xref: /dragonfly/sys/kern/kern_fork.c (revision 0dace59e)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/filedesc.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/malloc.h>
47 #include <sys/proc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/ktrace.h>
52 #include <sys/unistd.h>
53 #include <sys/jail.h>
54 
55 #include <vm/vm.h>
56 #include <sys/lock.h>
57 #include <vm/pmap.h>
58 #include <vm/vm_map.h>
59 #include <vm/vm_extern.h>
60 
61 #include <sys/vmmeter.h>
62 #include <sys/refcount.h>
63 #include <sys/thread2.h>
64 #include <sys/signal2.h>
65 #include <sys/spinlock2.h>
66 
67 #include <sys/dsched.h>
68 
69 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
70 
71 /*
72  * These are the stuctures used to create a callout list for things to do
73  * when forking a process
74  */
75 struct forklist {
76 	forklist_fn function;
77 	TAILQ_ENTRY(forklist) next;
78 };
79 
80 TAILQ_HEAD(forklist_head, forklist);
81 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
82 
83 static struct lwp *lwp_fork(struct lwp *, struct proc *, int flags);
84 
85 int forksleep; /* Place for fork1() to sleep on. */
86 
87 /*
88  * Red-Black tree support for LWPs
89  */
90 
91 static int
92 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
93 {
94 	if (lp1->lwp_tid < lp2->lwp_tid)
95 		return(-1);
96 	if (lp1->lwp_tid > lp2->lwp_tid)
97 		return(1);
98 	return(0);
99 }
100 
101 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
102 
103 /*
104  * Fork system call
105  *
106  * MPALMOSTSAFE
107  */
108 int
109 sys_fork(struct fork_args *uap)
110 {
111 	struct lwp *lp = curthread->td_lwp;
112 	struct proc *p2;
113 	int error;
114 
115 	error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
116 	if (error == 0) {
117 		PHOLD(p2);
118 		start_forked_proc(lp, p2);
119 		uap->sysmsg_fds[0] = p2->p_pid;
120 		uap->sysmsg_fds[1] = 0;
121 		PRELE(p2);
122 	}
123 	return error;
124 }
125 
126 /*
127  * MPALMOSTSAFE
128  */
129 int
130 sys_vfork(struct vfork_args *uap)
131 {
132 	struct lwp *lp = curthread->td_lwp;
133 	struct proc *p2;
134 	int error;
135 
136 	error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
137 	if (error == 0) {
138 		PHOLD(p2);
139 		start_forked_proc(lp, p2);
140 		uap->sysmsg_fds[0] = p2->p_pid;
141 		uap->sysmsg_fds[1] = 0;
142 		PRELE(p2);
143 	}
144 	return error;
145 }
146 
147 /*
148  * Handle rforks.  An rfork may (1) operate on the current process without
149  * creating a new, (2) create a new process that shared the current process's
150  * vmspace, signals, and/or descriptors, or (3) create a new process that does
151  * not share these things (normal fork).
152  *
153  * Note that we only call start_forked_proc() if a new process is actually
154  * created.
155  *
156  * rfork { int flags }
157  *
158  * MPALMOSTSAFE
159  */
160 int
161 sys_rfork(struct rfork_args *uap)
162 {
163 	struct lwp *lp = curthread->td_lwp;
164 	struct proc *p2;
165 	int error;
166 
167 	if ((uap->flags & RFKERNELONLY) != 0)
168 		return (EINVAL);
169 
170 	error = fork1(lp, uap->flags | RFPGLOCK, &p2);
171 	if (error == 0) {
172 		if (p2) {
173 			PHOLD(p2);
174 			start_forked_proc(lp, p2);
175 			uap->sysmsg_fds[0] = p2->p_pid;
176 			uap->sysmsg_fds[1] = 0;
177 			PRELE(p2);
178 		} else {
179 			uap->sysmsg_fds[0] = 0;
180 			uap->sysmsg_fds[1] = 0;
181 		}
182 	}
183 	return error;
184 }
185 
186 /*
187  * MPALMOSTSAFE
188  */
189 int
190 sys_lwp_create(struct lwp_create_args *uap)
191 {
192 	struct proc *p = curproc;
193 	struct lwp *lp;
194 	struct lwp_params params;
195 	int error;
196 
197 	error = copyin(uap->params, &params, sizeof(params));
198 	if (error)
199 		goto fail2;
200 
201 	lwkt_gettoken(&p->p_token);
202 	plimit_lwp_fork(p);	/* force exclusive access */
203 	lp = lwp_fork(curthread->td_lwp, p, RFPROC);
204 	error = cpu_prepare_lwp(lp, &params);
205 	if (error)
206 		goto fail;
207 	if (params.tid1 != NULL &&
208 	    (error = copyout(&lp->lwp_tid, params.tid1, sizeof(lp->lwp_tid))))
209 		goto fail;
210 	if (params.tid2 != NULL &&
211 	    (error = copyout(&lp->lwp_tid, params.tid2, sizeof(lp->lwp_tid))))
212 		goto fail;
213 
214 	/*
215 	 * Now schedule the new lwp.
