xref: /dragonfly/sys/kern/kern_fork.c (revision 1bf4b486)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.36 2005/06/27 18:37:57 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 #include <sys/caps.h>
60 
61 #include <vm/vm.h>
62 #include <sys/lock.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_zone.h>
67 
68 #include <sys/vmmeter.h>
69 #include <sys/user.h>
70 #include <sys/thread2.h>
71 
72 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
73 
74 /*
75  * These are the stuctures used to create a callout list for things to do
76  * when forking a process
77  */
78 struct forklist {
79 	forklist_fn function;
80 	TAILQ_ENTRY(forklist) next;
81 };
82 
83 TAILQ_HEAD(forklist_head, forklist);
84 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
85 
86 int forksleep; /* Place for fork1() to sleep on. */
87 
88 /* ARGSUSED */
89 int
90 fork(struct fork_args *uap)
91 {
92 	struct proc *p = curproc;
93 	struct proc *p2;
94 	int error;
95 
96 	error = fork1(p, RFFDG | RFPROC, &p2);
97 	if (error == 0) {
98 		start_forked_proc(p, p2);
99 		uap->sysmsg_fds[0] = p2->p_pid;
100 		uap->sysmsg_fds[1] = 0;
101 	}
102 	return error;
103 }
104 
105 /* ARGSUSED */
106 int
107 vfork(struct vfork_args *uap)
108 {
109 	struct proc *p = curproc;
110 	struct proc *p2;
111 	int error;
112 
113 	error = fork1(p, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
114 	if (error == 0) {
115 		start_forked_proc(p, p2);
116 		uap->sysmsg_fds[0] = p2->p_pid;
117 		uap->sysmsg_fds[1] = 0;
118 	}
119 	return error;
120 }
121 
122 /*
123  * Handle rforks.  An rfork may (1) operate on the current process without
124  * creating a new, (2) create a new process that shared the current process's
125  * vmspace, signals, and/or descriptors, or (3) create a new process that does
126  * not share these things (normal fork).
127  *
128  * Note that we only call start_forked_proc() if a new process is actually
129  * created.
130  *
131  * rfork { int flags }
132  */
133 int
134 rfork(struct rfork_args *uap)
135 {
136 	struct proc *p = curproc;
137 	struct proc *p2;
138 	int error;
139 
140 	if ((uap->flags & RFKERNELONLY) != 0)
141 		return (EINVAL);
142 
143 	error = fork1(p, uap->flags, &p2);
144 	if (error == 0) {
145 		if (p2)
146 			start_forked_proc(p, p2);
147 		uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
148 		uap->sysmsg_fds[1] = 0;
149 	}
150 	return error;
151 }
152 
153 
154 int	nprocs = 1;		/* process 0 */
155 static int nextpid = 0;
156 
157 /*
158  * Random component to nextpid generation.  We mix in a random factor to make
159  * it a little harder to predict.  We sanity check the modulus value to avoid
160  * doing it in critical paths.  Don't let it be too small or we pointlessly
161  * waste randomness entropy, and don't let it be impossibly large.  Using a
162  * modulus that is too big causes a LOT more process table scans and slows
163  * down fork processing as the pidchecked caching is defeated.
164  */
165 static int randompid = 0;
166 
167 static int
168 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
169 {
170 		int error, pid;
171 
172 		pid = randompid;
173 		error = sysctl_handle_int(oidp, &pid, 0, req);
174 		if (error || !req->newptr)
175 			return (error);
176 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
177 			pid = PID_MAX - 100;
178 		else if (pid < 2)			/* NOP */
179 			pid = 0;
180 		else if (pid < 100)			/* Make it reasonable */
181 			pid = 100;
182 		randompid = pid;
183 		return (error);
184 }
185 
186 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
187     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
188 
189 int
190 fork1(struct proc *p1, int flags, struct proc **procp)
191 {
192 	struct proc *p2, *pptr;
193 	uid_t uid;
194 	struct proc *newproc;
195 	int ok;
196 	static int curfail = 0, pidchecked = 0;
197 	static struct timeval lastfail;
198 	struct forklist *ep;
199 	struct filedesc_to_leader *fdtol;
200 
201 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
202 		return (EINVAL);
203 
204 	/*
205 	 * Here we don't create a new process, but we divorce
206 	 * certain parts of a process from itself.
