xref: /dragonfly/sys/kern/kern_fork.c (revision 3948dfa0)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/filedesc.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/malloc.h>
47 #include <sys/proc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/ktrace.h>
52 #include <sys/unistd.h>
53 #include <sys/jail.h>
54 #include <sys/lwp.h>
55 
56 #include <vm/vm.h>
57 #include <sys/lock.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_map.h>
60 #include <vm/vm_extern.h>
61 
62 #include <sys/vmmeter.h>
63 #include <sys/refcount.h>
64 #include <sys/thread2.h>
65 #include <sys/signal2.h>
66 #include <sys/spinlock2.h>
67 
68 #include <sys/dsched.h>
69 
70 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
71 static MALLOC_DEFINE(M_REAPER, "reaper", "process reapers");
72 
73 /*
74  * These are the stuctures used to create a callout list for things to do
75  * when forking a process
76  */
77 struct forklist {
78 	forklist_fn function;
79 	TAILQ_ENTRY(forklist) next;
80 };
81 
82 TAILQ_HEAD(forklist_head, forklist);
83 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
84 
85 static struct lwp	*lwp_fork(struct lwp *, struct proc *, int flags,
86 			    const cpumask_t *mask);
87 static int		lwp_create1(struct lwp_params *params,
88 			    const cpumask_t *mask);
89 static struct lock reaper_lock = LOCK_INITIALIZER("reapgl", 0, 0);
90 
91 int forksleep; /* Place for fork1() to sleep on. */
92 
93 /*
94  * Red-Black tree support for LWPs
95  */
96 
97 static int
98 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
99 {
100 	if (lp1->lwp_tid < lp2->lwp_tid)
101 		return(-1);
102 	if (lp1->lwp_tid > lp2->lwp_tid)
103 		return(1);
104 	return(0);
105 }
106 
107 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
108 
109 /*
110  * When forking, memory underpinning umtx-supported mutexes may be set
111  * COW causing the physical address to change.  We must wakeup any threads
112  * blocked on the physical address to allow them to re-resolve their VM.
113  *
114  * (caller is holding p->p_token)
115  */
116 static void
117 wake_umtx_threads(struct proc *p1)
118 {
119 	struct lwp *lp;
120 	struct thread *td;
121 
122 	RB_FOREACH(lp, lwp_rb_tree, &p1->p_lwp_tree) {
123 		td = lp->lwp_thread;
124 		if (td && (td->td_flags & TDF_TSLEEPQ) &&
125 		    (td->td_wdomain & PDOMAIN_MASK) == PDOMAIN_UMTX) {
126 			wakeup_domain(td->td_wchan, PDOMAIN_UMTX);
127 		}
128 	}
129 }
130 
131 /*
132  * fork() system call
133  */
134 int
135 sys_fork(struct fork_args *uap)
136 {
137 	struct lwp *lp = curthread->td_lwp;
138 	struct proc *p2;
139 	int error;
140 
141 	error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
142 	if (error == 0) {
143 		PHOLD(p2);
144 		start_forked_proc(lp, p2);
145 		uap->sysmsg_fds[0] = p2->p_pid;
146 		uap->sysmsg_fds[1] = 0;
147 		PRELE(p2);
148 	}
149 	return error;
150 }
151 
152 /*
153  * vfork() system call
154  */
155 int
156 sys_vfork(struct vfork_args *uap)
157 {
158 	struct lwp *lp = curthread->td_lwp;
159 	struct proc *p2;
160 	int error;
161 
162 	error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
163 	if (error == 0) {
164 		PHOLD(p2);
165 		start_forked_proc(lp, p2);
166 		uap->sysmsg_fds[0] = p2->p_pid;
167 		uap->sysmsg_fds[1] = 0;
168 		PRELE(p2);
169 	}
170 	return error;
171 }
172 
173 /*
174  * Handle rforks.  An rfork may (1) operate on the current process without
175  * creating a new, (2) create a new process that shared the current process's
176  * vmspace, signals, and/or descriptors, or (3) create a new process that does
177  * not share these things (normal fork).
178  *
179  * Note that we only call start_forked_proc() if a new process is actually
180  * created.