216 	 */
217 	p->p_usched->resetpriority(lp);
218 	crit_enter();
219 	lp->lwp_stat = LSRUN;
220 	p->p_usched->setrunqueue(lp);
221 	crit_exit();
222 	lwkt_reltoken(&p->p_token);
223 
224 	return (0);
225 
226 fail:
227 	lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
228 	--p->p_nthreads;
229 	/* lwp_dispose expects an exited lwp, and a held proc */
230 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
231 	lp->lwp_thread->td_flags |= TDF_EXITING;
232 	lwkt_remove_tdallq(lp->lwp_thread);
233 	PHOLD(p);
234 	biosched_done(lp->lwp_thread);
235 	dsched_exit_thread(lp->lwp_thread);
236 	lwp_dispose(lp);
237 	lwkt_reltoken(&p->p_token);
238 fail2:
239 	return (error);
240 }
241 
242 int	nprocs = 1;		/* process 0 */
243 
244 int
245 fork1(struct lwp *lp1, int flags, struct proc **procp)
246 {
247 	struct proc *p1 = lp1->lwp_proc;
248 	struct proc *p2;
249 	struct proc *pptr;
250 	struct pgrp *p1grp;
251 	struct pgrp *plkgrp;
252 	uid_t uid;
253 	int ok, error;
254 	static int curfail = 0;
255 	static struct timeval lastfail;
256 	struct forklist *ep;
257 	struct filedesc_to_leader *fdtol;
258 
259 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
260 		return (EINVAL);
261 
262 	lwkt_gettoken(&p1->p_token);
263 	plkgrp = NULL;
264 	p2 = NULL;
265 
266 	/*
267 	 * Here we don't create a new process, but we divorce
268 	 * certain parts of a process from itself.
269 	 */
270 	if ((flags & RFPROC) == 0) {
271 		/*
272 		 * This kind of stunt does not work anymore if
273 		 * there are native threads (lwps) running
274 		 */
275 		if (p1->p_nthreads != 1) {
276 			error = EINVAL;
277 			goto done;
278 		}
279 
280 		vm_fork(p1, 0, flags);
281 
282 		/*
283 		 * Close all file descriptors.
284 		 */
285 		if (flags & RFCFDG) {
286 			struct filedesc *fdtmp;
287 			fdtmp = fdinit(p1);
288 			fdfree(p1, fdtmp);
289 		}
290 
291 		/*
292 		 * Unshare file descriptors (from parent.)
293 		 */
294 		if (flags & RFFDG) {
295 			if (p1->p_fd->fd_refcnt > 1) {
296 				struct filedesc *newfd;
297 				error = fdcopy(p1, &newfd);
298 				if (error != 0) {
299 					error = ENOMEM;
300 					goto done;
301 				}
302 				fdfree(p1, newfd);
303 			}
304 		}
305 		*procp = NULL;
306 		error = 0;
307 		goto done;
308 	}
309 
310 	/*
311 	 * Interlock against process group signal delivery.  If signals
312 	 * are pending after the interlock is obtained we have to restart
313 	 * the system call to process the signals.  If we don't the child
314 	 * can miss a pgsignal (such as ^C) sent during the fork.
315 	 *
316 	 * We can't use CURSIG() here because it will process any STOPs
317 	 * and cause the process group lock to be held indefinitely.  If
318 	 * a STOP occurs, the fork will be restarted after the CONT.
