xref: /dragonfly/sys/kern/kern_fork.c (revision 23265324)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.63 2007/02/18 16:17:09 corecode Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 #include <sys/caps.h>
60 
61 #include <vm/vm.h>
62 #include <sys/lock.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_zone.h>
67 
68 #include <sys/vmmeter.h>
69 #include <sys/user.h>
70 #include <sys/thread2.h>
71 
72 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
73 
74 /*
75  * These are the stuctures used to create a callout list for things to do
76  * when forking a process
77  */
78 struct forklist {
79 	forklist_fn function;
80 	TAILQ_ENTRY(forklist) next;
81 };
82 
83 TAILQ_HEAD(forklist_head, forklist);
84 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
85 
86 int forksleep; /* Place for fork1() to sleep on. */
87 
88 /* ARGSUSED */
89 int
90 sys_fork(struct fork_args *uap)
91 {
92 	struct lwp *lp = curthread->td_lwp;
93 	struct proc *p2;
94 	int error;
95 
96 	error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
97 	if (error == 0) {
98 		start_forked_proc(lp, p2);
99 		uap->sysmsg_fds[0] = p2->p_pid;
100 		uap->sysmsg_fds[1] = 0;
101 	}
102 	return error;
103 }
104 
105 /* ARGSUSED */
106 int
107 sys_vfork(struct vfork_args *uap)
108 {
109 	struct lwp *lp = curthread->td_lwp;
110 	struct proc *p2;
111 	int error;
112 
113 	error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
114 	if (error == 0) {
115 		start_forked_proc(lp, p2);
116 		uap->sysmsg_fds[0] = p2->p_pid;
117 		uap->sysmsg_fds[1] = 0;
118 	}
119 	return error;
120 }
121 
122 /*
123  * Handle rforks.  An rfork may (1) operate on the current process without
124  * creating a new, (2) create a new process that shared the current process's
125  * vmspace, signals, and/or descriptors, or (3) create a new process that does
126  * not share these things (normal fork).
127  *
128  * Note that we only call start_forked_proc() if a new process is actually
129  * created.
130  *
131  * rfork { int flags }
132  */
133 int
134 sys_rfork(struct rfork_args *uap)
135 {
136 	struct lwp *lp = curthread->td_lwp;
137 	struct proc *p2;
138 	int error;
139 
140 	if ((uap->flags & RFKERNELONLY) != 0)
141 		return (EINVAL);
142 
143 	error = fork1(lp, uap->flags | RFPGLOCK, &p2);
144 	if (error == 0) {
145 		if (p2)
146 			start_forked_proc(lp, p2);
147 		uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
148 		uap->sysmsg_fds[1] = 0;
149 	}
150 	return error;
151 }
152 
153 
154 int	nprocs = 1;		/* process 0 */
155 
156 int
157 fork1(struct lwp *lp1, int flags, struct proc **procp)
158 {
159 	struct proc *p1 = lp1->lwp_proc;
160 	struct proc *p2, *pptr;
161 	struct pgrp *pgrp;
162 	struct lwp *lp2;
163 	uid_t uid;
164 	int ok, error;
165 	static int curfail = 0;
166 	static struct timeval lastfail;
167 	struct forklist *ep;
168 	struct filedesc_to_leader *fdtol;
169 
170 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
171 		return (EINVAL);
172 
173 	/*
174 	 * Here we don't create a new process, but we divorce
175 	 * certain parts of a process from itself.
176 	 */
177 	if ((flags & RFPROC) == 0) {
178 
179 		vm_fork(lp1, 0, flags);
180 
181 		/*
182 		 * Close all file descriptors.
183 		 */
184 		if (flags & RFCFDG) {
185 			struct filedesc *fdtmp;
186 			fdtmp = fdinit(p1);
187 			fdfree(p1);
188 			p1->p_fd = fdtmp;
189 		}
190 
191 		/*
192 		 * Unshare file descriptors (from parent.)