181  *
182  * rfork { int flags }
183  */
184 int
185 sys_rfork(struct rfork_args *uap)
186 {
187 	struct lwp *lp = curthread->td_lwp;
188 	struct proc *p2;
189 	int error;
190 
191 	if ((uap->flags & RFKERNELONLY) != 0)
192 		return (EINVAL);
193 
194 	error = fork1(lp, uap->flags | RFPGLOCK, &p2);
195 	if (error == 0) {
196 		if (p2) {
197 			PHOLD(p2);
198 			start_forked_proc(lp, p2);
199 			uap->sysmsg_fds[0] = p2->p_pid;
200 			uap->sysmsg_fds[1] = 0;
201 			PRELE(p2);
202 		} else {
203 			uap->sysmsg_fds[0] = 0;
204 			uap->sysmsg_fds[1] = 0;
205 		}
206 	}
207 	return error;
208 }
209 
210 static int
211 lwp_create1(struct lwp_params *uprm, const cpumask_t *umask)
212 {
213 	struct proc *p = curproc;
214 	struct lwp *lp;
215 	struct lwp_params params;
216 	cpumask_t *mask = NULL, mask0;
217 	int error;
218 
219 	error = copyin(uprm, &params, sizeof(params));
220 	if (error)
221 		goto fail2;
222 
223 	if (umask != NULL) {
224 		error = copyin(umask, &mask0, sizeof(mask0));
225 		if (error)
226 			goto fail2;
227 		CPUMASK_ANDMASK(mask0, smp_active_mask);
228 		if (CPUMASK_TESTNZERO(mask0))
229 			mask = &mask0;
230 	}
231 
232 	lwkt_gettoken(&p->p_token);
233 	plimit_lwp_fork(p);	/* force exclusive access */
234 	lp = lwp_fork(curthread->td_lwp, p, RFPROC | RFMEM, mask);
235 	error = cpu_prepare_lwp(lp, &params);
236 	if (error)
237 		goto fail;
238 	if (params.lwp_tid1 != NULL &&
239 	    (error = copyout(&lp->lwp_tid, params.lwp_tid1, sizeof(lp->lwp_tid))))
240 		goto fail;
241 	if (params.lwp_tid2 != NULL &&
242 	    (error = copyout(&lp->lwp_tid, params.lwp_tid2, sizeof(lp->lwp_tid))))
243 		goto fail;
244 
245 	/*
246 	 * Now schedule the new lwp.
247 	 */
248 	p->p_usched->resetpriority(lp);
249 	crit_enter();
250 	lp->lwp_stat = LSRUN;
251 	p->p_usched->setrunqueue(lp);
252 	crit_exit();
253 	lwkt_reltoken(&p->p_token);
254 
255 	return (0);
256 
257 fail:
258 	/*
259 	 * Make sure no one is using this lwp, before it is removed from
260 	 * the tree.  If we didn't wait it here, lwp tree iteration with
261 	 * blocking operation would be broken.
262 	 */
263 	while (lp->lwp_lock > 0)
264 		tsleep(lp, 0, "lwpfail", 1);
265 	lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
266 	--p->p_nthreads;
267 	/* lwp_dispose expects an exited lwp, and a held proc */
268 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
269 	lp->lwp_thread->td_flags |= TDF_EXITING;
270 	lwkt_remove_tdallq(lp->lwp_thread);
271 	PHOLD(p);
272 	biosched_done(lp->lwp_thread);
273 	dsched_exit_thread(lp->lwp_thread);
274 	lwp_dispose(lp);
275 	lwkt_reltoken(&p->p_token);
276 fail2:
277 	return (error);
278 }
279 
280 /*
281  * Low level thread create used by pthreads.
282  */
283 int
284 sys_lwp_create(struct lwp_create_args *uap)
285 {
286 
287 	return (lwp_create1(uap->params, NULL));
288 }
289 
290 int
291 sys_lwp_create2(struct lwp_create2_args *uap)
292 {
293 
294 	return (lwp_create1(uap->params, uap->mask));
295 }
296 
297 int	nprocs = 1;		/* process 0 */
298 
299 int
300 fork1(struct lwp *lp1, int flags, struct proc **procp)
301 {
302 	struct proc *p1 = lp1->lwp_proc;
303 	struct proc *p2;
304 	struct proc *pptr;
305 	struct pgrp *p1grp;
306 	struct pgrp *plkgrp;
307 	struct sysreaper *reap;
308 	uid_t uid;
309 	int ok, error;
310 	static int curfail = 0;
311 	static struct timeval lastfail;
312 	struct forklist *ep;
313 	struct filedesc_to_leader *fdtol;
314 
315 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
316 		return (EINVAL);
317 
318 	lwkt_gettoken(&p1->p_token);
319 	plkgrp = NULL;
320 	p2 = NULL;
321 
322 	/*
323 	 * Here we don't create a new process, but we divorce
324 	 * certain parts of a process from itself.
325 	 */
326 	if ((flags & RFPROC) == 0) {
327 		/*
328 		 * This kind of stunt does not work anymore if
329 		 * there are native threads (lwps) running
330 		 */
331 		if (p1->p_nthreads != 1) {
332 			error = EINVAL;
333 			goto done;
334 		}
335 
336 		vm_fork(p1, 0, flags);
337 		if ((flags & RFMEM) == 0)
338 			wake_umtx_threads(p1);
339 
340 		/*
341 		 * Close all file descriptors.
342 		 */
343 		if (flags & RFCFDG) {
344 			struct filedesc *fdtmp;
345 			fdtmp = fdinit(p1);
346 			fdfree(p1, fdtmp);
347 		}
348 
349 		/*
350 		 * Unshare file descriptors (from parent.)
351 		 */
352 		if (flags & RFFDG) {
353 			if (p1->p_fd->fd_refcnt > 1) {
354 				struct filedesc *newfd;
355 				error = fdcopy(p1, &newfd);
356 				if (error != 0) {
357 					error = ENOMEM;
358 					goto done;
359 				}
360 				fdfree(p1, newfd);
361 			}
362 		}
363 		*procp = NULL;
364 		error = 0;
365 		goto done;
366 	}
367 
368 	/*
369 	 * Interlock against process group signal delivery.  If signals
370 	 * are pending after the interlock is obtained we have to restart
371 	 * the system call to process the signals.  If we don't the child
372 	 * can miss a pgsignal (such as ^C) sent during the fork.
