xref: /dragonfly/sys/kern/kern_exit.c (revision f2a91d31)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysproto.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/proc.h>
47 #include <sys/ktrace.h>
48 #include <sys/pioctl.h>
49 #include <sys/tty.h>
50 #include <sys/wait.h>
51 #include <sys/vnode.h>
52 #include <sys/resourcevar.h>
53 #include <sys/signalvar.h>
54 #include <sys/taskqueue.h>
55 #include <sys/ptrace.h>
56 #include <sys/acct.h>		/* for acct_process() function prototype */
57 #include <sys/filedesc.h>
58 #include <sys/shm.h>
59 #include <sys/sem.h>
60 #include <sys/jail.h>
61 #include <sys/kern_syscall.h>
62 #include <sys/unistd.h>
63 #include <sys/eventhandler.h>
64 #include <sys/dsched.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <sys/lock.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_extern.h>
72 #include <sys/user.h>
73 
74 #include <sys/refcount.h>
75 #include <sys/thread2.h>
76 #include <sys/sysref2.h>
77 #include <sys/mplock2.h>
78 
79 #include <machine/vmm.h>
80 
81 static void reaplwps(void *context, int dummy);
82 static void reaplwp(struct lwp *lp);
83 static void killlwps(struct lwp *lp);
84 
85 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
86 
87 /*
88  * callout list for things to do at exit time
89  */
90 struct exitlist {
91 	exitlist_fn function;
92 	TAILQ_ENTRY(exitlist) next;
93 };
94 
95 TAILQ_HEAD(exit_list_head, exitlist);
96 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
97 
98 /*
99  * LWP reaper data
100  */
101 static struct task *deadlwp_task[MAXCPU];
102 static struct lwplist deadlwp_list[MAXCPU];
103 static struct lwkt_token deadlwp_token[MAXCPU];
104 
105 /*
106  * exit --
107  *	Death of process.
108  *
109  * SYS_EXIT_ARGS(int rval)
110  */
111 int
112 sys_exit(struct exit_args *uap)
113 {
114 	exit1(W_EXITCODE(uap->rval, 0));
115 	/* NOTREACHED */
116 }
117 
118 /*
119  * Extended exit --
120  *	Death of a lwp or process with optional bells and whistles.
121  */
122 int
123 sys_extexit(struct extexit_args *uap)
124 {
125 	struct proc *p = curproc;
126 	int action, who;
127 	int error;
128 
129 	action = EXTEXIT_ACTION(uap->how);
130 	who = EXTEXIT_WHO(uap->how);
131 
132 	/* Check parameters before we might perform some action */
133 	switch (who) {
134 	case EXTEXIT_PROC:
135 	case EXTEXIT_LWP:
136 		break;
137 	default:
138 		return (EINVAL);
139 	}
140 
141 	switch (action) {
142 	case EXTEXIT_SIMPLE:
143 		break;
144 	case EXTEXIT_SETINT:
145 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
146 		if (error)
147 			return (error);
148 		break;
149 	default:
150 		return (EINVAL);
151 	}
152 
153 	lwkt_gettoken(&p->p_token);
154 
155 	switch (who) {
156 	case EXTEXIT_LWP:
157 		/*
158 		 * Be sure only to perform a simple lwp exit if there is at
159 		 * least one more lwp in the proc, which will call exit1()
160 		 * later, otherwise the proc will be an UNDEAD and not even a
161 		 * SZOMB!
162 		 */
163 		if (p->p_nthreads > 1) {
164 			lwp_exit(0, NULL);	/* called w/ p_token held */
165 			/* NOT REACHED */
166 		}
167 		/* else last lwp in proc:  do the real thing */
168 		/* FALLTHROUGH */
169 	default:	/* to help gcc */
170 	case EXTEXIT_PROC:
171 		lwkt_reltoken(&p->p_token);
172 		exit1(W_EXITCODE(uap->status, 0));
173 		/* NOTREACHED */
174 	}
175 
176 	/* NOTREACHED */
177 	lwkt_reltoken(&p->p_token);	/* safety */
178 }
179 
180 /*
181  * Kill all lwps associated with the current process except the
182  * current lwp.   Return an error if we race another thread trying to
183  * do the same thing and lose the race.
184  *
185  * If forexec is non-zero the current thread and process flags are
186  * cleaned up so they can be reused.
187  *
188  * Caller must hold curproc->p_token
189  */
190 int
191 killalllwps(int forexec)
192 {
193 	struct lwp *lp = curthread->td_lwp;
194 	struct proc *p = lp->lwp_proc;
195 	int fakestop;
196 
197 	/*
198 	 * Interlock against P_WEXIT.  Only one of the process's thread
199 	 * is allowed to do the master exit.
200 	 */
201 	if (p->p_flags & P_WEXIT)
202 		return (EALREADY);
203 	p->p_flags |= P_WEXIT;
204 
205 	/*
206 	 * Set temporary stopped state in case we are racing a coredump.
207 	 * Otherwise the coredump may hang forever.
