets preempted.
816 	 */
817 	while ((td->td_flags & (TDF_RUNNING |
818 				TDF_RUNQ |
819 			        TDF_PREEMPT_LOCK |
820 			        TDF_EXITING)) != TDF_EXITING) {
821 		tsleep(lp, 0, "lwpwait3", 1);
822 		return (0);
823 	}
824 
825 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
826 		("lwp_wait: td %p (%s) still on run or sleep queue",
827 		td, td->td_comm));
828 	return (1);
829 }
830 
831 /*
832  * Release the resources associated with a lwp.
833  * The lwp must be completely dead.
834  */
835 void
836 lwp_dispose(struct lwp *lp)
837 {
838 	struct thread *td = lp->lwp_thread;
839 
840 	KKASSERT(lwkt_preempted_proc() != lp);
841 	KKASSERT(lp->lwp_lock == 0);
842 	KKASSERT(td->td_refs == 0);
843 	KKASSERT((td->td_flags & (TDF_RUNNING |
844 				  TDF_RUNQ |
845 				  TDF_PREEMPT_LOCK |
846 				  TDF_EXITING)) == TDF_EXITING);
847 
848 	PRELE(lp->lwp_proc);
849 	lp->lwp_proc = NULL;
850 	if (td != NULL) {
851 		td->td_proc = NULL;
852 		td->td_lwp = NULL;
853 		lp->lwp_thread = NULL;
854 		lwkt_free_thread(td);
855 	}
856 	kfree(lp, M_LWP);
857 }
858 
859 int
860 sys_wait4(struct wait_args *uap)
861 {
862 	struct rusage rusage;
863 	int error, status;
864 
865 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
866 			  uap->options, (uap->rusage ? &rusage : NULL),
867 			  &uap->sysmsg_result);
868 
869 	if (error == 0 && uap->status)
870 		error = copyout(&status, uap->status, sizeof(*uap->status));
871 	if (error == 0 && uap->rusage)
872 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
873 	return (error);
874 }
875 
876 /*
877  * wait1()
878  *
879  * wait_args(int pid, int *status, int options, struct rusage *rusage)
880  */
881 int
882 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
883 {
884 	struct thread *td = curthread;
885 	struct lwp *lp;
886 	struct proc *q = td->td_proc;
887 	struct proc *p, *t;
888 	struct pargs *pa;
889 	struct sigacts *ps;
890 	int nfound, error;
891 	long waitgen;
892 
893 	if (pid == 0)
894 		pid = -q->p_pgid;
895 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
896 		return (EINVAL);
897 
898 	/*
899 	 * Protect the q->p_children list
900 	 */
901 	lwkt_gettoken(&q->p_token);
902 loop:
903 	/*
904 	 * All sorts of things can change due to blocking so we have to loop
905 	 * all the way back up here.
906 	 *
907 	 * The problem is that if a process group is stopped and the parent
908 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
909 	 * of the child and then stop itself when it tries to return from the
910 	 * system call.  When the process group is resumed the parent will
911 	 * then get the STOP status even though the child has now resumed
912 	 * (a followup wait*() will get the CONT status).
913 	 *
914 	 * Previously the CONT would overwrite the STOP because the tstop
915 	 * was handled within tsleep(), and the parent would only see
916 	 * the CONT when both are stopped and continued together.  This little
917 	 * two-line hack restores this effect.
918 	 */
919 	while (q->p_stat == SSTOP || q->p_stat == SCORE)
920             tstop();
921 
922 	nfound = 0;
923 
924 	/*
925 	 * Loop on children.
926 	 *
927 	 * NOTE: We don't want to break q's p_token in the loop for the
928 	 *	 case where no children are found or we risk breaking the
929 	 *	 interlock between child and parent.
930 	 */
931 	waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
932 	LIST_FOREACH(p, &q->p_children, p_sibling) {
933 		if (pid != WAIT_ANY &&
934 		    p->p_pid != pid && p->p_pgid != -pid) {
935 			continue;
936 		}
937 
938 		/*
939 		 * This special case handles a kthread spawned by linux_clone
940 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
941 		 * functions need to be able to distinguish between waiting
942 		 * on a process and waiting on a thread.  It is a thread if
943 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
944 		 * signifies we want to wait for threads and not processes.