373 	 *
374 	 * We can't use CURSIG() here because it will process any STOPs
375 	 * and cause the process group lock to be held indefinitely.  If
376 	 * a STOP occurs, the fork will be restarted after the CONT.
377 	 */
378 	p1grp = p1->p_pgrp;
379 	if ((flags & RFPGLOCK) && (plkgrp = p1->p_pgrp) != NULL) {
380 		pgref(plkgrp);
381 		lockmgr(&plkgrp->pg_lock, LK_SHARED);
382 		if (CURSIG_NOBLOCK(lp1)) {
383 			error = ERESTART;
384 			goto done;
385 		}
386 	}
387 
388 	/*
389 	 * Although process entries are dynamically created, we still keep
390 	 * a global limit on the maximum number we will create.  Don't allow
391 	 * a nonprivileged user to use the last ten processes; don't let root
392 	 * exceed the limit. The variable nprocs is the current number of
393 	 * processes, maxproc is the limit.
394 	 */
395 	uid = lp1->lwp_thread->td_ucred->cr_ruid;
396 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
397 		if (ppsratecheck(&lastfail, &curfail, 1))
398 			kprintf("maxproc limit exceeded by uid %d, please "
399 			       "see tuning(7) and login.conf(5).\n", uid);
400 		tsleep(&forksleep, 0, "fork", hz / 2);
401 		error = EAGAIN;
402 		goto done;
403 	}
404 
405 	/*
406 	 * Increment the nprocs resource before blocking can occur.  There
407 	 * are hard-limits as to the number of processes that can run.
408 	 */
409 	atomic_add_int(&nprocs, 1);
410 
411 	/*
412 	 * Increment the count of procs running with this uid.  This also
413 	 * applies to root.
414 	 */
415 	ok = chgproccnt(lp1->lwp_thread->td_ucred->cr_ruidinfo, 1,
416 			plimit_getadjvalue(RLIMIT_NPROC));
417 	if (!ok) {
418 		/*
419 		 * Back out the process count
420 		 */
421 		atomic_add_int(&nprocs, -1);
422 		if (ppsratecheck(&lastfail, &curfail, 1)) {
423 			kprintf("maxproc limit of %jd "
424 				"exceeded by \"%s\" uid %d, "
425 				"please see tuning(7) and login.conf(5).\n",
426 				plimit_getadjvalue(RLIMIT_NPROC),
427 				p1->p_comm,
428 				uid);
429 		}
430 		tsleep(&forksleep, 0, "fork", hz / 2);
431 		error = EAGAIN;
432 		goto done;
433 	}
434 
435 	/*
436 	 * Allocate a new process, don't get fancy: zero the structure.
437 	 */
438 	p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
439 
440 	/*
441 	 * Core initialization.  SIDL is a safety state that protects the
442 	 * partially initialized process once it starts getting hooked
443 	 * into system structures and becomes addressable.
444 	 *
445 	 * We must be sure to acquire p2->p_token as well, we must hold it
446 	 * once the process is on the allproc list to avoid things such
447 	 * as competing modifications to p_flags.
448 	 */
449 	mycpu->gd_forkid += ncpus;
450 	p2->p_forkid = mycpu->gd_forkid + mycpu->gd_cpuid;
451 	p2->p_lasttid = 0;	/* first tid will be 1 */
452 	p2->p_stat = SIDL;
453 
454 	/*
455 	 * NOTE: Process 0 will not have a reaper, but process 1 (init) and
456 	 *	 all other processes always will.
457 	 */
458 	if ((reap = p1->p_reaper) != NULL) {
459 		reaper_hold(reap);
460 		p2->p_reaper = reap;
461 	} else {
462 		p2->p_reaper = NULL;
463 	}
464 
465 	RB_INIT(&p2->p_lwp_tree);
466 	spin_init(&p2->p_spin, "procfork1");
467 	lwkt_token_init(&p2->p_token, "proc");
468 	lwkt_gettoken(&p2->p_token);
469 
470 	/*
471 	 * Setup linkage for kernel based threading XXX lwp.  Also add the
472 	 * process to the allproclist.
473 	 *
474 	 * The process structure is addressable after this point.
475 	 */
476 	if (flags & RFTHREAD) {
477 		p2->p_peers = p1->p_peers;
478 		p1->p_peers = p2;
479 		p2->p_leader = p1->p_leader;
480 	} else {
481 		p2->p_leader = p2;
482 	}
483 	proc_add_allproc(p2);
484 
485 	/*
486 	 * Initialize the section which is copied verbatim from the parent.
487 	 */
488 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
489 	      ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
490 
491 	/*
492 	 * Duplicate sub-structures as needed.  Increase reference counts
493 	 * on shared objects.
494 	 *
495 	 * NOTE: because we are now on the allproc list it is possible for
496 	 *	 other consumers to gain temporary references to p2
497 	 *	 (p2->p_lock can change).