208 	 */
209 	if (lp->lwp_mpflags & LWP_MP_WSTOP) {
210 		fakestop = 0;
211 	} else {
212 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
213 		++p->p_nstopped;
214 		fakestop = 1;
215 		wakeup(&p->p_nstopped);
216 	}
217 
218 	/*
219 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
220 	 */
221 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
222 	if (p->p_nthreads > 1)
223 		killlwps(lp);
224 
225 	/*
226 	 * Undo temporary stopped state
227 	 */
228 	if (fakestop) {
229 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
230 		--p->p_nstopped;
231 	}
232 
233 	/*
234 	 * If doing this for an exec, clean up the remaining thread
235 	 * (us) for continuing operation after all the other threads
236 	 * have been killed.
237 	 */
238 	if (forexec) {
239 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
240 		p->p_flags &= ~P_WEXIT;
241 	}
242 	return(0);
243 }
244 
245 /*
246  * Kill all LWPs except the current one.  Do not try to signal
247  * LWPs which have exited on their own or have already been
248  * signaled.
249  */
250 static void
251 killlwps(struct lwp *lp)
252 {
253 	struct proc *p = lp->lwp_proc;
254 	struct lwp *tlp;
255 
256 	/*
257 	 * Kill the remaining LWPs.  We must send the signal before setting
258 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
259 	 * races.  tlp must be held across the call as it might block and
260 	 * allow the target lwp to rip itself out from under our loop.
261 	 */
262 	FOREACH_LWP_IN_PROC(tlp, p) {
263 		LWPHOLD(tlp);
264 		lwkt_gettoken(&tlp->lwp_token);
265 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
266 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
267 			lwpsignal(p, tlp, SIGKILL);
268 		}
269 		lwkt_reltoken(&tlp->lwp_token);
270 		LWPRELE(tlp);
271 	}
272 
273 	/*
274 	 * Wait for everything to clear out.  Also make sure any tstop()s
275 	 * are signalled (we are holding p_token for the interlock).
276 	 */
277 	wakeup(p);
278 	while (p->p_nthreads > 1)
279 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
280 }
281 
282 /*
283  * Exit: deallocate address space and other resources, change proc state
284  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
285  * status and rusage for wait().  Check for child processes and orphan them.
286  */
287 void
288 exit1(int rv)
289 {
290 	struct thread *td = curthread;
291 	struct proc *p = td->td_proc;
292 	struct lwp *lp = td->td_lwp;
293 	struct proc *q;
294 	struct proc *pp;
295 	struct proc *reproc;
296 	struct sysreaper *reap;
297 	struct vmspace *vm;
298 	struct vnode *vtmp;
299 	struct exitlist *ep;
300 	int error;
301 
302 	lwkt_gettoken(&p->p_token);
303 
304 	if (p->p_pid == 1) {
305 		kprintf("init died (signal %d, exit %d)\n",
306 		    WTERMSIG(rv), WEXITSTATUS(rv));
307 		panic("Going nowhere without my init!");
308 	}
309 	varsymset_clean(&p->p_varsymset);
310 	lockuninit(&p->p_varsymset.vx_lock);
311 
312 	/*
313 	 * Kill all lwps associated with the current process, return an
314 	 * error if we race another thread trying to do the same thing
315 	 * and lose the race.
316 	 */
317 	error = killalllwps(0);
318 	if (error) {
319 		lwp_exit(0, NULL);
320 		/* NOT REACHED */
321 	}
322 
323 	/* are we a task leader? */
324 	if (p == p->p_leader) {
325         	struct kill_args killArgs;
326 		killArgs.signum = SIGKILL;
327 		q = p->p_peers;
328 		while(q) {
329 			killArgs.pid = q->p_pid;
330 			/*
331 		         * The interface for kill is better
332 			 * than the internal signal
333 			 */
334 			sys_kill(&killArgs);
335 			q = q->p_peers;
336 		}
337 		while (p->p_peers)
338 			tsleep((caddr_t)p, 0, "exit1", 0);
339 	}
340 
341 #ifdef PGINPROF
342 	vmsizmon();
343 #endif
344 	STOPEVENT(p, S_EXIT, rv);
345 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
346 
347 	/*
348 	 * Check if any loadable modules need anything done at process exit.
349 	 * e.g. SYSV IPC stuff
350 	 * XXX what if one of these generates an error?
351 	 */
352 	p->p_xstat = rv;
353 	EVENTHANDLER_INVOKE(process_exit, p);
354 
355 	/*
356 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
357 	 *	Maybe we should move everything to use eventhandler.
358 	 */
359 	TAILQ_FOREACH(ep, &exit_list, next)
360 		(*ep->function)(td);
361 
362 	if (p->p_flags & P_PROFIL)
363 		stopprofclock(p);
364 
365 	SIGEMPTYSET(p->p_siglist);
366 	SIGEMPTYSET(lp->lwp_siglist);
367 	if (timevalisset(&p->p_realtimer.it_value))
368 		callout_stop_sync(&p->p_ithandle);
369 
370 	/*
371 	 * Reset any sigio structures pointing to us as a result of
372 	 * F_SETOWN with our pid.
373 	 */
374 	funsetownlst(&p->p_sigiolst);
375 
376 	/*
377 	 * Close open files and release open-file table.
378 	 * This may block!