207 	 */
208 	if ((flags & RFPROC) == 0) {
209 
210 		vm_fork(p1, 0, flags);
211 
212 		/*
213 		 * Close all file descriptors.
214 		 */
215 		if (flags & RFCFDG) {
216 			struct filedesc *fdtmp;
217 			fdtmp = fdinit(p1);
218 			fdfree(p1);
219 			p1->p_fd = fdtmp;
220 		}
221 
222 		/*
223 		 * Unshare file descriptors (from parent.)
224 		 */
225 		if (flags & RFFDG) {
226 			if (p1->p_fd->fd_refcnt > 1) {
227 				struct filedesc *newfd;
228 				newfd = fdcopy(p1);
229 				fdfree(p1);
230 				p1->p_fd = newfd;
231 			}
232 		}
233 		*procp = NULL;
234 		return (0);
235 	}
236 
237 	/*
238 	 * Although process entries are dynamically created, we still keep
239 	 * a global limit on the maximum number we will create.  Don't allow
240 	 * a nonprivileged user to use the last ten processes; don't let root
241 	 * exceed the limit. The variable nprocs is the current number of
242 	 * processes, maxproc is the limit.
243 	 */
244 	uid = p1->p_ucred->cr_ruid;
245 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
246 		if (ppsratecheck(&lastfail, &curfail, 1))
247 			printf("maxproc limit exceeded by uid %d, please "
248 			       "see tuning(7) and login.conf(5).\n", uid);
249 		tsleep(&forksleep, 0, "fork", hz / 2);
250 		return (EAGAIN);
251 	}
252 	/*
253 	 * Increment the nprocs resource before blocking can occur.  There
254 	 * are hard-limits as to the number of processes that can run.
255 	 */
256 	nprocs++;
257 
258 	/*
259 	 * Increment the count of procs running with this uid. Don't allow
260 	 * a nonprivileged user to exceed their current limit.
261 	 */
262 	ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1,
263 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
264 	if (!ok) {
265 		/*
266 		 * Back out the process count
267 		 */
268 		nprocs--;
269 		if (ppsratecheck(&lastfail, &curfail, 1))
270 			printf("maxproc limit exceeded by uid %d, please "
271 			       "see tuning(7) and login.conf(5).\n", uid);
272 		tsleep(&forksleep, 0, "fork", hz / 2);
273 		return (EAGAIN);
274 	}
275 
276 	/* Allocate new proc. */
277 	newproc = zalloc(proc_zone);
278 
279 	/*
280 	 * Setup linkage for kernel based threading
281 	 */
282 	if ((flags & RFTHREAD) != 0) {
283 		newproc->p_peers = p1->p_peers;
284 		p1->p_peers = newproc;
285 		newproc->p_leader = p1->p_leader;
286 	} else {
287 		newproc->p_peers = 0;
288 		newproc->p_leader = newproc;
289 	}
290 
291 	newproc->p_wakeup = 0;
292 	newproc->p_vmspace = NULL;
293 	TAILQ_INIT(&newproc->p_sysmsgq);
294 
295 	/*
296 	 * Find an unused process ID.  We remember a range of unused IDs
297 	 * ready to use (from nextpid+1 through pidchecked-1).
298 	 */
299 	nextpid++;
300 	if (randompid)
301 		nextpid += arc4random() % randompid;
302 retry:
303 	/*
304 	 * If the process ID prototype has wrapped around,
305 	 * restart somewhat above 0, as the low-numbered procs
306 	 * tend to include daemons that don't exit.