498 	 */
499 	if (p1->p_flags & P_PROFIL)
500 		startprofclock(p2);
501 	p2->p_ucred = crhold(lp1->lwp_thread->td_ucred);
502 
503 	if (jailed(p2->p_ucred))
504 		p2->p_flags |= P_JAILED;
505 
506 	if (p2->p_args)
507 		refcount_acquire(&p2->p_args->ar_ref);
508 
509 	p2->p_usched = p1->p_usched;
510 	/* XXX: verify copy of the secondary iosched stuff */
511 	dsched_enter_proc(p2);
512 
513 	if (flags & RFSIGSHARE) {
514 		p2->p_sigacts = p1->p_sigacts;
515 		refcount_acquire(&p2->p_sigacts->ps_refcnt);
516 	} else {
517 		p2->p_sigacts = kmalloc(sizeof(*p2->p_sigacts),
518 					M_SUBPROC, M_WAITOK);
519 		bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
520 		refcount_init(&p2->p_sigacts->ps_refcnt, 1);
521 	}
522 	if (flags & RFLINUXTHPN)
523 	        p2->p_sigparent = SIGUSR1;
524 	else
525 	        p2->p_sigparent = SIGCHLD;
526 
527 	/* bump references to the text vnode (for procfs) */
528 	p2->p_textvp = p1->p_textvp;
529 	if (p2->p_textvp)
530 		vref(p2->p_textvp);
531 
532 	/* copy namecache handle to the text file */
533 	if (p1->p_textnch.mount)
534 		cache_copy(&p1->p_textnch, &p2->p_textnch);
535 
536 	/*
537 	 * Handle file descriptors
538 	 */
539 	if (flags & RFCFDG) {
540 		p2->p_fd = fdinit(p1);
541 		fdtol = NULL;
542 	} else if (flags & RFFDG) {
543 		error = fdcopy(p1, &p2->p_fd);
544 		if (error != 0) {
545 			error = ENOMEM;
546 			goto done;
547 		}
548 		fdtol = NULL;
549 	} else {
550 		p2->p_fd = fdshare(p1);
551 		if (p1->p_fdtol == NULL) {
552 			p1->p_fdtol = filedesc_to_leader_alloc(NULL,
553 							       p1->p_leader);
554 		}
555 		if ((flags & RFTHREAD) != 0) {
556 			/*
557 			 * Shared file descriptor table and
558 			 * shared process leaders.
559 			 */
560 			fdtol = p1->p_fdtol;
561 			fdtol->fdl_refcount++;
562 		} else {
563 			/*
564 			 * Shared file descriptor table, and
565 			 * different process leaders
566 			 */
567 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
568 		}
569 	}
570 	p2->p_fdtol = fdtol;
571 	p2->p_limit = plimit_fork(p1);
572 
573 	/*
574 	 * Adjust depth for resource downscaling
575 	 */
576 	if ((p2->p_depth & 31) != 31)
577 		++p2->p_depth;
578 
579 	/*
580 	 * Preserve some more flags in subprocess.  P_PROFIL has already
581 	 * been preserved.
582 	 */
583 	p2->p_flags |= p1->p_flags & P_SUGID;
584 	if (p1->p_session->s_ttyvp != NULL && (p1->p_flags & P_CONTROLT))
585 		p2->p_flags |= P_CONTROLT;
586 	if (flags & RFPPWAIT) {
587 		p2->p_flags |= P_PPWAIT;
588 		if (p1->p_upmap)
589 			atomic_add_int(&p1->p_upmap->invfork, 1);
590 	}
591 
592 	/*
593 	 * Inherit the virtual kernel structure (allows a virtual kernel
594 	 * to fork to simulate multiple cpus).
595 	 */
596 	if (p1->p_vkernel)
597 		vkernel_inherit(p1, p2);
598 
599 	/*
600 	 * Once we are on a pglist we may receive signals.  XXX we might
601 	 * race a ^C being sent to the process group by not receiving it
602 	 * at all prior to this line.
603 	 */
604 	pgref(p1grp);
605 	lwkt_gettoken(&p1grp->pg_token);
606 	LIST_INSERT_AFTER(p1, p2, p_pglist);
607 	lwkt_reltoken(&p1grp->pg_token);
608 
609 	/*
610 	 * Attach the new process to its parent.
611 	 *
612 	 * If RFNOWAIT is set, the newly created process becomes a child
613 	 * of the reaper (typically init).  This effectively disassociates
614 	 * the child from the parent.
615 	 *
616 	 * Temporarily hold pptr for the RFNOWAIT case to avoid ripouts.
617 	 */
618 	if (flags & RFNOWAIT) {
619 		pptr = reaper_get(reap);
620 		if (pptr == NULL) {
621 			pptr = initproc;
622 			PHOLD(pptr);
623 		}
624 	} else {
625 		pptr = p1;
626 	}
627 	p2->p_pptr = pptr;
628 	p2->p_ppid = pptr->p_pid;
629 	LIST_INIT(&p2->p_children);
630 
631 	lwkt_gettoken(&pptr->p_token);
632 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
633 	lwkt_reltoken(&pptr->p_token);
634 
635 	if (flags & RFNOWAIT)
636 		PRELE(pptr);
637 
638 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
639 	callout_init_mp(&p2->p_ithandle);
640 
641 #ifdef KTRACE
642 	/*
643 	 * Copy traceflag and tracefile if enabled.  If not inherited,
644 	 * these were zeroed above but we still could have a trace race
645 	 * so make sure p2's p_tracenode is NULL.
