xref: /dragonfly/sys/kern/kern_fork.c (revision 52f9f0d9)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.77 2008/05/18 20:02:02 nth Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 #include <sys/caps.h>
60 
61 #include <vm/vm.h>
62 #include <sys/lock.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
66 
67 #include <sys/vmmeter.h>
68 #include <sys/refcount.h>
69 #include <sys/thread2.h>
70 #include <sys/signal2.h>
71 #include <sys/spinlock2.h>
72 
73 #include <sys/dsched.h>
74 
75 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
76 
77 /*
78  * These are the stuctures used to create a callout list for things to do
79  * when forking a process
80  */
81 struct forklist {
82 	forklist_fn function;
83 	TAILQ_ENTRY(forklist) next;
84 };
85 
86 TAILQ_HEAD(forklist_head, forklist);
87 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
88 
89 static struct lwp *lwp_fork(struct lwp *, struct proc *, int flags);
90 
91 int forksleep; /* Place for fork1() to sleep on. */
92 
93 /*
94  * Red-Black tree support for LWPs
95  */
96 
97 static int
98 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
99 {
100 	if (lp1->lwp_tid < lp2->lwp_tid)
101 		return(-1);
102 	if (lp1->lwp_tid > lp2->lwp_tid)
103 		return(1);
104 	return(0);
105 }
106 
107 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
108 
109 /*
110  * Fork system call
111  *
112  * MPALMOSTSAFE
113  */
114 int
115 sys_fork(struct fork_args *uap)
116 {
117 	struct lwp *lp = curthread->td_lwp;
118 	struct proc *p2;
119 	int error;
120 
121 	error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
122 	if (error == 0) {
123 		PHOLD(p2);
124 		start_forked_proc(lp, p2);
125 		uap->sysmsg_fds[0] = p2->p_pid;
126 		uap->sysmsg_fds[1] = 0;
127 		PRELE(p2);
128 	}
129 	return error;
130 }
131 
132 /*
133  * MPALMOSTSAFE
134  */
135 int
136 sys_vfork(struct vfork_args *uap)
137 {
138 	struct lwp *lp = curthread->td_lwp;
139 	struct proc *p2;
140 	int error;
141 
142 	error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
143 	if (error == 0) {
144 		PHOLD(p2);
145 		start_forked_proc(lp, p2);
146 		uap->sysmsg_fds[0] = p2->p_pid;
147 		uap->sysmsg_fds[1] = 0;
148 		PRELE(p2);
149 	}
150 	return error;
151 }
152 
153 /*
154  * Handle rforks.  An rfork may (1) operate on the current process without
155  * creating a new, (2) create a new process that shared the current process's
156  * vmspace, signals, and/or descriptors, or (3) create a new process that does
157  * not share these things (normal fork).
158  *
159  * Note that we only call start_forked_proc() if a new process is actually
160  * created.
161  *
162  * rfork { int flags }
163  *
164  * MPALMOSTSAFE
165  */
166 int
167 sys_rfork(struct rfork_args *uap)
168 {
169 	struct lwp *lp = curthread->td_lwp;
170 	struct proc *p2;
171 	int error;
172 
173 	if ((uap->flags & RFKERNELONLY) != 0)
174 		return (EINVAL);
175 
176 	error = fork1(lp, uap->flags | RFPGLOCK, &p2);
177 	if (error == 0) {
178 		if (p2) {
179 			PHOLD(p2);
180 			start_forked_proc(lp, p2);
181 			uap->sysmsg_fds[0] = p2->p_pid;
182 			uap->sysmsg_fds[1] = 0;
183 			PRELE(p2);
184 		} else {
185 			uap->sysmsg_fds[0] = 0;
186 			uap->sysmsg_fds[1] = 0;
187 		}
188 	}
189 	return error;
190 }
191 
192 /*
193  * MPALMOSTSAFE
194  */
195 int
196 sys_lwp_create(struct lwp_create_args *uap)
197 {
198 	struct proc *p = curproc;
199 	struct lwp *lp;
200 	struct lwp_params params;
201 	int error;
202 
203 	error = copyin(uap->params, &params, sizeof(params));
204 	if (error)
205 		goto fail2;
206 
207 	lwkt_gettoken(&p->p_token);
208 	plimit_lwp_fork(p);	/* force exclusive access */
209 	lp = lwp_fork(curthread->td_lwp, p, RFPROC);
210 	error = cpu_prepare_lwp(lp, &params);
211 	if (error)
212 		goto fail;
213 	if (params.tid1 != NULL &&
214 	    (error = copyout(&lp->lwp_tid, params.tid1, sizeof(lp->lwp_tid))))
215 		goto fail;
216 	if (params.tid2 != NULL &&
217 	    (error = copyout(&lp->lwp_tid, params.tid2, sizeof(lp->lwp_tid))))
218 		goto fail;
219 
220 	/*
221 	 * Now schedule the new lwp.