945 		 */
946 		if ((p->p_sigparent != SIGCHLD) ^
947 		    ((options & WLINUXCLONE) != 0)) {
948 			continue;
949 		}
950 
951 		nfound++;
952 		if (p->p_stat == SZOMB) {
953 			/*
954 			 * We may go into SZOMB with threads still present.
955 			 * We must wait for them to exit before we can reap
956 			 * the master thread, otherwise we may race reaping
957 			 * non-master threads.
958 			 *
959 			 * Only this routine can remove a process from
960 			 * the zombie list and destroy it, use PACQUIREZOMB()
961 			 * to serialize us and loop if it blocks (interlocked
962 			 * by the parent's q->p_token).
963 			 *
964 			 * WARNING!  (p) can be invalid when PHOLDZOMB(p)
965 			 *	     returns non-zero.  Be sure not to
966 			 *	     mess with it.
967 			 */
968 			if (PHOLDZOMB(p))
969 				goto loop;
970 			lwkt_gettoken(&p->p_token);
971 			if (p->p_pptr != q) {
972 				lwkt_reltoken(&p->p_token);
973 				PRELEZOMB(p);
974 				goto loop;
975 			}
976 			while (p->p_nthreads > 0) {
977 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
978 			}
979 
980 			/*
981 			 * Reap any LWPs left in p->p_lwps.  This is usually
982 			 * just the last LWP.  This must be done before
983 			 * we loop on p_lock since the lwps hold a ref on
984 			 * it as a vmspace interlock.
985 			 *
986 			 * Once that is accomplished p_nthreads had better
987 			 * be zero.
988 			 */
989 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
990 				/*
991 				 * Make sure no one is using this lwp, before
992 				 * it is removed from the tree.  If we didn't
993 				 * wait it here, lwp tree iteration with
994 				 * blocking operation would be broken.
995 				 */
996 				while (lp->lwp_lock > 0)
997 					tsleep(lp, 0, "zomblwp", 1);
998 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
999 				reaplwp(lp);
1000 			}
1001 			KKASSERT(p->p_nthreads == 0);
1002 
1003 			/*
1004 			 * Don't do anything really bad until all references
1005 			 * to the process go away.  This may include other
1006 			 * LWPs which are still in the process of being
1007 			 * reaped.  We can't just pull the rug out from under
1008 			 * them because they may still be using the VM space.
1009 			 *
1010 			 * Certain kernel facilities such as /proc will also
1011 			 * put a hold on the process for short periods of
1012 			 * time.
1013 			 */
1014 			PRELE(p);
1015 			PSTALL(p, "reap3", 0);
1016 
1017 			/* Take care of our return values. */
1018 			*res = p->p_pid;
1019 
1020 			if (status)
1021 				*status = p->p_xstat;
1022 			if (rusage)
1023 				*rusage = p->p_ru;
1024 
1025 			/*
1026 			 * If we got the child via a ptrace 'attach',
1027 			 * we need to give it back to the old parent.
1028 			 */
1029 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1030 				PHOLD(p);
1031 				p->p_oppid = 0;
1032 				proc_reparent(p, t);
1033 				ksignal(t, SIGCHLD);
1034 				wakeup((caddr_t)t);
1035 				error = 0;
1036 				PRELE(t);
1037 				lwkt_reltoken(&p->p_token);
1038 				PRELEZOMB(p);
1039 				goto done;
1040 			}
1041 
1042 			/*
1043 			 * Unlink the proc from its process group so that
1044 			 * the following operations won't lead to an
1045 			 * inconsistent state for processes running down
1046 			 * the zombie list.
1047 			 */
1048 			proc_remove_zombie(p);
1049 			proc_userunmap(p);
1050 			lwkt_reltoken(&p->p_token);
1051 			leavepgrp(p);
1052 
1053 			p->p_xstat = 0;
1054 			ruadd(&q->p_cru, &p->p_ru);
1055 
1056 			/*
1057 			 * Decrement the count of procs running with this uid.
1058 			 */
1059 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1060 
1061 			/*
1062 			 * Free up credentials.