646 	 */
647 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
648 		p2->p_traceflag = p1->p_traceflag;
649 		p2->p_tracenode = ktrinherit(p1->p_tracenode);
650 	}
651 #endif
652 
653 	/*
654 	 * This begins the section where we must prevent the parent
655 	 * from being swapped.
656 	 *
657 	 * Gets PRELE'd in the caller in start_forked_proc().
658 	 */
659 	PHOLD(p1);
660 
661 	vm_fork(p1, p2, flags);
662 	if ((flags & RFMEM) == 0)
663 		wake_umtx_threads(p1);
664 
665 	/*
666 	 * Create the first lwp associated with the new proc.
667 	 * It will return via a different execution path later, directly
668 	 * into userland, after it was put on the runq by
669 	 * start_forked_proc().
670 	 */
671 	lwp_fork(lp1, p2, flags, NULL);
672 
673 	if (flags == (RFFDG | RFPROC | RFPGLOCK)) {
674 		mycpu->gd_cnt.v_forks++;
675 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize +
676 					     p2->p_vmspace->vm_ssize;
677 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK)) {
678 		mycpu->gd_cnt.v_vforks++;
679 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
680 					      p2->p_vmspace->vm_ssize;
681 	} else if (p1 == &proc0) {
682 		mycpu->gd_cnt.v_kthreads++;
683 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
684 						p2->p_vmspace->vm_ssize;
685 	} else {
686 		mycpu->gd_cnt.v_rforks++;
687 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
688 					      p2->p_vmspace->vm_ssize;
689 	}
690 
691 	/*
692 	 * Both processes are set up, now check if any loadable modules want
693 	 * to adjust anything.
694 	 *   What if they have an error? XXX
695 	 */
696 	TAILQ_FOREACH(ep, &fork_list, next) {
697 		(*ep->function)(p1, p2, flags);
698 	}
699 
700 	/*
701 	 * Set the start time.  Note that the process is not runnable.  The
702 	 * caller is responsible for making it runnable.
703 	 */
704 	microtime(&p2->p_start);
705 	p2->p_acflag = AFORK;
706 
707 	/*
708 	 * tell any interested parties about the new process
709 	 */
710 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
711 
712 	/*
713 	 * Return child proc pointer to parent.
714 	 */
715 	*procp = p2;
716 	error = 0;
717 done:
718 	if (p2)
719 		lwkt_reltoken(&p2->p_token);
720 	lwkt_reltoken(&p1->p_token);
721 	if (plkgrp) {
722 		lockmgr(&plkgrp->pg_lock, LK_RELEASE);
723 		pgrel(plkgrp);
724 	}
725 	return (error);
726 }
727 
728 static struct lwp *
729 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags,
730     const cpumask_t *mask)
731 {
732 	globaldata_t gd = mycpu;
733 	struct lwp *lp;
734 	struct thread *td;
735 
736 	lp = kmalloc(sizeof(struct lwp), M_LWP, M_WAITOK|M_ZERO);
737 
738 	lp->lwp_proc = destproc;
739 	lp->lwp_vmspace = destproc->p_vmspace;
740 	lp->lwp_stat = LSRUN;
741 	bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
742 	    (unsigned) ((caddr_t)&lp->lwp_endcopy -
743 			(caddr_t)&lp->lwp_startcopy));
744 	if (mask != NULL)
745 		lp->lwp_cpumask = *mask;
746 
747 	/*
748 	 * Reset the sigaltstack if memory is shared, otherwise inherit
749 	 * it.
750 	 */
751 	if (flags & RFMEM) {
752 		lp->lwp_sigstk.ss_flags = SS_DISABLE;
753 		lp->lwp_sigstk.ss_size = 0;
754 		lp->lwp_sigstk.ss_sp = NULL;
755 		lp->lwp_flags &= ~LWP_ALTSTACK;
756 	} else {
757 		lp->lwp_flags |= origlp->lwp_flags & LWP_ALTSTACK;
758 	}
759 
760 	/*
761 	 * Set cpbase to the last timeout that occured (not the upcoming
762 	 * timeout).
763 	 *
764 	 * A critical section is required since a timer IPI can update
765 	 * scheduler specific data.
766 	 */
767 	crit_enter();
768 	lp->lwp_cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
769 	destproc->p_usched->heuristic_forking(origlp, lp);
770 	crit_exit();
771 	CPUMASK_ANDMASK(lp->lwp_cpumask, usched_mastermask);
772 	lwkt_token_init(&lp->lwp_token, "lwp_token");
773 	spin_init(&lp->lwp_spin, "lwptoken");
774 
775 	/*
776 	 * Assign the thread to the current cpu to begin with so we
777 	 * can manipulate it.