379 	 */
380 	fdfree(p, NULL);
381 
382 	if (p->p_leader->p_peers) {
383 		q = p->p_leader;
384 		while(q->p_peers != p)
385 			q = q->p_peers;
386 		q->p_peers = p->p_peers;
387 		wakeup((caddr_t)p->p_leader);
388 	}
389 
390 	/*
391 	 * XXX Shutdown SYSV semaphores
392 	 */
393 	semexit(p);
394 
395 	KKASSERT(p->p_numposixlocks == 0);
396 
397 	/* The next two chunks should probably be moved to vmspace_exit. */
398 	vm = p->p_vmspace;
399 
400 	/*
401 	 * Clean up data related to virtual kernel operation.  Clean up
402 	 * any vkernel context related to the current lwp now so we can
403 	 * destroy p_vkernel.
404 	 */
405 	if (p->p_vkernel) {
406 		vkernel_lwp_exit(lp);
407 		vkernel_exit(p);
408 	}
409 
410 	/*
411 	 * Release the user portion of address space.  The exitbump prevents
412 	 * the vmspace from being completely eradicated (using holdcnt).
413 	 * This releases references to vnodes, which could cause I/O if the
414 	 * file has been unlinked.  We need to do this early enough that
415 	 * we can still sleep.
416 	 *
417 	 * We can't free the entire vmspace as the kernel stack may be mapped
418 	 * within that space also.
419 	 *
420 	 * Processes sharing the same vmspace may exit in one order, and
421 	 * get cleaned up by vmspace_exit() in a different order.  The
422 	 * last exiting process to reach this point releases as much of
423 	 * the environment as it can, and the last process cleaned up
424 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
425 	 * remainder.
426 	 *
427 	 * NOTE: Releasing p_token around this call is helpful if the
428 	 *	 vmspace had a huge RSS.  Otherwise some other process
429 	 *	 trying to do an allproc or other scan (like 'ps') may
430 	 *	 stall for a long time.
431 	 */
432 	lwkt_reltoken(&p->p_token);
433 	vmspace_relexit(vm);
434 	lwkt_gettoken(&p->p_token);
435 
436 	if (SESS_LEADER(p)) {
437 		struct session *sp = p->p_session;
438 
439 		if (sp->s_ttyvp) {
440 			/*
441 			 * We are the controlling process.  Signal the
442 			 * foreground process group, drain the controlling
443 			 * terminal, and revoke access to the controlling
444 			 * terminal.
445 			 *
446 			 * NOTE: while waiting for the process group to exit
447 			 * it is possible that one of the processes in the
448 			 * group will revoke the tty, so the ttyclosesession()
449 			 * function will re-check sp->s_ttyvp.
450 			 */
451 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
452 				if (sp->s_ttyp->t_pgrp)
453 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
454 				ttywait(sp->s_ttyp);
455 				ttyclosesession(sp, 1); /* also revoke */
456 			}
457 			/*
458 			 * Release the tty.  If someone has it open via
459 			 * /dev/tty then close it (since they no longer can
460 			 * once we've NULL'd it out).
461 			 */
462 			ttyclosesession(sp, 0);
463 
464 			/*
465 			 * s_ttyp is not zero'd; we use this to indicate
466 			 * that the session once had a controlling terminal.
467 			 * (for logging and informational purposes)
468 			 */
469 		}
470 		sp->s_leader = NULL;
471 	}
472 	fixjobc(p, p->p_pgrp, 0);
473 	(void)acct_process(p);
474 #ifdef KTRACE
475 	/*
476 	 * release trace file
477 	 */
478 	if (p->p_tracenode)
479 		ktrdestroy(&p->p_tracenode);
480 	p->p_traceflag = 0;
481 #endif
482 	/*
483 	 * Release reference to text vnode
484 	 */
485 	if ((vtmp = p->p_textvp) != NULL) {
486 		p->p_textvp = NULL;
487 		vrele(vtmp);
488 	}
489 
490 	/* Release namecache handle to text file */
491 	if (p->p_textnch.ncp)
492 		cache_drop(&p->p_textnch);
493 
494 	/*
495 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
496 	 * will block on the PHOLD() the parent is doing.
497 	 *
498 	 * We are using the flag as an interlock so an atomic op is
499 	 * necessary to synchronize with the parent's cpu.
500 	 */
501 	if (p->p_flags & P_PPWAIT) {
502 		if (p->p_pptr && p->p_pptr->p_upmap)
503 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
504 		atomic_clear_int(&p->p_flags, P_PPWAIT);
505 		wakeup(p->p_pptr);
506 	}
507 
508 	/*
509 	 * Move the process to the zombie list.  This will block
510 	 * until the process p_lock count reaches 0.  The process will
511 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
512 	 * which is called from cpu_proc_exit().
513 	 *
514 	 * Interlock against waiters using p_waitgen.  We increment
515 	 * p_waitgen after completing the move of our process to the
516 	 * zombie list.
517 	 *
518 	 * WARNING: pp becomes stale when we block, clear it now as a
519 	 *	    reminder.
520 	 */
521 	proc_move_allproc_zombie(p);
522 	pp = p->p_pptr;
523 	atomic_add_long(&pp->p_waitgen, 1);
524 	pp = NULL;
525 
526 	/*
527 	 * release controlled reaper for exit if we own it and return the
528 	 * remaining reaper (the one for us), which we will drop after we
529 	 * are done.
530 	 */
531 	reap = reaper_exit(p);
532 
533 	/*
534 	 * Reparent all of this process's children to the init process or
535 	 * to the designated reaper.  We must hold the reaper's p_token in
536 	 * order to safely mess with p_children.