222 	 */
223 	p->p_usched->resetpriority(lp);
224 	crit_enter();
225 	lp->lwp_stat = LSRUN;
226 	p->p_usched->setrunqueue(lp);
227 	crit_exit();
228 	lwkt_reltoken(&p->p_token);
229 
230 	return (0);
231 
232 fail:
233 	lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
234 	--p->p_nthreads;
235 	/* lwp_dispose expects an exited lwp, and a held proc */
236 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
237 	lp->lwp_thread->td_flags |= TDF_EXITING;
238 	lwkt_remove_tdallq(lp->lwp_thread);
239 	PHOLD(p);
240 	biosched_done(lp->lwp_thread);
241 	dsched_exit_thread(lp->lwp_thread);
242 	lwp_dispose(lp);
243 	lwkt_reltoken(&p->p_token);
244 fail2:
245 	return (error);
246 }
247 
248 int	nprocs = 1;		/* process 0 */
249 
250 int
251 fork1(struct lwp *lp1, int flags, struct proc **procp)
252 {
253 	struct proc *p1 = lp1->lwp_proc;
254 	struct proc *p2;
255 	struct proc *pptr;
256 	struct pgrp *p1grp;
257 	struct pgrp *plkgrp;
258 	uid_t uid;
259 	int ok, error;
260 	static int curfail = 0;
261 	static struct timeval lastfail;
262 	struct forklist *ep;
263 	struct filedesc_to_leader *fdtol;
264 
265 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
266 		return (EINVAL);
267 
268 	lwkt_gettoken(&p1->p_token);
269 	plkgrp = NULL;
270 	p2 = NULL;
271 
272 	/*
273 	 * Here we don't create a new process, but we divorce
274 	 * certain parts of a process from itself.
275 	 */
276 	if ((flags & RFPROC) == 0) {
277 		/*
278 		 * This kind of stunt does not work anymore if
279 		 * there are native threads (lwps) running
280 		 */
281 		if (p1->p_nthreads != 1) {
282 			error = EINVAL;
283 			goto done;
284 		}
285 
286 		vm_fork(p1, 0, flags);
287 
288 		/*
289 		 * Close all file descriptors.
290 		 */
291 		if (flags & RFCFDG) {
292 			struct filedesc *fdtmp;
293 			fdtmp = fdinit(p1);
294 			fdfree(p1, fdtmp);
295 		}
296 
297 		/*
298 		 * Unshare file descriptors (from parent.)
299 		 */
300 		if (flags & RFFDG) {
301 			if (p1->p_fd->fd_refcnt > 1) {
302 				struct filedesc *newfd;
303 				error = fdcopy(p1, &newfd);
304 				if (error != 0) {
305 					error = ENOMEM;
306 					goto done;
307 				}
308 				fdfree(p1, newfd);
309 			}
310 		}
311 		*procp = NULL;
312 		error = 0;
313 		goto done;
314 	}
315 
316 	/*
317 	 * Interlock against process group signal delivery.  If signals
318 	 * are pending after the interlock is obtained we have to restart
319 	 * the system call to process the signals.  If we don't the child
320 	 * can miss a pgsignal (such as ^C) sent during the fork.
321 	 *
322 	 * We can't use CURSIG() here because it will process any STOPs
323 	 * and cause the process group lock to be held indefinitely.  If
324 	 * a STOP occurs, the fork will be restarted after the CONT.