319 	 */
320 	p1grp = p1->p_pgrp;
321 	if ((flags & RFPGLOCK) && (plkgrp = p1->p_pgrp) != NULL) {
322 		pgref(plkgrp);
323 		lockmgr(&plkgrp->pg_lock, LK_SHARED);
324 		if (CURSIG_NOBLOCK(lp1)) {
325 			error = ERESTART;
326 			goto done;
327 		}
328 	}
329 
330 	/*
331 	 * Although process entries are dynamically created, we still keep
332 	 * a global limit on the maximum number we will create.  Don't allow
333 	 * a nonprivileged user to use the last ten processes; don't let root
334 	 * exceed the limit. The variable nprocs is the current number of
335 	 * processes, maxproc is the limit.
336 	 */
337 	uid = lp1->lwp_thread->td_ucred->cr_ruid;
338 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
339 		if (ppsratecheck(&lastfail, &curfail, 1))
340 			kprintf("maxproc limit exceeded by uid %d, please "
341 			       "see tuning(7) and login.conf(5).\n", uid);
342 		tsleep(&forksleep, 0, "fork", hz / 2);
343 		error = EAGAIN;
344 		goto done;
345 	}
346 
347 	/*
348 	 * Increment the nprocs resource before blocking can occur.  There
349 	 * are hard-limits as to the number of processes that can run.
350 	 */
351 	atomic_add_int(&nprocs, 1);
352 
353 	/*
354 	 * Increment the count of procs running with this uid. Don't allow
355 	 * a nonprivileged user to exceed their current limit.
356 	 */
357 	ok = chgproccnt(lp1->lwp_thread->td_ucred->cr_ruidinfo, 1,
358 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
359 	if (!ok) {
360 		/*
361 		 * Back out the process count
362 		 */
363 		atomic_add_int(&nprocs, -1);
364 		if (ppsratecheck(&lastfail, &curfail, 1))
365 			kprintf("maxproc limit exceeded by uid %d, please "
366 			       "see tuning(7) and login.conf(5).\n", uid);
367 		tsleep(&forksleep, 0, "fork", hz / 2);
368 		error = EAGAIN;
369 		goto done;
370 	}
371 
372 	/*
373 	 * Allocate a new process, don't get fancy: zero the structure.
374 	 */
375 	p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
376 
377 	/*
378 	 * Core initialization.  SIDL is a safety state that protects the
379 	 * partially initialized process once it starts getting hooked
380 	 * into system structures and becomes addressable.
381 	 *
382 	 * We must be sure to acquire p2->p_token as well, we must hold it
383 	 * once the process is on the allproc list to avoid things such
384 	 * as competing modifications to p_flags.
385 	 */
386 	p2->p_lasttid = -1;	/* first tid will be 0 */
387 	p2->p_stat = SIDL;
388 
389 	RB_INIT(&p2->p_lwp_tree);
390 	spin_init(&p2->p_spin);
391 	lwkt_token_init(&p2->p_token, "proc");
392 	lwkt_gettoken(&p2->p_token);
393 
394 	/*
395 	 * Setup linkage for kernel based threading XXX lwp.  Also add the
396 	 * process to the allproclist.
397 	 *
398 	 * The process structure is addressable after this point.
399 	 */
400 	if (flags & RFTHREAD) {
401 		p2->p_peers = p1->p_peers;
402 		p1->p_peers = p2;
403 		p2->p_leader = p1->p_leader;
404 	} else {
405 		p2->p_leader = p2;
406 	}
407 	proc_add_allproc(p2);
408 
409 	/*
410 	 * Initialize the section which is copied verbatim from the parent.
411 	 */
412 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
413 	      ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
414 
415 	/*
416 	 * Duplicate sub-structures as needed.  Increase reference counts
417 	 * on shared objects.
418 	 *
419 	 * NOTE: because we are now on the allproc list it is possible for
420 	 *	 other consumers to gain temporary references to p2
421 	 *	 (p2->p_lock can change).