537 	 *
538 	 * We already hold p->p_token (to remove the children from our list).
539 	 */
540 	reproc = NULL;
541 	q = LIST_FIRST(&p->p_children);
542 	if (q) {
543 		reproc = reaper_get(reap);
544 		lwkt_gettoken(&reproc->p_token);
545 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
546 			PHOLD(q);
547 			lwkt_gettoken(&q->p_token);
548 			if (q != LIST_FIRST(&p->p_children)) {
549 				lwkt_reltoken(&q->p_token);
550 				PRELE(q);
551 				continue;
552 			}
553 			LIST_REMOVE(q, p_sibling);
554 			LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
555 			q->p_pptr = reproc;
556 			q->p_sigparent = SIGCHLD;
557 
558 			/*
559 			 * Traced processes are killed
560 			 * since their existence means someone is screwing up.
561 			 */
562 			if (q->p_flags & P_TRACED) {
563 				q->p_flags &= ~P_TRACED;
564 				ksignal(q, SIGKILL);
565 			}
566 			lwkt_reltoken(&q->p_token);
567 			PRELE(q);
568 		}
569 		lwkt_reltoken(&reproc->p_token);
570 		wakeup(reproc);
571 	}
572 
573 	/*
574 	 * Save exit status and final rusage info, adding in child rusage
575 	 * info and self times.
576 	 */
577 	calcru_proc(p, &p->p_ru);
578 	ruadd(&p->p_ru, &p->p_cru);
579 
580 	/*
581 	 * notify interested parties of our demise.
582 	 */
583 	KNOTE(&p->p_klist, NOTE_EXIT);
584 
585 	/*
586 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
587 	 * flag set, or if the handler is set to SIG_IGN, notify the reaper
588 	 * instead (it will handle this situation).
589 	 *
590 	 * NOTE: The reaper can still be the parent process.
591 	 *
592 	 * (must reload pp)
593 	 */
594 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
595 		if (reproc == NULL)
596 			reproc = reaper_get(reap);
597 		proc_reparent(p, reproc);
598 	}
599 	if (reproc)
600 		PRELE(reproc);
601 	if (reap)
602 		reaper_drop(reap);
603 
604 	/*
605 	 * Signal (possibly new) parent.
606 	 */
607 	pp = p->p_pptr;
608 	PHOLD(pp);
609 	if (p->p_sigparent && pp != initproc) {
610 		int sig = p->p_sigparent;
611 
612 		if (sig != SIGUSR1 && sig != SIGCHLD)
613 			sig = SIGCHLD;
614 	        ksignal(pp, sig);
615 	} else {
616 	        ksignal(pp, SIGCHLD);
617 	}
618 	p->p_flags &= ~P_TRACED;
619 	PRELE(pp);
620 
621 	/*
622 	 * cpu_exit is responsible for clearing curproc, since
623 	 * it is heavily integrated with the thread/switching sequence.
624 	 *
625 	 * Other substructures are freed from wait().
626 	 */
627 	plimit_free(p);
628 
629 	/*
630 	 * Finally, call machine-dependent code to release as many of the
631 	 * lwp's resources as we can and halt execution of this thread.
632 	 *
633 	 * pp is a wild pointer now but still the correct wakeup() target.
634 	 * lwp_exit() only uses it to send the wakeup() signal to the likely
635 	 * parent.  Any reparenting race that occurs will get a signal
636 	 * automatically and not be an issue.
637 	 */
638 	lwp_exit(1, pp);
639 }
640 
641 /*
642  * Eventually called by every exiting LWP
643  *
644  * p->p_token must be held.  mplock may be held and will be released.
645  */
646 void
647 lwp_exit(int masterexit, void *waddr)
648 {
649 	struct thread *td = curthread;
650 	struct lwp *lp = td->td_lwp;
651 	struct proc *p = lp->lwp_proc;
652 	int dowake = 0;
653 
654 	/*
655 	 * Release the current user process designation on the process so
656 	 * the userland scheduler can work in someone else.
657 	 */
658 	p->p_usched->release_curproc(lp);
659 
660 	/*
661 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
662 	 * make sure it is set here.
663 	 */
664 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
665 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
666 
667 	/*
668 	 * Clean up any virtualization
669 	 */
670 	if (lp->lwp_vkernel)
671 		vkernel_lwp_exit(lp);
672 
673 	if (td->td_vmm)
674 		vmm_vmdestroy();
675 
676 	/*
677 	 * Clean up select/poll support
678 	 */
679 	kqueue_terminate(&lp->lwp_kqueue);
680 
681 	/*
682 	 * Clean up any syscall-cached ucred
683 	 */
684 	if (td->td_ucred) {
685 		crfree(td->td_ucred);
686 		td->td_ucred = NULL;
687 	}
688 
689 	/*
690 	 * Nobody actually wakes us when the lock
691 	 * count reaches zero, so just wait one tick.
692 	 */
693 	while (lp->lwp_lock > 0)
694 		tsleep(lp, 0, "lwpexit", 1);
695 
696 	/* Hand down resource usage to our proc */
697 	ruadd(&p->p_ru, &lp->lwp_ru);
698 
699 	/*
700 	 * If we don't hold the process until the LWP is reaped wait*()
701 	 * may try to dispose of its vmspace before all the LWPs have
702 	 * actually terminated.