1063 			 */
1064 			crfree(p->p_ucred);
1065 			p->p_ucred = NULL;
1066 
1067 			/*
1068 			 * Remove unused arguments
1069 			 */
1070 			pa = p->p_args;
1071 			p->p_args = NULL;
1072 			if (pa && refcount_release(&pa->ar_ref)) {
1073 				kfree(pa, M_PARGS);
1074 				pa = NULL;
1075 			}
1076 
1077 			ps = p->p_sigacts;
1078 			p->p_sigacts = NULL;
1079 			if (ps && refcount_release(&ps->ps_refcnt)) {
1080 				kfree(ps, M_SUBPROC);
1081 				ps = NULL;
1082 			}
1083 
1084 			/*
1085 			 * Our exitingcount was incremented when the process
1086 			 * became a zombie, now that the process has been
1087 			 * removed from (almost) all lists we should be able
1088 			 * to safely destroy its vmspace.  Wait for any current
1089 			 * holders to go away (so the vmspace remains stable),
1090 			 * then scrap it.
1091 			 */
1092 			PSTALL(p, "reap4", 0);
1093 			vmspace_exitfree(p);
1094 			PSTALL(p, "reap5", 0);
1095 
1096 			/*
1097 			 * NOTE: We have to officially release ZOMB in order
1098 			 *	 to ensure that a racing thread in kern_wait()
1099 			 *	 which blocked on ZOMB is woken up.
1100 			 */
1101 			PHOLD(p);
1102 			PRELEZOMB(p);
1103 			kfree(p, M_PROC);
1104 			atomic_add_int(&nprocs, -1);
1105 			error = 0;
1106 			goto done;
1107 		}
1108 		if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1109 		    (p->p_flags & P_WAITED) == 0 &&
1110 		    ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1111 			PHOLD(p);
1112 			lwkt_gettoken(&p->p_token);
1113 			if (p->p_pptr != q) {
1114 				lwkt_reltoken(&p->p_token);
1115 				PRELE(p);
1116 				goto loop;
1117 			}
1118 			if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1119 			    (p->p_flags & P_WAITED) != 0 ||
1120 			    ((p->p_flags & P_TRACED) == 0 &&
1121 			     (options & WUNTRACED) == 0)) {
1122 				lwkt_reltoken(&p->p_token);
1123 				PRELE(p);
1124 				goto loop;
1125 			}
1126 
1127 			p->p_flags |= P_WAITED;
1128 
1129 			*res = p->p_pid;
1130 			if (status)
1131 				*status = W_STOPCODE(p->p_xstat);
1132 			/* Zero rusage so we get something consistent. */
1133 			if (rusage)
1134 				bzero(rusage, sizeof(*rusage));
1135 			error = 0;
1136 			lwkt_reltoken(&p->p_token);
1137 			PRELE(p);
1138 			goto done;
1139 		}
1140 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1141 			PHOLD(p);
1142 			lwkt_gettoken(&p->p_token);
1143 			if (p->p_pptr != q) {
1144 				lwkt_reltoken(&p->p_token);
1145 				PRELE(p);
1146 				goto loop;
1147 			}
1148 			if ((p->p_flags & P_CONTINUED) == 0) {
1149 				lwkt_reltoken(&p->p_token);
1150 				PRELE(p);
1151 				goto loop;
1152 			}
1153 
1154 			*res = p->p_pid;
1155 			p->p_flags &= ~P_CONTINUED;
1156 
1157 			if (status)
1158 				*status = SIGCONT;
1159 			error = 0;
1160 			lwkt_reltoken(&p->p_token);
1161 			PRELE(p);
1162 			goto done;
1163 		}
1164 	}
1165 	if (nfound == 0) {
1166 		error = ECHILD;
1167 		goto done;
1168 	}
1169 	if (options & WNOHANG) {
1170 		*res = 0;
1171 		error = 0;
1172 		goto done;
1173 	}
1174 
1175 	/*
1176 	 * Wait for signal - interlocked using q->p_waitgen.
1177 	 */
1178 	error = 0;
1179 	while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1180 		tsleep_interlock(q, PCATCH);
1181 		waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1182 		if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1183 			error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1184 			break;
1185 		}
1186 	}
1187 	if (error) {
1188 done:
1189 		lwkt_reltoken(&q->p_token);
1190 		return (error);
1191 	}
1192 	goto loop;
1193 }
1194 
1195 /*
1196  * Change child's parent process to parent.