307 	 */
308 	if (nextpid >= PID_MAX) {
309 		nextpid = nextpid % PID_MAX;
310 		if (nextpid < 100)
311 			nextpid += 100;
312 		pidchecked = 0;
313 	}
314 	if (nextpid >= pidchecked) {
315 		int doingzomb = 0;
316 
317 		pidchecked = PID_MAX;
318 		/*
319 		 * Scan the active and zombie procs to check whether this pid
320 		 * is in use.  Remember the lowest pid that's greater
321 		 * than nextpid, so we can avoid checking for a while.
322 		 */
323 		p2 = LIST_FIRST(&allproc);
324 again:
325 		for (; p2 != 0; p2 = LIST_NEXT(p2, p_list)) {
326 			while (p2->p_pid == nextpid ||
327 			    p2->p_pgrp->pg_id == nextpid ||
328 			    p2->p_session->s_sid == nextpid) {
329 				nextpid++;
330 				if (nextpid >= pidchecked)
331 					goto retry;
332 			}
333 			if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
334 				pidchecked = p2->p_pid;
335 			if (p2->p_pgrp->pg_id > nextpid &&
336 			    pidchecked > p2->p_pgrp->pg_id)
337 				pidchecked = p2->p_pgrp->pg_id;
338 			if (p2->p_session->s_sid > nextpid &&
339 			    pidchecked > p2->p_session->s_sid)
340 				pidchecked = p2->p_session->s_sid;
341 		}
342 		if (!doingzomb) {
343 			doingzomb = 1;
344 			p2 = LIST_FIRST(&zombproc);
345 			goto again;
346 		}
347 	}
348 
349 	p2 = newproc;
350 	p2->p_stat = SIDL;			/* protect against others */
351 	p2->p_pid = nextpid;
352 	LIST_INSERT_HEAD(&allproc, p2, p_list);
353 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
354 
355 	/*
356 	 * Make a proc table entry for the new process.
357 	 * Start by zeroing the section of proc that is zero-initialized,
358 	 * then copy the section that is copied directly from the parent.
359 	 */
360 	bzero(&p2->p_startzero,
361 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
362 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
363 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
364 
365 	p2->p_aioinfo = NULL;
366 
367 	/*
368 	 * Duplicate sub-structures as needed.
369 	 * Increase reference counts on shared objects.
370 	 * The p_stats and p_sigacts substructs are set in vm_fork.
371 	 */
372 	p2->p_flag = P_INMEM;
373 	if (p1->p_flag & P_PROFIL)
374 		startprofclock(p2);
375 	p2->p_ucred = crhold(p1->p_ucred);
376 
377 	if (jailed(p2->p_ucred))
378 		p2->p_flag |= P_JAILED;
379 
380 	if (p2->p_args)
381 		p2->p_args->ar_ref++;
382 
383 	if (flags & RFSIGSHARE) {
384 		p2->p_procsig = p1->p_procsig;
385 		p2->p_procsig->ps_refcnt++;
386 		if (p1->p_sigacts == &p1->p_addr->u_sigacts) {
387 			struct sigacts *newsigacts;
388 
389 			/* Create the shared sigacts structure */
390 			MALLOC(newsigacts, struct sigacts *,
391 			    sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
392 			crit_enter();
393 			/*
394 			 * Set p_sigacts to the new shared structure.
395 			 * Note that this is updating p1->p_sigacts at the
396 			 * same time, since p_sigacts is just a pointer to
397 			 * the shared p_procsig->ps_sigacts.