422 	 */
423 	if (p1->p_flags & P_PROFIL)
424 		startprofclock(p2);
425 	p2->p_ucred = crhold(lp1->lwp_thread->td_ucred);
426 
427 	if (jailed(p2->p_ucred))
428 		p2->p_flags |= P_JAILED;
429 
430 	if (p2->p_args)
431 		refcount_acquire(&p2->p_args->ar_ref);
432 
433 	p2->p_usched = p1->p_usched;
434 	/* XXX: verify copy of the secondary iosched stuff */
435 	dsched_new_proc(p2);
436 
437 	if (flags & RFSIGSHARE) {
438 		p2->p_sigacts = p1->p_sigacts;
439 		refcount_acquire(&p2->p_sigacts->ps_refcnt);
440 	} else {
441 		p2->p_sigacts = kmalloc(sizeof(*p2->p_sigacts),
442 					M_SUBPROC, M_WAITOK);
443 		bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
444 		refcount_init(&p2->p_sigacts->ps_refcnt, 1);
445 	}
446 	if (flags & RFLINUXTHPN)
447 	        p2->p_sigparent = SIGUSR1;
448 	else
449 	        p2->p_sigparent = SIGCHLD;
450 
451 	/* bump references to the text vnode (for procfs) */
452 	p2->p_textvp = p1->p_textvp;
453 	if (p2->p_textvp)
454 		vref(p2->p_textvp);
455 
456 	/* copy namecache handle to the text file */
457 	if (p1->p_textnch.mount)
458 		cache_copy(&p1->p_textnch, &p2->p_textnch);
459 
460 	/*
461 	 * Handle file descriptors
462 	 */
463 	if (flags & RFCFDG) {
464 		p2->p_fd = fdinit(p1);
465 		fdtol = NULL;
466 	} else if (flags & RFFDG) {
467 		error = fdcopy(p1, &p2->p_fd);
468 		if (error != 0) {
469 			error = ENOMEM;
470 			goto done;
471 		}
472 		fdtol = NULL;
473 	} else {
474 		p2->p_fd = fdshare(p1);
475 		if (p1->p_fdtol == NULL) {
476 			p1->p_fdtol = filedesc_to_leader_alloc(NULL,
477 							       p1->p_leader);
478 		}
479 		if ((flags & RFTHREAD) != 0) {
480 			/*
481 			 * Shared file descriptor table and
482 			 * shared process leaders.
483 			 */
484 			fdtol = p1->p_fdtol;
485 			fdtol->fdl_refcount++;
486 		} else {
487 			/*
488 			 * Shared file descriptor table, and
489 			 * different process leaders
490 			 */
491 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
492 		}
493 	}
494 	p2->p_fdtol = fdtol;
495 	p2->p_limit = plimit_fork(p1);
496 
497 	/*
498 	 * Preserve some more flags in subprocess.  P_PROFIL has already
499 	 * been preserved.
500 	 */
501 	p2->p_flags |= p1->p_flags & P_SUGID;
502 	if (p1->p_session->s_ttyvp != NULL && (p1->p_flags & P_CONTROLT))
503 		p2->p_flags |= P_CONTROLT;
504 	if (flags & RFPPWAIT)
505 		p2->p_flags |= P_PPWAIT;
506 
507 	/*
508 	 * Inherit the virtual kernel structure (allows a virtual kernel
509 	 * to fork to simulate multiple cpus).
510 	 */
511 	if (p1->p_vkernel)
512 		vkernel_inherit(p1, p2);
513 
514 	/*
515 	 * Once we are on a pglist we may receive signals.  XXX we might
516 	 * race a ^C being sent to the process group by not receiving it
517 	 * at all prior to this line.
518 	 */
519 	pgref(p1grp);
520 	lwkt_gettoken(&p1grp->pg_token);
521 	LIST_INSERT_AFTER(p1, p2, p_pglist);
522 	lwkt_reltoken(&p1grp->pg_token);
523 
524 	/*
525 	 * Attach the new process to its parent.
526 	 *
527 	 * If RFNOWAIT is set, the newly created process becomes a child
528 	 * of init.  This effectively disassociates the child from the
529 	 * parent.
530 	 */
531 	if (flags & RFNOWAIT)
532 		pptr = initproc;
533 	else
534 		pptr = p1;
535 	p2->p_pptr = pptr;
536 	LIST_INIT(&p2->p_children);
537 
538 	lwkt_gettoken(&pptr->p_token);
539 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
540 	lwkt_reltoken(&pptr->p_token);
541 
542 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
543 	callout_init_mp(&p2->p_ithandle);
544 
545 #ifdef KTRACE
546 	/*
547 	 * Copy traceflag and tracefile if enabled.  If not inherited,
548 	 * these were zeroed above but we still could have a trace race
549 	 * so make sure p2's p_tracenode is NULL.