703 	 */
704 	PHOLD(p);
705 
706 	/*
707 	 * Do any remaining work that might block on us.  We should be
708 	 * coded such that further blocking is ok after decrementing
709 	 * p_nthreads but don't take the chance.
710 	 */
711 	dsched_exit_thread(td);
712 	biosched_done(curthread);
713 
714 	/*
715 	 * We have to use the reaper for all the LWPs except the one doing
716 	 * the master exit.  The LWP doing the master exit can just be
717 	 * left on p_lwps and the process reaper will deal with it
718 	 * synchronously, which is much faster.
719 	 *
720 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
721 	 *
722 	 * The process is left held until the reaper calls lwp_dispose() on
723 	 * the lp (after calling lwp_wait()).
724 	 */
725 	if (masterexit == 0) {
726 		int cpu = mycpuid;
727 
728 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
729 		--p->p_nthreads;
730 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
731 			dowake = 1;
732 		lwkt_gettoken(&deadlwp_token[cpu]);
733 		LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
734 		taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
735 		lwkt_reltoken(&deadlwp_token[cpu]);
736 	} else {
737 		--p->p_nthreads;
738 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
739 			dowake = 1;
740 	}
741 
742 	/*
743 	 * We no longer need p_token.
744 	 *
745 	 * Tell the userland scheduler that we are going away
746 	 */
747 	lwkt_reltoken(&p->p_token);
748 	p->p_usched->heuristic_exiting(lp, p);
749 
750 	/*
751 	 * Issue late wakeups after releasing our token to give us a chance
752 	 * to deschedule and switch away before another cpu in a wait*()
753 	 * reaps us.  This is done as late as possible to reduce contention.
754 	 */
755 	if (dowake)
756 		wakeup(&p->p_nthreads);
757 	if (waddr)
758 		wakeup(waddr);
759 
760 	cpu_lwp_exit();
761 }
762 
763 /*
764  * Wait until a lwp is completely dead.  The final interlock in this drama
765  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
766  * switchout.
767  *
768  * At the point TDF_EXITING is set a complete exit is accomplished when
769  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
770  * post-switch interlock flags that can be used to wait for the TDF_
771  * flags to clear.
772  *
773  * Returns non-zero on success, and zero if the caller needs to retry
774  * the lwp_wait().
775  */
776 static int
777 lwp_wait(struct lwp *lp)
778 {
779 	struct thread *td = lp->lwp_thread;
780 	u_int mpflags;
781 
782 	KKASSERT(lwkt_preempted_proc() != lp);
783 
784 	/*
785 	 * This bit of code uses the thread destruction interlock
786 	 * managed by lwkt_switch_return() to wait for the lwp's
787 	 * thread to completely disengage.
788 	 *
789 	 * It is possible for us to race another cpu core so we
790 	 * have to do this correctly.
791 	 */
792 	for (;;) {
793 		mpflags = td->td_mpflags;
794 		cpu_ccfence();
795 		if (mpflags & TDF_MP_EXITSIG)
796 			break;
797 		tsleep_interlock(td, 0);
798 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
799 				      mpflags | TDF_MP_EXITWAIT)) {
800 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
801 		}
802 	}
803 
804 	/*
805 	 * We've already waited for the core exit but there can still
806 	 * be other refs from e.g. process scans and such.
807 	 */
808 	if (lp->lwp_lock > 0) {
809 		tsleep(lp, 0, "lwpwait1", 1);
810 		return(0);
811 	}
812 	if (td->td_refs) {
813 		tsleep(td, 0, "lwpwait2", 1);
814 		return(0);
815 	}
816 
817 	/*
818 	 * Now that we have the thread destruction interlock these flags
819 	 * really should already be cleaned up, keep a check for safety.
820 	 *
821 	 * We can't rip its stack out from under it until TDF_EXITING is
822 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
823 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
824 	 * will be cleared temporarily if a thread gets preempted.
825 	 */
826 	while ((td->td_flags & (TDF_RUNNING |
827 				TDF_RUNQ |
828 			        TDF_PREEMPT_LOCK |
829 			        TDF_EXITING)) != TDF_EXITING) {
830 		tsleep(lp, 0, "lwpwait3", 1);
831 		return (0);
832 	}
833 
834 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
835 		("lwp_wait: td %p (%s) still on run or sleep queue",
836 		td, td->td_comm));
837 	return (1);
838 }
839 
840 /*
841  * Release the resources associated with a lwp.
842  * The lwp must be completely dead.