398 			 */
399 			p2->p_sigacts  = newsigacts;
400 			bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts,
401 			    sizeof(*p2->p_sigacts));
402 			*p2->p_sigacts = p1->p_addr->u_sigacts;
403 			crit_exit();
404 		}
405 	} else {
406 		MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
407 		    M_SUBPROC, M_WAITOK);
408 		bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
409 		p2->p_procsig->ps_refcnt = 1;
410 		p2->p_sigacts = NULL;	/* finished in vm_fork() */
411 	}
412 	if (flags & RFLINUXTHPN)
413 	        p2->p_sigparent = SIGUSR1;
414 	else
415 	        p2->p_sigparent = SIGCHLD;
416 
417 	/* bump references to the text vnode (for procfs) */
418 	p2->p_textvp = p1->p_textvp;
419 	if (p2->p_textvp)
420 		vref(p2->p_textvp);
421 
422 	if (flags & RFCFDG) {
423 		p2->p_fd = fdinit(p1);
424 		fdtol = NULL;
425 	} else if (flags & RFFDG) {
426 		p2->p_fd = fdcopy(p1);
427 		fdtol = NULL;
428 	} else {
429 		p2->p_fd = fdshare(p1);
430 		if (p1->p_fdtol == NULL)
431 			p1->p_fdtol =
432 				filedesc_to_leader_alloc(NULL,
433 							 p1->p_leader);
434 		if ((flags & RFTHREAD) != 0) {
435 			/*
436 			 * Shared file descriptor table and
437 			 * shared process leaders.
438 			 */
439 			fdtol = p1->p_fdtol;
440 			fdtol->fdl_refcount++;
441 		} else {
442 			/*
443 			 * Shared file descriptor table, and
444 			 * different process leaders
445 			 */
446 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
447 		}
448 	}
449 	p2->p_fdtol = fdtol;
450 
451 	/*
452 	 * If p_limit is still copy-on-write, bump refcnt,
453 	 * otherwise get a copy that won't be modified.
454 	 * (If PL_SHAREMOD is clear, the structure is shared
455 	 * copy-on-write.)
456 	 */
457 	if (p1->p_limit->p_lflags & PL_SHAREMOD) {
458 		p2->p_limit = limcopy(p1->p_limit);
459 	} else {
460 		p2->p_limit = p1->p_limit;
461 		p2->p_limit->p_refcnt++;
462 	}
463 
464 	/*
465 	 * Preserve some more flags in subprocess.  P_PROFIL has already
466 	 * been preserved.
467 	 */
468 	p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK);
469 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
470 		p2->p_flag |= P_CONTROLT;
471 	if (flags & RFPPWAIT)
472 		p2->p_flag |= P_PPWAIT;
473 
474 	/*
475 	 * Once we are on a pglist we may receive signals.  XXX we might
476 	 * race a ^C being sent to the process group by not receiving it
477 	 * at all prior to this line.
478 	 */
479 	LIST_INSERT_AFTER(p1, p2, p_pglist);
480 
481 	/*
482 	 * Attach the new process to its parent.
483 	 *
484 	 * If RFNOWAIT is set, the newly created process becomes a child
485 	 * of init.  This effectively disassociates the child from the
486 	 * parent.
487 	 */
488 	if (flags & RFNOWAIT)
489 		pptr = initproc;
490 	else
491 		pptr = p1;
492 	p2->p_pptr = pptr;
493 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
494 	LIST_INIT(&p2->p_children);
495 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
496 	callout_init(&p2->p_ithandle);
497 
498 #ifdef KTRACE
499 	/*
500 	 * Copy traceflag and tracefile if enabled.  If not inherited,
501 	 * these were zeroed above but we still could have a trace race
502 	 * so make sure p2's p_tracep is NULL.
503 	 */
504 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracep == NULL) {
505 		p2->p_traceflag = p1->p_traceflag;
506 		if ((p2->p_tracep = p1->p_tracep) != NULL)
507 			vref(p2->p_tracep);
508 	}
509 #endif
510 
511 	/*
512 	 * Inherit the scheduler and initialize scheduler-related fields.
513 	 * Set cpbase to the last timeout that occured (not the upcoming
514 	 * timeout).
515 	 */
516 	p2->p_usched = p1->p_usched;
517 	p2->p_cpbase = mycpu->gd_schedclock.time -
518 			mycpu->gd_schedclock.periodic;
519 	p2->p_usched->heuristic_forking(p1, p2);
520 
521 	/*
522 	 * This begins the section where we must prevent the parent
523 	 * from being swapped.