550 	 */
551 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
552 		p2->p_traceflag = p1->p_traceflag;
553 		p2->p_tracenode = ktrinherit(p1->p_tracenode);
554 	}
555 #endif
556 
557 	/*
558 	 * This begins the section where we must prevent the parent
559 	 * from being swapped.
560 	 *
561 	 * Gets PRELE'd in the caller in start_forked_proc().
562 	 */
563 	PHOLD(p1);
564 
565 	vm_fork(p1, p2, flags);
566 
567 	/*
568 	 * Create the first lwp associated with the new proc.
569 	 * It will return via a different execution path later, directly
570 	 * into userland, after it was put on the runq by
571 	 * start_forked_proc().
572 	 */
573 	lwp_fork(lp1, p2, flags);
574 
575 	if (flags == (RFFDG | RFPROC | RFPGLOCK)) {
576 		mycpu->gd_cnt.v_forks++;
577 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize +
578 					     p2->p_vmspace->vm_ssize;
579 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK)) {
580 		mycpu->gd_cnt.v_vforks++;
581 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
582 					      p2->p_vmspace->vm_ssize;
583 	} else if (p1 == &proc0) {
584 		mycpu->gd_cnt.v_kthreads++;
585 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
586 						p2->p_vmspace->vm_ssize;
587 	} else {
588 		mycpu->gd_cnt.v_rforks++;
589 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
590 					      p2->p_vmspace->vm_ssize;
591 	}
592 
593 	/*
594 	 * Both processes are set up, now check if any loadable modules want
595 	 * to adjust anything.
596 	 *   What if they have an error? XXX
597 	 */
598 	TAILQ_FOREACH(ep, &fork_list, next) {
599 		(*ep->function)(p1, p2, flags);
600 	}
601 
602 	/*
603 	 * Set the start time.  Note that the process is not runnable.  The
604 	 * caller is responsible for making it runnable.
605 	 */
606 	microtime(&p2->p_start);
607 	p2->p_acflag = AFORK;
608 
609 	/*
610 	 * tell any interested parties about the new process
611 	 */
612 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
613 
614 	/*
615 	 * Return child proc pointer to parent.
616 	 */
617 	*procp = p2;
618 	error = 0;
619 done:
620 	if (p2)
621 		lwkt_reltoken(&p2->p_token);
622 	lwkt_reltoken(&p1->p_token);
623 	if (plkgrp) {
624 		lockmgr(&plkgrp->pg_lock, LK_RELEASE);
625 		pgrel(plkgrp);
626 	}
627 	return (error);
628 }
629 
630 static struct lwp *
631 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags)
632 {
633 	globaldata_t gd = mycpu;
634 	struct lwp *lp;
635 	struct thread *td;
636 
637 	lp = kmalloc(sizeof(struct lwp), M_LWP, M_WAITOK|M_ZERO);
638 
639 	lp->lwp_proc = destproc;
640 	lp->lwp_vmspace = destproc->p_vmspace;
641 	lp->lwp_stat = LSRUN;
642 	bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
643 	    (unsigned) ((caddr_t)&lp->lwp_endcopy -
644 			(caddr_t)&lp->lwp_startcopy));
645 	lp->lwp_flags |= origlp->lwp_flags & LWP_ALTSTACK;
646 	/*
647 	 * Set cpbase to the last timeout that occured (not the upcoming
648 	 * timeout).
649 	 *
650 	 * A critical section is required since a timer IPI can update
651 	 * scheduler specific data.
652 	 */
653 	crit_enter();
654 	lp->lwp_cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
655 	destproc->p_usched->heuristic_forking(origlp, lp);
656 	crit_exit();
657 	lp->lwp_cpumask &= usched_mastermask;
658 	lwkt_token_init(&lp->lwp_token, "lwp_token");
659 	spin_init(&lp->lwp_spin);
660 
661 	/*
662 	 * Assign the thread to the current cpu to begin with so we
663 	 * can manipulate it.