778 	 */
779 	td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, gd->gd_cpuid, 0);
780 	lp->lwp_thread = td;
781 	td->td_ucred = crhold(destproc->p_ucred);
782 	td->td_proc = destproc;
783 	td->td_lwp = lp;
784 	td->td_switch = cpu_heavy_switch;
785 #ifdef NO_LWKT_SPLIT_USERPRI
786 	lwkt_setpri(td, TDPRI_USER_NORM);
787 #else
788 	lwkt_setpri(td, TDPRI_KERN_USER);
789 #endif
790 	lwkt_set_comm(td, "%s", destproc->p_comm);
791 
792 	/*
793 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
794 	 * and make the child ready to run.
795 	 */
796 	cpu_fork(origlp, lp, flags);
797 	kqueue_init(&lp->lwp_kqueue, destproc->p_fd);
798 
799 	/*
800 	 * Assign a TID to the lp.  Loop until the insert succeeds (returns
801 	 * NULL).
802 	 *
803 	 * If we are in a vfork assign the same TID as the lwp that did the
804 	 * vfork().  This way if the user program messes around with
805 	 * pthread calls inside the vfork(), it will operate like an
806 	 * extension of the (blocked) parent.  Also note that since the
807 	 * address space is being shared, insofar as pthreads is concerned,
808 	 * the code running in the vfork() is part of the original process.
809 	 */
810 	if (flags & RFPPWAIT) {
811 		lp->lwp_tid = origlp->lwp_tid - 1;
812 	} else {
813 		lp->lwp_tid = destproc->p_lasttid;
814 	}
815 
816 	do {
817 		if (++lp->lwp_tid <= 0)
818 			lp->lwp_tid = 1;
819 	} while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
820 
821 	destproc->p_lasttid = lp->lwp_tid;
822 	destproc->p_nthreads++;
823 
824 	/*
825 	 * This flag is set and never cleared.  It means that the process
826 	 * was threaded at some point.  Used to improve exit performance.
827 	 */
828 	destproc->p_flags |= P_MAYBETHREADED;
829 
830 	return (lp);
831 }
832 
833 /*
834  * The next two functionms are general routines to handle adding/deleting
835  * items on the fork callout list.
836  *
837  * at_fork():
838  * Take the arguments given and put them onto the fork callout list,
839  * However first make sure that it's not already there.
840  * Returns 0 on success or a standard error number.
841  */
842 int
843 at_fork(forklist_fn function)
844 {
845 	struct forklist *ep;
846 
847 #ifdef INVARIANTS
848 	/* let the programmer know if he's been stupid */
849 	if (rm_at_fork(function)) {
850 		kprintf("WARNING: fork callout entry (%p) already present\n",
851 		    function);
852 	}
853 #endif
854 	ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
855 	ep->function = function;
856 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
857 	return (0);
858 }
859 
860 /*
861  * Scan the exit callout list for the given item and remove it..
862  * Returns the number of items removed (0 or 1)
863  */
864 int
865 rm_at_fork(forklist_fn function)
866 {
867 	struct forklist *ep;
868 
869 	TAILQ_FOREACH(ep, &fork_list, next) {
870 		if (ep->function == function) {
871 			TAILQ_REMOVE(&fork_list, ep, next);
872 			kfree(ep, M_ATFORK);
873 			return(1);
874 		}
875 	}
876 	return (0);
877 }
878 
879 /*
880  * Add a forked process to the run queue after any remaining setup, such
881  * as setting the fork handler, has been completed.
882  *
883  * p2 is held by the caller.
884  */
885 void
886 start_forked_proc(struct lwp *lp1, struct proc *p2)
887 {
888 	struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
889 	int pflags;
890 
891 	/*
892 	 * Move from SIDL to RUN queue, and activate the process's thread.
893 	 * Activation of the thread effectively makes the process "a"
894 	 * current process, so we do not setrunqueue().
895 	 *
896 	 * YYY setrunqueue works here but we should clean up the trampoline
897 	 * code so we just schedule the LWKT thread and let the trampoline
898 	 * deal with the userland scheduler on return to userland.
899 	 */
900 	KASSERT(p2->p_stat == SIDL,
901 	    ("cannot start forked process, bad status: %p", p2));
902 	p2->p_usched->resetpriority(lp2);
903 	crit_enter();
904 	p2->p_stat = SACTIVE;
905 	lp2->lwp_stat = LSRUN;
906 	p2->p_usched->setrunqueue(lp2);
907 	crit_exit();
908 
909 	/*
910 	 * Now can be swapped.
911 	 */
912 	PRELE(lp1->lwp_proc);
913 
914 	/*
915 	 * Preserve synchronization semantics of vfork.  P_PPWAIT is set in
916 	 * the child until it has retired the parent's resources.  The parent
917 	 * must wait for the flag to be cleared by the child.
918 	 *
919 	 * Interlock the flag/tsleep with atomic ops to avoid unnecessary
920 	 * p_token conflicts.
921 	 *
922 	 * XXX Is this use of an atomic op on a field that is not normally
923 	 *     manipulated with atomic ops ok?