524 	 */
525 	PHOLD(p1);
526 
527 	/*
528 	 * Finish creating the child process.  It will return via a different
529 	 * execution path later.  (ie: directly into user mode)
530 	 */
531 	vm_fork(p1, p2, flags);
532 	caps_fork(p1, p2, flags);
533 
534 	if (flags == (RFFDG | RFPROC)) {
535 		mycpu->gd_cnt.v_forks++;
536 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
537 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
538 		mycpu->gd_cnt.v_vforks++;
539 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
540 	} else if (p1 == &proc0) {
541 		mycpu->gd_cnt.v_kthreads++;
542 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
543 	} else {
544 		mycpu->gd_cnt.v_rforks++;
545 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
546 	}
547 
548 	/*
549 	 * Both processes are set up, now check if any loadable modules want
550 	 * to adjust anything.
551 	 *   What if they have an error? XXX
552 	 */
553 	TAILQ_FOREACH(ep, &fork_list, next) {
554 		(*ep->function)(p1, p2, flags);
555 	}
556 
557 	/*
558 	 * Set the start time.  Note that the process is not runnable.  The
559 	 * caller is responsible for making it runnable.
560 	 */
561 	microtime(&p2->p_thread->td_start);
562 	p2->p_acflag = AFORK;
563 
564 	/*
565 	 * tell any interested parties about the new process
566 	 */
567 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
568 
569 	/*
570 	 * Return child proc pointer to parent.
571 	 */
572 	*procp = p2;
573 	return (0);
574 }
575 
576 /*
577  * The next two functionms are general routines to handle adding/deleting
578  * items on the fork callout list.
579  *
580  * at_fork():
581  * Take the arguments given and put them onto the fork callout list,
582  * However first make sure that it's not already there.
583  * Returns 0 on success or a standard error number.
584  */
585 int
586 at_fork(forklist_fn function)
587 {
588 	struct forklist *ep;
589 
590 #ifdef INVARIANTS
591 	/* let the programmer know if he's been stupid */
592 	if (rm_at_fork(function)) {
593 		printf("WARNING: fork callout entry (%p) already present\n",
594 		    function);
595 	}
596 #endif
597 	ep = malloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
598 	ep->function = function;
599 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
600 	return (0);
601 }
602 
603 /*
604  * Scan the exit callout list for the given item and remove it..
605  * Returns the number of items removed (0 or 1)
606  */
607 int
608 rm_at_fork(forklist_fn function)
609 {
610 	struct forklist *ep;
611 
612 	TAILQ_FOREACH(ep, &fork_list, next) {
613 		if (ep->function == function) {
614 			TAILQ_REMOVE(&fork_list, ep, next);
615 			free(ep, M_ATFORK);
616 			return(1);
617 		}
618 	}
619 	return (0);
620 }
621 
622 /*
623  * Add a forked process to the run queue after any remaining setup, such
624  * as setting the fork handler, has been completed.
625  */
626 void
627 start_forked_proc(struct proc *p1, struct proc *p2)
628 {
629 	/*
630 	 * Move from SIDL to RUN queue, and activate the process's thread.
631 	 * Activation of the thread effectively makes the process "a"
632 	 * current process, so we do not setrunqueue().
633 	 *
634 	 * YYY setrunqueue works here but we should clean up the trampoline
635 	 * code so we just schedule the LWKT thread and let the trampoline
636 	 * deal with the userland scheduler on return to userland.
637 	 */
638 	KASSERT(p2 && p2->p_stat == SIDL,
639 	    ("cannot start forked process, bad status: %p", p2));
640 	p2->p_usched->resetpriority(p2);
641 	crit_enter();
642 	p2->p_stat = SRUN;
643 	p2->p_usched->setrunqueue(p2);
644 	crit_exit();
645 
646 	/*
647 	 * Now can be swapped.
648 	 */
649 	PRELE(p1);
650 
651 	/*
652 	 * Preserve synchronization semantics of vfork.  If waiting for
653 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
654 	 * proc (in case of exit).
655 	 */
656 	while (p2->p_flag & P_PPWAIT)
657 		tsleep(p1, 0, "ppwait", 0);
658 }
659 
660