664 	 */
665 	td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, gd->gd_cpuid, 0);
666 	lp->lwp_thread = td;
667 	td->td_proc = destproc;
668 	td->td_lwp = lp;
669 	td->td_switch = cpu_heavy_switch;
670 #ifdef NO_LWKT_SPLIT_USERPRI
671 	lwkt_setpri(td, TDPRI_USER_NORM);
672 #else
673 	lwkt_setpri(td, TDPRI_KERN_USER);
674 #endif
675 	lwkt_set_comm(td, "%s", destproc->p_comm);
676 
677 	/*
678 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
679 	 * and make the child ready to run.
680 	 */
681 	cpu_fork(origlp, lp, flags);
682 	kqueue_init(&lp->lwp_kqueue, destproc->p_fd);
683 
684 	/*
685 	 * Assign a TID to the lp.  Loop until the insert succeeds (returns
686 	 * NULL).
687 	 */
688 	lp->lwp_tid = destproc->p_lasttid;
689 	do {
690 		if (++lp->lwp_tid < 0)
691 			lp->lwp_tid = 1;
692 	} while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
693 	destproc->p_lasttid = lp->lwp_tid;
694 	destproc->p_nthreads++;
695 
696 	return (lp);
697 }
698 
699 /*
700  * The next two functionms are general routines to handle adding/deleting
701  * items on the fork callout list.
702  *
703  * at_fork():
704  * Take the arguments given and put them onto the fork callout list,
705  * However first make sure that it's not already there.
706  * Returns 0 on success or a standard error number.
707  */
708 int
709 at_fork(forklist_fn function)
710 {
711 	struct forklist *ep;
712 
713 #ifdef INVARIANTS
714 	/* let the programmer know if he's been stupid */
715 	if (rm_at_fork(function)) {
716 		kprintf("WARNING: fork callout entry (%p) already present\n",
717 		    function);
718 	}
719 #endif
720 	ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
721 	ep->function = function;
722 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
723 	return (0);
724 }
725 
726 /*
727  * Scan the exit callout list for the given item and remove it..
728  * Returns the number of items removed (0 or 1)
729  */
730 int
731 rm_at_fork(forklist_fn function)
732 {
733 	struct forklist *ep;
734 
735 	TAILQ_FOREACH(ep, &fork_list, next) {
736 		if (ep->function == function) {
737 			TAILQ_REMOVE(&fork_list, ep, next);
738 			kfree(ep, M_ATFORK);
739 			return(1);
740 		}
741 	}
742 	return (0);
743 }
744 
745 /*
746  * Add a forked process to the run queue after any remaining setup, such
747  * as setting the fork handler, has been completed.
748  *
749  * p2 is held by the caller.
750  */
751 void
752 start_forked_proc(struct lwp *lp1, struct proc *p2)
753 {
754 	struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
755 
756 	/*
757 	 * Move from SIDL to RUN queue, and activate the process's thread.
758 	 * Activation of the thread effectively makes the process "a"
759 	 * current process, so we do not setrunqueue().
760 	 *
761 	 * YYY setrunqueue works here but we should clean up the trampoline
762 	 * code so we just schedule the LWKT thread and let the trampoline
763 	 * deal with the userland scheduler on return to userland.
764 	 */
765 	KASSERT(p2->p_stat == SIDL,
766 	    ("cannot start forked process, bad status: %p", p2));
767 	p2->p_usched->resetpriority(lp2);
768 	crit_enter();
769 	p2->p_stat = SACTIVE;
770 	lp2->lwp_stat = LSRUN;
771 	p2->p_usched->setrunqueue(lp2);
772 	crit_exit();
773 
774 	/*
775 	 * Now can be swapped.
776 	 */
777 	PRELE(lp1->lwp_proc);
778 
779 	/*
780 	 * Preserve synchronization semantics of vfork.  If waiting for
781 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
782 	 * proc (in case of exec or exit).
783 	 *
784 	 * We must hold our p_token to interlock the flag/tsleep
785 	 */
786 	lwkt_gettoken(&p2->p_token);
787 	while (p2->p_flags & P_PPWAIT)
788 		tsleep(lp1->lwp_proc, 0, "ppwait", 0);
789 	lwkt_reltoken(&p2->p_token);
790 }
791