843  */
844 void
845 lwp_dispose(struct lwp *lp)
846 {
847 	struct thread *td = lp->lwp_thread;
848 
849 	KKASSERT(lwkt_preempted_proc() != lp);
850 	KKASSERT(lp->lwp_lock == 0);
851 	KKASSERT(td->td_refs == 0);
852 	KKASSERT((td->td_flags & (TDF_RUNNING |
853 				  TDF_RUNQ |
854 				  TDF_PREEMPT_LOCK |
855 				  TDF_EXITING)) == TDF_EXITING);
856 
857 	PRELE(lp->lwp_proc);
858 	lp->lwp_proc = NULL;
859 	if (td != NULL) {
860 		td->td_proc = NULL;
861 		td->td_lwp = NULL;
862 		lp->lwp_thread = NULL;
863 		lwkt_free_thread(td);
864 	}
865 	kfree(lp, M_LWP);
866 }
867 
868 int
869 sys_wait4(struct wait_args *uap)
870 {
871 	struct rusage rusage;
872 	int error, status;
873 
874 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
875 			  uap->options, (uap->rusage ? &rusage : NULL),
876 			  &uap->sysmsg_result);
877 
878 	if (error == 0 && uap->status)
879 		error = copyout(&status, uap->status, sizeof(*uap->status));
880 	if (error == 0 && uap->rusage)
881 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
882 	return (error);
883 }
884 
885 /*
886  * wait1()
887  *
888  * wait_args(int pid, int *status, int options, struct rusage *rusage)
889  */
890 int
891 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
892 {
893 	struct thread *td = curthread;
894 	struct lwp *lp;
895 	struct proc *q = td->td_proc;
896 	struct proc *p, *t;
897 	struct pargs *pa;
898 	struct sigacts *ps;
899 	int nfound, error;
900 	long waitgen;
901 
902 	if (pid == 0)
903 		pid = -q->p_pgid;
904 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
905 		return (EINVAL);
906 
907 	/*
908 	 * Protect the q->p_children list
909 	 */
910 	lwkt_gettoken(&q->p_token);
911 loop:
912 	/*
913 	 * All sorts of things can change due to blocking so we have to loop
914 	 * all the way back up here.
915 	 *
916 	 * The problem is that if a process group is stopped and the parent
917 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
918 	 * of the child and then stop itself when it tries to return from the
919 	 * system call.  When the process group is resumed the parent will
920 	 * then get the STOP status even though the child has now resumed
921 	 * (a followup wait*() will get the CONT status).
922 	 *
923 	 * Previously the CONT would overwrite the STOP because the tstop
924 	 * was handled within tsleep(), and the parent would only see
925 	 * the CONT when both are stopped and continued together.  This little
926 	 * two-line hack restores this effect.
927 	 */
928 	if (STOPLWP(q, td->td_lwp))
929             tstop();
930 
931 	nfound = 0;
932 
933 	/*
934 	 * Loop on children.
935 	 *
936 	 * NOTE: We don't want to break q's p_token in the loop for the
937 	 *	 case where no children are found or we risk breaking the
938 	 *	 interlock between child and parent.
939 	 */
940 	waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
941 	LIST_FOREACH(p, &q->p_children, p_sibling) {
942 		if (pid != WAIT_ANY &&
943 		    p->p_pid != pid && p->p_pgid != -pid) {
944 			continue;
945 		}
946 
947 		/*
948 		 * This special case handles a kthread spawned by linux_clone
949 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
950 		 * functions need to be able to distinguish between waiting
951 		 * on a process and waiting on a thread.  It is a thread if
952 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
953 		 * signifies we want to wait for threads and not processes.
954 		 */
955 		if ((p->p_sigparent != SIGCHLD) ^
956 		    ((options & WLINUXCLONE) != 0)) {
957 			continue;
958 		}
959 
960 		nfound++;
961 		if (p->p_stat == SZOMB) {
962 			/*
963 			 * We may go into SZOMB with threads still present.
964 			 * We must wait for them to exit before we can reap
965 			 * the master thread, otherwise we may race reaping
966 			 * non-master threads.
967 			 *
968 			 * Only this routine can remove a process from
969 			 * the zombie list and destroy it, use PACQUIREZOMB()
970 			 * to serialize us and loop if it blocks (interlocked
971 			 * by the parent's q->p_token).
972 			 *
973 			 * WARNING!  (p) can be invalid when PHOLDZOMB(p)
974 			 *	     returns non-zero.  Be sure not to
975 			 *	     mess with it.
976 			 */
977 			if (PHOLDZOMB(p))
978 				goto loop;
979 			lwkt_gettoken(&p->p_token);
980 			if (p->p_pptr != q) {
981 				lwkt_reltoken(&p->p_token);
982 				PRELEZOMB(p);
983 				goto loop;
984 			}
985 			while (p->p_nthreads > 0) {
986 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
987 			}
988 
989 			/*
990 			 * Reap any LWPs left in p->p_lwps.  This is usually
991 			 * just the last LWP.  This must be done before
992 			 * we loop on p_lock since the lwps hold a ref on
993 			 * it as a vmspace interlock.
994 			 *
995 			 * Once that is accomplished p_nthreads had better
996 			 * be zero.
997 			 */
998 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
999 				/*
1000 				 * Make sure no one is using this lwp, before
1001 				 * it is removed from the tree.  If we didn't
1002 				 * wait it here, lwp tree iteration with
1003 				 * blocking operation would be broken.
1004 				 */
1005 				while (lp->lwp_lock > 0)
1006 					tsleep(lp, 0, "zomblwp", 1);
1007 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1008 				reaplwp(lp);
1009 			}
1010 			KKASSERT(p->p_nthreads == 0);
1011 
1012 			/*
1013 			 * Don't do anything really bad until all references
1014 			 * to the process go away.  This may include other
1015 			 * LWPs which are still in the process of being
1016 			 * reaped.  We can't just pull the rug out from under
1017 			 * them because they may still be using the VM space.
1018 			 *
1019 			 * Certain kernel facilities such as /proc will also
1020 			 * put a hold on the process for short periods of
1021 			 * time.