924 	 */
925 	while ((pflags = p2->p_flags) & P_PPWAIT) {
926 		cpu_ccfence();
927 		tsleep_interlock(lp1->lwp_proc, 0);
928 		if (atomic_cmpset_int(&p2->p_flags, pflags, pflags))
929 			tsleep(lp1->lwp_proc, PINTERLOCKED, "ppwait", 0);
930 	}
931 }
932 
933 /*
934  * procctl (idtype_t idtype, id_t id, int cmd, void *arg)
935  */
936 int
937 sys_procctl(struct procctl_args *uap)
938 {
939 	struct proc *p = curproc;
940 	struct proc *p2;
941 	struct sysreaper *reap;
942 	union reaper_info udata;
943 	int error;
944 
945 	if (uap->idtype != P_PID || uap->id != (id_t)p->p_pid)
946 		return EINVAL;
947 
948 	switch(uap->cmd) {
949 	case PROC_REAP_ACQUIRE:
950 		lwkt_gettoken(&p->p_token);
951 		reap = kmalloc(sizeof(*reap), M_REAPER, M_WAITOK|M_ZERO);
952 		if (p->p_reaper == NULL || p->p_reaper->p != p) {
953 			reaper_init(p, reap);
954 			error = 0;
955 		} else {
956 			kfree(reap, M_REAPER);
957 			error = EALREADY;
958 		}
959 		lwkt_reltoken(&p->p_token);
960 		break;
961 	case PROC_REAP_RELEASE:
962 		lwkt_gettoken(&p->p_token);
963 release_again:
964 		reap = p->p_reaper;
965 		KKASSERT(reap != NULL);
966 		if (reap->p == p) {
967 			reaper_hold(reap);	/* in case of thread race */
968 			lockmgr(&reap->lock, LK_EXCLUSIVE);
969 			if (reap->p != p) {
970 				lockmgr(&reap->lock, LK_RELEASE);
971 				reaper_drop(reap);
972 				goto release_again;
973 			}
974 			reap->p = NULL;
975 			p->p_reaper = reap->parent;
976 			if (p->p_reaper)
977 				reaper_hold(p->p_reaper);
978 			lockmgr(&reap->lock, LK_RELEASE);
979 			reaper_drop(reap);	/* our ref */
980 			reaper_drop(reap);	/* old p_reaper ref */
981 			error = 0;
982 		} else {
983 			error = ENOTCONN;
984 		}
985 		lwkt_reltoken(&p->p_token);
986 		break;
987 	case PROC_REAP_STATUS:
988 		bzero(&udata, sizeof(udata));
989 		lwkt_gettoken_shared(&p->p_token);
990 		if ((reap = p->p_reaper) != NULL && reap->p == p) {
991 			udata.status.flags = reap->flags;
992 			udata.status.refs = reap->refs - 1; /* minus ours */
993 		}
994 		p2 = LIST_FIRST(&p->p_children);
995 		udata.status.pid_head = p2 ? p2->p_pid : -1;
996 		lwkt_reltoken(&p->p_token);
997 
998 		if (uap->data) {
999 			error = copyout(&udata, uap->data,
1000 					sizeof(udata.status));
1001 		} else {
1002 			error = 0;
1003 		}
1004 		break;
1005 	default:
1006 		error = EINVAL;
1007 		break;
1008 	}
1009 	return error;
1010 }
1011 
1012 /*
1013  * Bump ref on reaper, preventing destruction
1014  */
1015 void
1016 reaper_hold(struct sysreaper *reap)
1017 {
1018 	KKASSERT(reap->refs > 0);
1019 	refcount_acquire(&reap->refs);
1020 }
1021 
1022 /*
1023  * Drop ref on reaper, destroy the structure on the 1->0
1024  * transition and loop on the parent.
1025  */
1026 void
1027 reaper_drop(struct sysreaper *next)
1028 {
1029 	struct sysreaper *reap;
1030 
1031 	while ((reap = next) != NULL) {
1032 		if (refcount_release(&reap->refs)) {
1033 			next = reap->parent;
1034 			KKASSERT(reap->p == NULL);
1035 			lockmgr(&reaper_lock, LK_EXCLUSIVE);
1036 			reap->parent = NULL;
1037 			kfree(reap, M_REAPER);
1038 			lockmgr(&reaper_lock, LK_RELEASE);
1039 		} else {
1040 			next = NULL;
1041 		}
1042 	}
1043 }
1044 
1045 /*
1046  * Initialize a static or newly allocated reaper structure
1047  */
1048 void
1049 reaper_init(struct proc *p, struct sysreaper *reap)
1050 {
1051 	reap->parent = p->p_reaper;
1052 	reap->p = p;
1053 	if (p == initproc) {
1054 		reap->flags = REAPER_STAT_OWNED | REAPER_STAT_REALINIT;
1055 		reap->refs = 2;
1056 	} else {
1057 		reap->flags = REAPER_STAT_OWNED;
1058 		reap->refs = 1;
1059 	}
1060 	lockinit(&reap->lock, "subrp", 0, 0);
1061 	cpu_sfence();
1062 	p->p_reaper = reap;
1063 }
1064 
1065 /*
1066  * Called with p->p_token held during exit.