325 	 */
326 	p1grp = p1->p_pgrp;
327 	if ((flags & RFPGLOCK) && (plkgrp = p1->p_pgrp) != NULL) {
328 		pgref(plkgrp);
329 		lockmgr(&plkgrp->pg_lock, LK_SHARED);
330 		if (CURSIG_NOBLOCK(lp1)) {
331 			error = ERESTART;
332 			goto done;
333 		}
334 	}
335 
336 	/*
337 	 * Although process entries are dynamically created, we still keep
338 	 * a global limit on the maximum number we will create.  Don't allow
339 	 * a nonprivileged user to use the last ten processes; don't let root
340 	 * exceed the limit. The variable nprocs is the current number of
341 	 * processes, maxproc is the limit.
342 	 */
343 	uid = lp1->lwp_thread->td_ucred->cr_ruid;
344 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
345 		if (ppsratecheck(&lastfail, &curfail, 1))
346 			kprintf("maxproc limit exceeded by uid %d, please "
347 			       "see tuning(7) and login.conf(5).\n", uid);
348 		tsleep(&forksleep, 0, "fork", hz / 2);
349 		error = EAGAIN;
350 		goto done;
351 	}
352 
353 	/*
354 	 * Increment the nprocs resource before blocking can occur.  There
355 	 * are hard-limits as to the number of processes that can run.
356 	 */
357 	atomic_add_int(&nprocs, 1);
358 
359 	/*
360 	 * Increment the count of procs running with this uid. Don't allow
361 	 * a nonprivileged user to exceed their current limit.
362 	 */
363 	ok = chgproccnt(lp1->lwp_thread->td_ucred->cr_ruidinfo, 1,
364 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
365 	if (!ok) {
366 		/*
367 		 * Back out the process count
368 		 */
369 		atomic_add_int(&nprocs, -1);
370 		if (ppsratecheck(&lastfail, &curfail, 1))
371 			kprintf("maxproc limit exceeded by uid %d, please "
372 			       "see tuning(7) and login.conf(5).\n", uid);
373 		tsleep(&forksleep, 0, "fork", hz / 2);
374 		error = EAGAIN;
375 		goto done;
376 	}
377 
378 	/*
379 	 * Allocate a new process, don't get fancy: zero the structure.
380 	 */
381 	p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
382 
383 	/*
384 	 * Core initialization.  SIDL is a safety state that protects the
385 	 * partially initialized process once it starts getting hooked
386 	 * into system structures and becomes addressable.
387 	 *
388 	 * We must be sure to acquire p2->p_token as well, we must hold it
389 	 * once the process is on the allproc list to avoid things such
390 	 * as competing modifications to p_flags.
391 	 */
392 	p2->p_lasttid = -1;	/* first tid will be 0 */
393 	p2->p_stat = SIDL;
394 
395 	RB_INIT(&p2->p_lwp_tree);
396 	spin_init(&p2->p_spin);
397 	lwkt_token_init(&p2->p_token, "proc");
398 	lwkt_gettoken(&p2->p_token);
399 
400 	/*
401 	 * Setup linkage for kernel based threading XXX lwp.  Also add the
402 	 * process to the allproclist.
403 	 *
404 	 * The process structure is addressable after this point.
405 	 */
406 	if (flags & RFTHREAD) {
407 		p2->p_peers = p1->p_peers;
408 		p1->p_peers = p2;
409 		p2->p_leader = p1->p_leader;
410 	} else {
411 		p2->p_leader = p2;
412 	}
413 	proc_add_allproc(p2);
414 
415 	/*
416 	 * Initialize the section which is copied verbatim from the parent.
417 	 */
418 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
419 	      ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
420 
421 	/*
422 	 * Duplicate sub-structures as needed.  Increase reference counts
423 	 * on shared objects.
424 	 *
425 	 * NOTE: because we are now on the allproc list it is possible for
426 	 *	 other consumers to gain temporary references to p2
427 	 *	 (p2->p_lock can change).