193 		 */
194 		if (flags & RFFDG) {
195 			if (p1->p_fd->fd_refcnt > 1) {
196 				struct filedesc *newfd;
197 				newfd = fdcopy(p1);
198 				fdfree(p1);
199 				p1->p_fd = newfd;
200 			}
201 		}
202 		*procp = NULL;
203 		return (0);
204 	}
205 
206 	/*
207 	 * Interlock against process group signal delivery.  If signals
208 	 * are pending after the interlock is obtained we have to restart
209 	 * the system call to process the signals.  If we don't the child
210 	 * can miss a pgsignal (such as ^C) sent during the fork.
211 	 *
212 	 * We can't use CURSIG() here because it will process any STOPs
213 	 * and cause the process group lock to be held indefinitely.  If
214 	 * a STOP occurs, the fork will be restarted after the CONT.
215 	 */
216 	error = 0;
217 	pgrp = NULL;
218 	if ((flags & RFPGLOCK) && (pgrp = p1->p_pgrp) != NULL) {
219 		lockmgr(&pgrp->pg_lock, LK_SHARED);
220 		if (CURSIGNB(lp1)) {
221 			error = ERESTART;
222 			goto done;
223 		}
224 	}
225 
226 	/*
227 	 * Although process entries are dynamically created, we still keep
228 	 * a global limit on the maximum number we will create.  Don't allow
229 	 * a nonprivileged user to use the last ten processes; don't let root
230 	 * exceed the limit. The variable nprocs is the current number of
231 	 * processes, maxproc is the limit.
232 	 */
233 	uid = p1->p_ucred->cr_ruid;
234 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
235 		if (ppsratecheck(&lastfail, &curfail, 1))
236 			kprintf("maxproc limit exceeded by uid %d, please "
237 			       "see tuning(7) and login.conf(5).\n", uid);
238 		tsleep(&forksleep, 0, "fork", hz / 2);
239 		error = EAGAIN;
240 		goto done;
241 	}
242 	/*
243 	 * Increment the nprocs resource before blocking can occur.  There
244 	 * are hard-limits as to the number of processes that can run.
245 	 */
246 	nprocs++;
247 
248 	/*
249 	 * Increment the count of procs running with this uid. Don't allow
250 	 * a nonprivileged user to exceed their current limit.
251 	 */
252 	ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1,
253 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
254 	if (!ok) {
255 		/*
256 		 * Back out the process count
257 		 */
258 		nprocs--;
259 		if (ppsratecheck(&lastfail, &curfail, 1))
260 			kprintf("maxproc limit exceeded by uid %d, please "
261 			       "see tuning(7) and login.conf(5).\n", uid);
262 		tsleep(&forksleep, 0, "fork", hz / 2);
263 		error = EAGAIN;
264 		goto done;
265 	}
266 
267 	/* Allocate new proc. */
268 	p2 = zalloc(proc_zone);
269 	lp2 = zalloc(lwp_zone);
270 
271 	/*
272 	 * Setup linkage for kernel based threading XXX lwp
273 	 */
274 	if (flags & RFTHREAD) {
275 		p2->p_peers = p1->p_peers;
276 		p1->p_peers = p2;
277 		p2->p_leader = p1->p_leader;
278 	} else {
279 		p2->p_peers = NULL;
280 		p2->p_leader = p2;
281 	}
282 
283 	p2->p_wakeup = 0;
284 	p2->p_vmspace = NULL;
285 	p2->p_numposixlocks = 0;
286 	p2->p_emuldata = NULL;
287 	LIST_INIT(&p2->p_lwps);
288 
289 	/* XXX lwp */
290 	lp2->lwp_proc = p2;
291 	lp2->lwp_tid = 0;
292 	LIST_INSERT_HEAD(&p2->p_lwps, lp2, lwp_list);
293 	p2->p_nthreads = 1;
294 	p2->p_nstopped = 0;
295 	p2->p_lasttid = 0;
296 
297 	/*
298 	 * Setting the state to SIDL protects the partially initialized
299 	 * process once it starts getting hooked into the rest of the system.