1022 			 */
1023 			PRELE(p);
1024 			PSTALL(p, "reap3", 0);
1025 
1026 			/* Take care of our return values. */
1027 			*res = p->p_pid;
1028 
1029 			if (status)
1030 				*status = p->p_xstat;
1031 			if (rusage)
1032 				*rusage = p->p_ru;
1033 
1034 			/*
1035 			 * If we got the child via a ptrace 'attach',
1036 			 * we need to give it back to the old parent.
1037 			 */
1038 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1039 				PHOLD(p);
1040 				p->p_oppid = 0;
1041 				proc_reparent(p, t);
1042 				ksignal(t, SIGCHLD);
1043 				wakeup((caddr_t)t);
1044 				error = 0;
1045 				PRELE(t);
1046 				lwkt_reltoken(&p->p_token);
1047 				PRELEZOMB(p);
1048 				goto done;
1049 			}
1050 
1051 			/*
1052 			 * Unlink the proc from its process group so that
1053 			 * the following operations won't lead to an
1054 			 * inconsistent state for processes running down
1055 			 * the zombie list.
1056 			 */
1057 			proc_remove_zombie(p);
1058 			proc_userunmap(p);
1059 			lwkt_reltoken(&p->p_token);
1060 			leavepgrp(p);
1061 
1062 			p->p_xstat = 0;
1063 			ruadd(&q->p_cru, &p->p_ru);
1064 
1065 			/*
1066 			 * Decrement the count of procs running with this uid.
1067 			 */
1068 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1069 
1070 			/*
1071 			 * Free up credentials.
1072 			 */
1073 			crfree(p->p_ucred);
1074 			p->p_ucred = NULL;
1075 
1076 			/*
1077 			 * Remove unused arguments
1078 			 */
1079 			pa = p->p_args;
1080 			p->p_args = NULL;
1081 			if (pa && refcount_release(&pa->ar_ref)) {
1082 				kfree(pa, M_PARGS);
1083 				pa = NULL;
1084 			}
1085 
1086 			ps = p->p_sigacts;
1087 			p->p_sigacts = NULL;
1088 			if (ps && refcount_release(&ps->ps_refcnt)) {
1089 				kfree(ps, M_SUBPROC);
1090 				ps = NULL;
1091 			}
1092 
1093 			/*
1094 			 * Our exitingcount was incremented when the process
1095 			 * became a zombie, now that the process has been
1096 			 * removed from (almost) all lists we should be able
1097 			 * to safely destroy its vmspace.  Wait for any current
1098 			 * holders to go away (so the vmspace remains stable),
1099 			 * then scrap it.
1100 			 *
1101 			 * NOTE: Releasing the parent process (q) p_token
1102 			 *	 across the vmspace_exitfree() call is
1103 			 *	 important here to reduce stalls on
1104 			 *	 interactions with (q) (such as
1105 			 *	 fork/exec/wait or 'ps').
1106 			 */
1107 			PSTALL(p, "reap4", 0);
1108 			lwkt_reltoken(&q->p_token);
1109 			vmspace_exitfree(p);
1110 			lwkt_gettoken(&q->p_token);
1111 			PSTALL(p, "reap5", 0);
1112 
1113 			/*
1114 			 * NOTE: We have to officially release ZOMB in order
1115 			 *	 to ensure that a racing thread in kern_wait()
1116 			 *	 which blocked on ZOMB is woken up.
1117 			 */
1118 			PHOLD(p);
1119 			PRELEZOMB(p);
1120 			kfree(p, M_PROC);
1121 			atomic_add_int(&nprocs, -1);
1122 			error = 0;
1123 			goto done;
1124 		}
1125 		if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1126 		    (p->p_flags & P_WAITED) == 0 &&
1127 		    ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1128 			PHOLD(p);
1129 			lwkt_gettoken(&p->p_token);
1130 			if (p->p_pptr != q) {
1131 				lwkt_reltoken(&p->p_token);
1132 				PRELE(p);
1133 				goto loop;
1134 			}
1135 			if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1136 			    (p->p_flags & P_WAITED) != 0 ||
1137 			    ((p->p_flags & P_TRACED) == 0 &&
1138 			     (options & WUNTRACED) == 0)) {
1139 				lwkt_reltoken(&p->p_token);
1140 				PRELE(p);
1141 				goto loop;
1142 			}
1143 
1144 			p->p_flags |= P_WAITED;
1145 
1146 			*res = p->p_pid;
1147 			if (status)
1148 				*status = W_STOPCODE(p->p_xstat);
1149 			/* Zero rusage so we get something consistent. */
1150 			if (rusage)
1151 				bzero(rusage, sizeof(*rusage));
1152 			error = 0;
1153 			lwkt_reltoken(&p->p_token);
1154 			PRELE(p);
1155 			goto done;
1156 		}
1157 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1158 			PHOLD(p);
1159 			lwkt_gettoken(&p->p_token);
1160 			if (p->p_pptr != q) {
1161 				lwkt_reltoken(&p->p_token);
1162 				PRELE(p);
1163 				goto loop;
1164 			}
1165 			if ((p->p_flags & P_CONTINUED) == 0) {
1166 				lwkt_reltoken(&p->p_token);
1167 				PRELE(p);
1168 				goto loop;
1169 			}
1170 
1171 			*res = p->p_pid;
1172 			p->p_flags &= ~P_CONTINUED;
1173 
1174 			if (status)
1175 				*status = SIGCONT;
1176 			error = 0;
1177 			lwkt_reltoken(&p->p_token);
1178 			PRELE(p);
1179 			goto done;
1180 		}
1181 	}
1182 	if (nfound == 0) {
1183 		error = ECHILD;
1184 		goto done;
1185 	}
1186 	if (options & WNOHANG) {
1187 		*res = 0;
1188 		error = 0;
1189 		goto done;
1190 	}
1191 
1192 	/*
1193 	 * Wait for signal - interlocked using q->p_waitgen.