1197  *
1198  * p_children/p_sibling requires the parent's token, and
1199  * changing pptr requires the child's token, so we have to
1200  * get three tokens to do this operation.  We also need to
1201  * hold pointers that might get ripped out from under us to
1202  * preserve structural integrity.
1203  *
1204  * It is possible to race another reparent or disconnect or other
1205  * similar operation.  We must retry when this situation occurs.
1206  * Once we successfully reparent the process we no longer care
1207  * about any races.
1208  */
1209 void
1210 proc_reparent(struct proc *child, struct proc *parent)
1211 {
1212 	struct proc *opp;
1213 
1214 	PHOLD(parent);
1215 	while ((opp = child->p_pptr) != parent) {
1216 		PHOLD(opp);
1217 		lwkt_gettoken(&opp->p_token);
1218 		lwkt_gettoken(&child->p_token);
1219 		lwkt_gettoken(&parent->p_token);
1220 		if (child->p_pptr != opp) {
1221 			lwkt_reltoken(&parent->p_token);
1222 			lwkt_reltoken(&child->p_token);
1223 			lwkt_reltoken(&opp->p_token);
1224 			PRELE(opp);
1225 			continue;
1226 		}
1227 		LIST_REMOVE(child, p_sibling);
1228 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1229 		child->p_pptr = parent;
1230 		lwkt_reltoken(&parent->p_token);
1231 		lwkt_reltoken(&child->p_token);
1232 		lwkt_reltoken(&opp->p_token);
1233 		if (LIST_EMPTY(&opp->p_children))
1234 			wakeup(opp);
1235 		PRELE(opp);
1236 		break;
1237 	}
1238 	PRELE(parent);
1239 }
1240 
1241 /*
1242  * The next two functions are to handle adding/deleting items on the
1243  * exit callout list
1244  *
1245  * at_exit():
1246  * Take the arguments given and put them onto the exit callout list,
1247  * However first make sure that it's not already there.
1248  * returns 0 on success.
1249  */
1250 
1251 int
1252 at_exit(exitlist_fn function)
1253 {
1254 	struct exitlist *ep;
1255 
1256 #ifdef INVARIANTS
1257 	/* Be noisy if the programmer has lost track of things */
1258 	if (rm_at_exit(function))
1259 		kprintf("WARNING: exit callout entry (%p) already present\n",
1260 		    function);
1261 #endif
1262 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1263 	if (ep == NULL)
1264 		return (ENOMEM);
1265 	ep->function = function;
1266 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1267 	return (0);
1268 }
1269 
1270 /*
1271  * Scan the exit callout list for the given item and remove it.
1272  * Returns the number of items removed (0 or 1)
1273  */
1274 int
1275 rm_at_exit(exitlist_fn function)
1276 {
1277 	struct exitlist *ep;
1278 
1279 	TAILQ_FOREACH(ep, &exit_list, next) {
1280 		if (ep->function == function) {
1281 			TAILQ_REMOVE(&exit_list, ep, next);
1282 			kfree(ep, M_ATEXIT);
1283 			return(1);
1284 		}
1285 	}
1286 	return (0);
1287 }
1288 
1289 /*
1290  * LWP reaper related code.
1291  */
1292 static void
1293 reaplwps(void *context, int dummy)
1294 {
1295 	struct lwplist *lwplist = context;
1296 	struct lwp *lp;
1297 	int cpu = mycpuid;
1298 
1299 	lwkt_gettoken(&deadlwp_token[cpu]);
1300 	while ((lp = LIST_FIRST(lwplist))) {
1301 		LIST_REMOVE(lp, u.lwp_reap_entry);
1302 		reaplwp(lp);
1303 	}
1304 	lwkt_reltoken(&deadlwp_token[cpu]);
1305 }
1306 
1307 static void
1308 reaplwp(struct lwp *lp)
1309 {
1310 	while (lwp_wait(lp) == 0)
1311 		;
1312 	lwp_dispose(lp);
1313 }
1314 
1315 static void
1316 deadlwp_init(void)
1317 {
1318 	int cpu;
1319 
1320 	for (cpu = 0; cpu < ncpus; cpu++) {
1321 		lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1322 		LIST_INIT(&deadlwp_list[cpu]);
1323 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1324 					    M_DEVBUF, M_WAITOK);
1325 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1326 	}
1327 }
1328 
1329 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1330