300 	 */
301 	p2->p_stat = SIDL;
302 	lp2->lwp_stat = LSRUN;	/* XXX use other state?  start_forked_proc() handles this*/
303 	proc_add_allproc(p2);
304 
305 	/*
306 	 * Make a proc table entry for the new process.
307 	 * Start by zeroing the section of proc that is zero-initialized,
308 	 * then copy the section that is copied directly from the parent.
309 	 */
310 	bzero(&p2->p_startzero,
311 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
312 	bzero(&lp2->lwp_startzero,
313 	    (unsigned) ((caddr_t)&lp2->lwp_endzero -
314 			(caddr_t)&lp2->lwp_startzero));
315 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
316 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
317 	bcopy(&lp1->lwp_startcopy, &lp2->lwp_startcopy,
318 	    (unsigned) ((caddr_t)&lp2->lwp_endcopy -
319 			(caddr_t)&lp2->lwp_startcopy));
320 
321 	p2->p_aioinfo = NULL;
322 
323 	/*
324 	 * Duplicate sub-structures as needed.
325 	 * Increase reference counts on shared objects.
326 	 * The p_stats and p_sigacts substructs are set in vm_fork.
327 	 * p_lock is in the copy area and must be cleared.
328 	 */
329 	p2->p_flag = 0;
330 	p2->p_lock = 0;
331 	lp2->lwp_lock = 0;
332 	if (p1->p_flag & P_PROFIL)
333 		startprofclock(p2);
334 	p2->p_ucred = crhold(p1->p_ucred);
335 
336 	if (jailed(p2->p_ucred))
337 		p2->p_flag |= P_JAILED;
338 
339 	if (p2->p_args)
340 		p2->p_args->ar_ref++;
341 
342 	if (flags & RFSIGSHARE) {
343 		p2->p_procsig = p1->p_procsig;
344 		p2->p_procsig->ps_refcnt++;
345 		if (p1->p_sigacts == &p1->p_addr->u_sigacts) {
346 			struct sigacts *newsigacts;
347 
348 			/* Create the shared sigacts structure */
349 			MALLOC(newsigacts, struct sigacts *,
350 			    sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
351 			crit_enter();
352 			/*
353 			 * Set p_sigacts to the new shared structure.
354 			 * Note that this is updating p1->p_sigacts at the
355 			 * same time, since p_sigacts is just a pointer to
356 			 * the shared p_procsig->ps_sigacts.
357 			 */
358 			p2->p_sigacts  = newsigacts;
359 			bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts,
360 			    sizeof(*p2->p_sigacts));
361 			*p2->p_sigacts = p1->p_addr->u_sigacts;
362 			crit_exit();
363 		}
364 	} else {
365 		MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
366 		    M_SUBPROC, M_WAITOK);
367 		bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
368 		p2->p_procsig->ps_refcnt = 1;
369 		p2->p_sigacts = NULL;	/* finished in vm_fork() */
370 	}
371 	if (flags & RFLINUXTHPN)
372 	        p2->p_sigparent = SIGUSR1;
373 	else
374 	        p2->p_sigparent = SIGCHLD;
375 
376 	/* bump references to the text vnode (for procfs) */
377 	p2->p_textvp = p1->p_textvp;
378 	if (p2->p_textvp)
379 		vref(p2->p_textvp);
380 
381 	/*
382 	 * Handle file descriptors
383 	 */
384 	if (flags & RFCFDG) {
385 		p2->p_fd = fdinit(p1);
386 		fdtol = NULL;
387 	} else if (flags & RFFDG) {
388 		p2->p_fd = fdcopy(p1);
389 		fdtol = NULL;
390 	} else {
391 		p2->p_fd = fdshare(p1);
392 		if (p1->p_fdtol == NULL)
393 			p1->p_fdtol =
394 				filedesc_to_leader_alloc(NULL,
395 							 p1->p_leader);
396 		if ((flags & RFTHREAD) != 0) {
397 			/*
398 			 * Shared file descriptor table and
399 			 * shared process leaders.