1067  *
1068  * This is a bit simpler than RELEASE because there are no threads remaining
1069  * to race.  We only release if we own the reaper, the exit code will handle
1070  * the final p_reaper release.
1071  */
1072 struct sysreaper *
1073 reaper_exit(struct proc *p)
1074 {
1075 	struct sysreaper *reap;
1076 
1077 	/*
1078 	 * Release acquired reaper
1079 	 */
1080 	if ((reap = p->p_reaper) != NULL && reap->p == p) {
1081 		lockmgr(&reap->lock, LK_EXCLUSIVE);
1082 		p->p_reaper = reap->parent;
1083 		if (p->p_reaper)
1084 			reaper_hold(p->p_reaper);
1085 		reap->p = NULL;
1086 		lockmgr(&reap->lock, LK_RELEASE);
1087 		reaper_drop(reap);
1088 	}
1089 
1090 	/*
1091 	 * Return and clear reaper (caller is holding p_token for us)
1092 	 * (reap->p does not equal p).  Caller must drop it.
1093 	 */
1094 	if ((reap = p->p_reaper) != NULL) {
1095 		p->p_reaper = NULL;
1096 	}
1097 	return reap;
1098 }
1099 
1100 /*
1101  * Return a held (PHOLD) process representing the reaper for process (p).
1102  * NULL should not normally be returned.  Caller should PRELE() the returned
1103  * reaper process when finished.
1104  *
1105  * Remove dead internal nodes while we are at it.
1106  *
1107  * Process (p)'s token must be held on call.
1108  * The returned process's token is NOT acquired by this routine.
1109  */
1110 struct proc *
1111 reaper_get(struct sysreaper *reap)
1112 {
1113 	struct sysreaper *next;
1114 	struct proc *reproc;
1115 
1116 	if (reap == NULL)
1117 		return NULL;
1118 
1119 	/*
1120 	 * Extra hold for loop
1121 	 */
1122 	reaper_hold(reap);
1123 
1124 	while (reap) {
1125 		lockmgr(&reap->lock, LK_SHARED);
1126 		if (reap->p) {
1127 			/*
1128 			 * Probable reaper
1129 			 */
1130 			if (reap->p) {
1131 				reproc = reap->p;
1132 				PHOLD(reproc);
1133 				lockmgr(&reap->lock, LK_RELEASE);
1134 				reaper_drop(reap);
1135 				return reproc;
1136 			}
1137 
1138 			/*
1139 			 * Raced, try again
1140 			 */
1141 			lockmgr(&reap->lock, LK_RELEASE);
1142 			continue;
1143 		}
1144 
1145 		/*
1146 		 * Traverse upwards in the reaper topology, destroy
1147 		 * dead internal nodes when possible.
1148 		 *
1149 		 * NOTE: Our ref on next means that a dead node should
1150 		 *	 have 2 (ours and reap->parent's).
1151 		 */
1152 		next = reap->parent;
1153 		while (next) {
1154 			reaper_hold(next);
1155 			if (next->refs == 2 && next->p == NULL) {
1156 				lockmgr(&reap->lock, LK_RELEASE);
1157 				lockmgr(&reap->lock, LK_EXCLUSIVE);
1158 				if (next->refs == 2 &&
1159 				    reap->parent == next &&
1160 				    next->p == NULL) {
1161 					/*
1162 					 * reap->parent inherits ref from next.
1163 					 */
1164 					reap->parent = next->parent;
1165 					next->parent = NULL;
1166 					reaper_drop(next);	/* ours */
1167 					reaper_drop(next);	/* old parent */
1168 					next = reap->parent;
1169 					continue;	/* possible chain */
1170 				}
1171 			}
1172 			break;
1173 		}
1174 		lockmgr(&reap->lock, LK_RELEASE);
1175 		reaper_drop(reap);
1176 		reap = next;
1177 	}
1178 	return NULL;
1179 }
1180 
1181 /*
1182  * Test that the sender is allowed to send a signal to the target.
1183  * The sender process is assumed to have a stable reaper.  The
1184  * target can be e.g. from a scan callback.
1185  *
1186  * Target cannot be the reaper process itself unless reaper_ok is specified,
1187  * or sender == target.
1188  */
1189 int
1190 reaper_sigtest(struct proc *sender, struct proc *target, int reaper_ok)
1191 {
1192 	struct sysreaper *sreap;
1193 	struct sysreaper *reap;
1194 	int r;
1195 
1196 	sreap = sender->p_reaper;
1197 	if (sreap == NULL)
1198 		return 1;
1199 
1200 	if (sreap == target->p_reaper) {
1201 		if (sreap->p == target && sreap->p != sender && reaper_ok == 0)
1202 			return 0;
1203 		return 1;
1204 	}
1205 	lockmgr(&reaper_lock, LK_SHARED);
1206 	r = 0;
1207 	for (reap = target->p_reaper; reap; reap = reap->parent) {
1208 		if (sreap == reap) {
1209 			if (sreap->p != target || reaper_ok)
1210 				r = 1;
1211 			break;
1212 		}
1213 	}
1214 	lockmgr(&reaper_lock, LK_RELEASE);
1215 
1216 	return r;
1217 }
1218