1194 	 */
1195 	error = 0;
1196 	while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1197 		tsleep_interlock(q, PCATCH);
1198 		waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1199 		if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1200 			error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1201 			break;
1202 		}
1203 	}
1204 	if (error) {
1205 done:
1206 		lwkt_reltoken(&q->p_token);
1207 		return (error);
1208 	}
1209 	goto loop;
1210 }
1211 
1212 /*
1213  * Change child's parent process to parent.
1214  *
1215  * p_children/p_sibling requires the parent's token, and
1216  * changing pptr requires the child's token, so we have to
1217  * get three tokens to do this operation.  We also need to
1218  * hold pointers that might get ripped out from under us to
1219  * preserve structural integrity.
1220  *
1221  * It is possible to race another reparent or disconnect or other
1222  * similar operation.  We must retry when this situation occurs.
1223  * Once we successfully reparent the process we no longer care
1224  * about any races.
1225  */
1226 void
1227 proc_reparent(struct proc *child, struct proc *parent)
1228 {
1229 	struct proc *opp;
1230 
1231 	PHOLD(parent);
1232 	while ((opp = child->p_pptr) != parent) {
1233 		PHOLD(opp);
1234 		lwkt_gettoken(&opp->p_token);
1235 		lwkt_gettoken(&child->p_token);
1236 		lwkt_gettoken(&parent->p_token);
1237 		if (child->p_pptr != opp) {
1238 			lwkt_reltoken(&parent->p_token);
1239 			lwkt_reltoken(&child->p_token);
1240 			lwkt_reltoken(&opp->p_token);
1241 			PRELE(opp);
1242 			continue;
1243 		}
1244 		LIST_REMOVE(child, p_sibling);
1245 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1246 		child->p_pptr = parent;
1247 		lwkt_reltoken(&parent->p_token);
1248 		lwkt_reltoken(&child->p_token);
1249 		lwkt_reltoken(&opp->p_token);
1250 		if (LIST_EMPTY(&opp->p_children))
1251 			wakeup(opp);
1252 		PRELE(opp);
1253 		break;
1254 	}
1255 	PRELE(parent);
1256 }
1257 
1258 /*
1259  * The next two functions are to handle adding/deleting items on the
1260  * exit callout list
1261  *
1262  * at_exit():
1263  * Take the arguments given and put them onto the exit callout list,
1264  * However first make sure that it's not already there.
1265  * returns 0 on success.
1266  */
1267 
1268 int
1269 at_exit(exitlist_fn function)
1270 {
1271 	struct exitlist *ep;
1272 
1273 #ifdef INVARIANTS
1274 	/* Be noisy if the programmer has lost track of things */
1275 	if (rm_at_exit(function))
1276 		kprintf("WARNING: exit callout entry (%p) already present\n",
1277 		    function);
1278 #endif
1279 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1280 	if (ep == NULL)
1281 		return (ENOMEM);
1282 	ep->function = function;
1283 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1284 	return (0);
1285 }
1286 
1287 /*
1288  * Scan the exit callout list for the given item and remove it.
1289  * Returns the number of items removed (0 or 1)
1290  */
1291 int
1292 rm_at_exit(exitlist_fn function)
1293 {
1294 	struct exitlist *ep;
1295 
1296 	TAILQ_FOREACH(ep, &exit_list, next) {
1297 		if (ep->function == function) {
1298 			TAILQ_REMOVE(&exit_list, ep, next);
1299 			kfree(ep, M_ATEXIT);
1300 			return(1);
1301 		}
1302 	}
1303 	return (0);
1304 }
1305 
1306 /*
1307  * LWP reaper related code.
1308  */
1309 static void
1310 reaplwps(void *context, int dummy)
1311 {
1312 	struct lwplist *lwplist = context;
1313 	struct lwp *lp;
1314 	int cpu = mycpuid;
1315 
1316 	lwkt_gettoken(&deadlwp_token[cpu]);
1317 	while ((lp = LIST_FIRST(lwplist))) {
1318 		LIST_REMOVE(lp, u.lwp_reap_entry);
1319 		reaplwp(lp);
1320 	}
1321 	lwkt_reltoken(&deadlwp_token[cpu]);
1322 }
1323 
1324 static void
1325 reaplwp(struct lwp *lp)
1326 {
1327 	while (lwp_wait(lp) == 0)
1328 		;
1329 	lwp_dispose(lp);
1330 }
1331 
1332 static void
1333 deadlwp_init(void)
1334 {
1335 	int cpu;
1336 
1337 	for (cpu = 0; cpu < ncpus; cpu++) {
1338 		lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1339 		LIST_INIT(&deadlwp_list[cpu]);
1340 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1341 					    M_DEVBUF, M_WAITOK);
1342 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1343 	}
1344 }
1345 
1346 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1347