428 	 */
429 	if (p1->p_flags & P_PROFIL)
430 		startprofclock(p2);
431 	p2->p_ucred = crhold(lp1->lwp_thread->td_ucred);
432 
433 	if (jailed(p2->p_ucred))
434 		p2->p_flags |= P_JAILED;
435 
436 	if (p2->p_args)
437 		refcount_acquire(&p2->p_args->ar_ref);
438 
439 	p2->p_usched = p1->p_usched;
440 	/* XXX: verify copy of the secondary iosched stuff */
441 	dsched_new_proc(p2);
442 
443 	if (flags & RFSIGSHARE) {
444 		p2->p_sigacts = p1->p_sigacts;
445 		refcount_acquire(&p2->p_sigacts->ps_refcnt);
446 	} else {
447 		p2->p_sigacts = kmalloc(sizeof(*p2->p_sigacts),
448 					M_SUBPROC, M_WAITOK);
449 		bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
450 		refcount_init(&p2->p_sigacts->ps_refcnt, 1);
451 	}
452 	if (flags & RFLINUXTHPN)
453 	        p2->p_sigparent = SIGUSR1;
454 	else
455 	        p2->p_sigparent = SIGCHLD;
456 
457 	/* bump references to the text vnode (for procfs) */
458 	p2->p_textvp = p1->p_textvp;
459 	if (p2->p_textvp)
460 		vref(p2->p_textvp);
461 
462 	/* copy namecache handle to the text file */
463 	if (p1->p_textnch.mount)
464 		cache_copy(&p1->p_textnch, &p2->p_textnch);
465 
466 	/*
467 	 * Handle file descriptors
468 	 */
469 	if (flags & RFCFDG) {
470 		p2->p_fd = fdinit(p1);
471 		fdtol = NULL;
472 	} else if (flags & RFFDG) {
473 		error = fdcopy(p1, &p2->p_fd);
474 		if (error != 0) {
475 			error = ENOMEM;
476 			goto done;
477 		}
478 		fdtol = NULL;
479 	} else {
480 		p2->p_fd = fdshare(p1);
481 		if (p1->p_fdtol == NULL) {
482 			p1->p_fdtol = filedesc_to_leader_alloc(NULL,
483 							       p1->p_leader);
484 		}
485 		if ((flags & RFTHREAD) != 0) {
486 			/*
487 			 * Shared file descriptor table and
488 			 * shared process leaders.
489 			 */
490 			fdtol = p1->p_fdtol;
491 			fdtol->fdl_refcount++;
492 		} else {
493 			/*
494 			 * Shared file descriptor table, and
495 			 * different process leaders
496 			 */
497 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
498 		}
499 	}
500 	p2->p_fdtol = fdtol;
501 	p2->p_limit = plimit_fork(p1);
502 
503 	/*
504 	 * Preserve some more flags in subprocess.  P_PROFIL has already
505 	 * been preserved.
506 	 */
507 	p2->p_flags |= p1->p_flags & P_SUGID;
508 	if (p1->p_session->s_ttyvp != NULL && (p1->p_flags & P_CONTROLT))
509 		p2->p_flags |= P_CONTROLT;
510 	if (flags & RFPPWAIT)
511 		p2->p_flags |= P_PPWAIT;
512 
513 	/*
514 	 * Inherit the virtual kernel structure (allows a virtual kernel
515 	 * to fork to simulate multiple cpus).
516 	 */
517 	if (p1->p_vkernel)
518 		vkernel_inherit(p1, p2);
519 
520 	/*
521 	 * Once we are on a pglist we may receive signals.  XXX we might
522 	 * race a ^C being sent to the process group by not receiving it
523 	 * at all prior to this line.
524 	 */
525 	pgref(p1grp);
526 	lwkt_gettoken(&p1grp->pg_token);
527 	LIST_INSERT_AFTER(p1, p2, p_pglist);
528 	lwkt_reltoken(&p1grp->pg_token);
529 
530 	/*
531 	 * Attach the new process to its parent.
532 	 *
533 	 * If RFNOWAIT is set, the newly created process becomes a child
534 	 * of init.  This effectively disassociates the child from the
535 	 * parent.
536 	 */
537 	if (flags & RFNOWAIT)
538 		pptr = initproc;
539 	else
540 		pptr = p1;
541 	p2->p_pptr = pptr;
542 	LIST_INIT(&p2->p_children);
543 
544 	lwkt_gettoken(&pptr->p_token);
545 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
546 	lwkt_reltoken(&pptr->p_token);
547 
548 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
549 	callout_init_mp(&p2->p_ithandle);
550 
551 #ifdef KTRACE
552 	/*
553 	 * Copy traceflag and tracefile if enabled.  If not inherited,
554 	 * these were zeroed above but we still could have a trace race
555 	 * so make sure p2's p_tracenode is NULL.