400 			 */
401 			fdtol = p1->p_fdtol;
402 			fdtol->fdl_refcount++;
403 		} else {
404 			/*
405 			 * Shared file descriptor table, and
406 			 * different process leaders
407 			 */
408 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
409 		}
410 	}
411 	p2->p_fdtol = fdtol;
412 	p2->p_limit = plimit_fork(p1->p_limit);
413 
414 	/*
415 	 * Preserve some more flags in subprocess.  P_PROFIL has already
416 	 * been preserved.
417 	 */
418 	p2->p_flag |= p1->p_flag & P_SUGID;
419 	lp2->lwp_flag |= lp1->lwp_flag & LWP_ALTSTACK;
420 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
421 		p2->p_flag |= P_CONTROLT;
422 	if (flags & RFPPWAIT)
423 		p2->p_flag |= P_PPWAIT;
424 
425 	/*
426 	 * Inherit the virtual kernel structure (allows a virtual kernel
427 	 * to fork to simulate multiple cpus).
428 	 */
429 	p2->p_vkernel = NULL;
430 	if (p1->p_vkernel)
431 		vkernel_inherit(p1, p2);
432 
433 	/*
434 	 * Once we are on a pglist we may receive signals.  XXX we might
435 	 * race a ^C being sent to the process group by not receiving it
436 	 * at all prior to this line.
437 	 */
438 	LIST_INSERT_AFTER(p1, p2, p_pglist);
439 
440 	/*
441 	 * Attach the new process to its parent.
442 	 *
443 	 * If RFNOWAIT is set, the newly created process becomes a child
444 	 * of init.  This effectively disassociates the child from the
445 	 * parent.
446 	 */
447 	if (flags & RFNOWAIT)
448 		pptr = initproc;
449 	else
450 		pptr = p1;
451 	p2->p_pptr = pptr;
452 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
453 	LIST_INIT(&p2->p_children);
454 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
455 	callout_init(&p2->p_ithandle);
456 
457 #ifdef KTRACE
458 	/*
459 	 * Copy traceflag and tracefile if enabled.  If not inherited,
460 	 * these were zeroed above but we still could have a trace race
461 	 * so make sure p2's p_tracenode is NULL.
462 	 */
463 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
464 		p2->p_traceflag = p1->p_traceflag;
465 		p2->p_tracenode = ktrinherit(p1->p_tracenode);
466 	}
467 #endif
468 
469 	/*
470 	 * Inherit the scheduler and initialize scheduler-related fields.
471 	 * Set cpbase to the last timeout that occured (not the upcoming
472 	 * timeout).
473 	 *
474 	 * A critical section is required since a timer IPI can update
475 	 * scheduler specific data.
476 	 */
477 	crit_enter();
478 	p2->p_usched = p1->p_usched;
479 	lp2->lwp_cpbase = mycpu->gd_schedclock.time -
480 			mycpu->gd_schedclock.periodic;
481 	p2->p_usched->heuristic_forking(lp1, lp2);
482 	crit_exit();
483 
484 	/*
485 	 * This begins the section where we must prevent the parent
486 	 * from being swapped.
487 	 */
488 	PHOLD(p1);
489 
490 	/*
491 	 * Finish creating the child process.  It will return via a different
492 	 * execution path later.  (ie: directly into user mode)
493 	 */
494 	vm_fork(lp1, p2, flags);
495 	caps_fork(lp1->lwp_thread, lp2->lwp_thread, flags);
496 
497 	if (flags == (RFFDG | RFPROC)) {
498 		mycpu->gd_cnt.v_forks++;
499 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
500 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
501 		mycpu->gd_cnt.v_vforks++;
502 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
503 	} else if (p1 == &proc0) {
504 		mycpu->gd_cnt.v_kthreads++;
505 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
506 	} else {
507 		mycpu->gd_cnt.v_rforks++;
508 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
509 	}
510 
511 	/*
512 	 * Both processes are set up, now check if any loadable modules want
513 	 * to adjust anything.