556 	 */
557 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
558 		p2->p_traceflag = p1->p_traceflag;
559 		p2->p_tracenode = ktrinherit(p1->p_tracenode);
560 	}
561 #endif
562 
563 	/*
564 	 * This begins the section where we must prevent the parent
565 	 * from being swapped.
566 	 *
567 	 * Gets PRELE'd in the caller in start_forked_proc().
568 	 */
569 	PHOLD(p1);
570 
571 	vm_fork(p1, p2, flags);
572 
573 	/*
574 	 * Create the first lwp associated with the new proc.
575 	 * It will return via a different execution path later, directly
576 	 * into userland, after it was put on the runq by
577 	 * start_forked_proc().
578 	 */
579 	lwp_fork(lp1, p2, flags);
580 
581 	if (flags == (RFFDG | RFPROC | RFPGLOCK)) {
582 		mycpu->gd_cnt.v_forks++;
583 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize +
584 					     p2->p_vmspace->vm_ssize;
585 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK)) {
586 		mycpu->gd_cnt.v_vforks++;
587 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
588 					      p2->p_vmspace->vm_ssize;
589 	} else if (p1 == &proc0) {
590 		mycpu->gd_cnt.v_kthreads++;
591 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
592 						p2->p_vmspace->vm_ssize;
593 	} else {
594 		mycpu->gd_cnt.v_rforks++;
595 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
596 					      p2->p_vmspace->vm_ssize;
597 	}
598 
599 	/*
600 	 * Both processes are set up, now check if any loadable modules want
601 	 * to adjust anything.
602 	 *   What if they have an error? XXX
603 	 */
604 	TAILQ_FOREACH(ep, &fork_list, next) {
605 		(*ep->function)(p1, p2, flags);
606 	}
607 
608 	/*
609 	 * Set the start time.  Note that the process is not runnable.  The
610 	 * caller is responsible for making it runnable.
611 	 */
612 	microtime(&p2->p_start);
613 	p2->p_acflag = AFORK;
614 
615 	/*
616 	 * tell any interested parties about the new process
617 	 */
618 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
619 
620 	/*
621 	 * Return child proc pointer to parent.
622 	 */
623 	*procp = p2;
624 	error = 0;
625 done:
626 	if (p2)
627 		lwkt_reltoken(&p2->p_token);
628 	lwkt_reltoken(&p1->p_token);
629 	if (plkgrp) {
630 		lockmgr(&plkgrp->pg_lock, LK_RELEASE);
631 		pgrel(plkgrp);
632 	}
633 	return (error);
634 }
635 
636 static struct lwp *
637 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags)
638 {
639 	globaldata_t gd = mycpu;
640 	struct lwp *lp;
641 	struct thread *td;
642 
643 	lp = kmalloc(sizeof(struct lwp), M_LWP, M_WAITOK|M_ZERO);
644 
645 	lp->lwp_proc = destproc;
646 	lp->lwp_vmspace = destproc->p_vmspace;
647 	lp->lwp_stat = LSRUN;
648 	bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
649 	    (unsigned) ((caddr_t)&lp->lwp_endcopy -
650 			(caddr_t)&lp->lwp_startcopy));
651 	lp->lwp_flags |= origlp->lwp_flags & LWP_ALTSTACK;
652 	/*
653 	 * Set cpbase to the last timeout that occured (not the upcoming
654 	 * timeout).
655 	 *
656 	 * A critical section is required since a timer IPI can update
657 	 * scheduler specific data.
658 	 */
659 	crit_enter();
660 	lp->lwp_cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
661 	destproc->p_usched->heuristic_forking(origlp, lp);
662 	crit_exit();
663 	lp->lwp_cpumask &= usched_mastermask;
664 	lwkt_token_init(&lp->lwp_token, "lwp_token");
665 	spin_init(&lp->lwp_spin);
666 
667 	/*
668 	 * Assign the thread to the current cpu to begin with so we
669 	 * can manipulate it.
670 	 */
671 	td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, gd->gd_cpuid, 0);
672 	lp->lwp_thread = td;
673 	td->td_proc = destproc;
674 	td->td_lwp = lp;
675 	td->td_switch = cpu_heavy_switch;
676 	lwkt_setpri(td, TDPRI_KERN_USER);
677 	lwkt_set_comm(td, "%s", destproc->p_comm);
678 
679 	/*
680 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
681 	 * and make the child ready to run.
682 	 */
683 	cpu_fork(origlp, lp, flags);
684 	caps_fork(origlp->lwp_thread, lp->lwp_thread);
685 	kqueue_init(&lp->lwp_kqueue, destproc->p_fd);
686 
687 	/*
688 	 * Assign a TID to the lp.  Loop until the insert succeeds (returns
689 	 * NULL).
690 	 */
691 	lp->lwp_tid = destproc->p_lasttid;
692 	do {
693 		if (++lp->lwp_tid < 0)
694 			lp->lwp_tid = 1;
695 	} while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
696 	destproc->p_lasttid = lp->lwp_tid;
697 	destproc->p_nthreads++;
698 
699 	return (lp);
700 }
701 
702 /*
703  * The next two functionms are general routines to handle adding/deleting
704  * items on the fork callout list.
705  *
706  * at_fork():
707  * Take the arguments given and put them onto the fork callout list,
708  * However first make sure that it's not already there.
709  * Returns 0 on success or a standard error number.
710  */
711 int
712 at_fork(forklist_fn function)
713 {
714 	struct forklist *ep;
715 
716 #ifdef INVARIANTS
717 	/* let the programmer know if he's been stupid */
718 	if (rm_at_fork(function)) {
719 		kprintf("WARNING: fork callout entry (%p) already present\n",
720 		    function);
721 	}
722 #endif
723 	ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
724 	ep->function = function;
725 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
726 	return (0);
727 }
728 
729 /*
730  * Scan the exit callout list for the given item and remove it..
731  * Returns the number of items removed (0 or 1)
732  */
733 int
734 rm_at_fork(forklist_fn function)
735 {
736 	struct forklist *ep;
737 
738 	TAILQ_FOREACH(ep, &fork_list, next) {
739 		if (ep->function == function) {
740 			TAILQ_REMOVE(&fork_list, ep, next);
741 			kfree(ep, M_ATFORK);
742 			return(1);
743 		}
744 	}
745 	return (0);
746 }
747 
748 /*
749  * Add a forked process to the run queue after any remaining setup, such
750  * as setting the fork handler, has been completed.
751  *
752  * p2 is held by the caller.
753  */
754 void
755 start_forked_proc(struct lwp *lp1, struct proc *p2)
756 {
757 	struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
758 
759 	/*
760 	 * Move from SIDL to RUN queue, and activate the process's thread.
761 	 * Activation of the thread effectively makes the process "a"
762 	 * current process, so we do not setrunqueue().
763 	 *
764 	 * YYY setrunqueue works here but we should clean up the trampoline
765 	 * code so we just schedule the LWKT thread and let the trampoline
766 	 * deal with the userland scheduler on return to userland.
767 	 */
768 	KASSERT(p2->p_stat == SIDL,
769 	    ("cannot start forked process, bad status: %p", p2));
770 	p2->p_usched->resetpriority(lp2);
771 	crit_enter();
772 	p2->p_stat = SACTIVE;
773 	lp2->lwp_stat = LSRUN;
774 	p2->p_usched->setrunqueue(lp2);
775 	crit_exit();
776 
777 	/*
778 	 * Now can be swapped.
779 	 */
780 	PRELE(lp1->lwp_proc);
781 
782 	/*
783 	 * Preserve synchronization semantics of vfork.  If waiting for
784 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
785 	 * proc (in case of exec or exit).
786 	 *
787 	 * We must hold our p_token to interlock the flag/tsleep
788 	 */
789 	lwkt_gettoken(&p2->p_token);
790 	while (p2->p_flags & P_PPWAIT)
791 		tsleep(lp1->lwp_proc, 0, "ppwait", 0);
792 	lwkt_reltoken(&p2->p_token);
793 }
794