514 	 *   What if they have an error? XXX
515 	 */
516 	TAILQ_FOREACH(ep, &fork_list, next) {
517 		(*ep->function)(p1, p2, flags);
518 	}
519 
520 	/*
521 	 * Set the start time.  Note that the process is not runnable.  The
522 	 * caller is responsible for making it runnable.
523 	 */
524 	microtime(&p2->p_start);
525 	p2->p_acflag = AFORK;
526 
527 	/*
528 	 * tell any interested parties about the new process
529 	 */
530 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
531 
532 	/*
533 	 * Return child proc pointer to parent.
534 	 */
535 	*procp = p2;
536 done:
537 	if (pgrp)
538 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
539 	return (error);
540 }
541 
542 /*
543  * The next two functionms are general routines to handle adding/deleting
544  * items on the fork callout list.
545  *
546  * at_fork():
547  * Take the arguments given and put them onto the fork callout list,
548  * However first make sure that it's not already there.
549  * Returns 0 on success or a standard error number.
550  */
551 int
552 at_fork(forklist_fn function)
553 {
554 	struct forklist *ep;
555 
556 #ifdef INVARIANTS
557 	/* let the programmer know if he's been stupid */
558 	if (rm_at_fork(function)) {
559 		kprintf("WARNING: fork callout entry (%p) already present\n",
560 		    function);
561 	}
562 #endif
563 	ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
564 	ep->function = function;
565 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
566 	return (0);
567 }
568 
569 /*
570  * Scan the exit callout list for the given item and remove it..
571  * Returns the number of items removed (0 or 1)
572  */
573 int
574 rm_at_fork(forklist_fn function)
575 {
576 	struct forklist *ep;
577 
578 	TAILQ_FOREACH(ep, &fork_list, next) {
579 		if (ep->function == function) {
580 			TAILQ_REMOVE(&fork_list, ep, next);
581 			kfree(ep, M_ATFORK);
582 			return(1);
583 		}
584 	}
585 	return (0);
586 }
587 
588 /*
589  * Add a forked process to the run queue after any remaining setup, such
590  * as setting the fork handler, has been completed.
591  */
592 void
593 start_forked_proc(struct lwp *lp1, struct proc *p2)
594 {
595 	struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
596 
597 	/*
598 	 * Move from SIDL to RUN queue, and activate the process's thread.
599 	 * Activation of the thread effectively makes the process "a"
600 	 * current process, so we do not setrunqueue().
601 	 *
602 	 * YYY setrunqueue works here but we should clean up the trampoline
603 	 * code so we just schedule the LWKT thread and let the trampoline
604 	 * deal with the userland scheduler on return to userland.
605 	 */
606 	KASSERT(p2->p_stat == SIDL,
607 	    ("cannot start forked process, bad status: %p", p2));
608 	p2->p_usched->resetpriority(lp2);
609 	crit_enter();
610 	p2->p_stat = SACTIVE;
611 	lp2->lwp_stat = LSRUN;
612 	p2->p_usched->setrunqueue(lp2);
613 	crit_exit();
614 
615 	/*
616 	 * Now can be swapped.
617 	 */
618 	PRELE(lp1->lwp_proc);
619 
620 	/*
621 	 * Preserve synchronization semantics of vfork.  If waiting for
622 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
623 	 * proc (in case of exit).
624 	 */
625 	while (p2->p_flag & P_PPWAIT)
626 		tsleep(lp1->lwp_proc, 0, "ppwait", 0);
627 }
628