xref: /dragonfly/sys/kern/kern_fork.c (revision 59b0b316)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/filedesc.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/malloc.h>
47 #include <sys/proc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/ktrace.h>
52 #include <sys/unistd.h>
53 #include <sys/jail.h>
54 #include <sys/lwp.h>
55 
56 #include <vm/vm.h>
57 #include <sys/lock.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_map.h>
60 #include <vm/vm_extern.h>
61 
62 #include <sys/vmmeter.h>
63 #include <sys/refcount.h>
64 #include <sys/thread2.h>
65 #include <sys/signal2.h>
66 #include <sys/spinlock2.h>
67 
68 #include <sys/dsched.h>
69 
70 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
71 static MALLOC_DEFINE(M_REAPER, "reaper", "process reapers");
72 
73 /*
74  * These are the stuctures used to create a callout list for things to do
75  * when forking a process
76  */
77 struct forklist {
78 	forklist_fn function;
79 	TAILQ_ENTRY(forklist) next;
80 };
81 
82 TAILQ_HEAD(forklist_head, forklist);
83 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
84 
85 static struct lwp	*lwp_fork(struct lwp *, struct proc *, int flags,
86 			    const cpumask_t *mask);
87 static int		lwp_create1(struct lwp_params *params,
88 			    const cpumask_t *mask);
89 
90 int forksleep; /* Place for fork1() to sleep on. */
91 
92 /*
93  * Red-Black tree support for LWPs
94  */
95 
96 static int
97 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
98 {
99 	if (lp1->lwp_tid < lp2->lwp_tid)
100 		return(-1);
101 	if (lp1->lwp_tid > lp2->lwp_tid)
102 		return(1);
103 	return(0);
104 }
105 
106 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
107 
108 /*
109  * fork() system call
110  */
111 int
112 sys_fork(struct fork_args *uap)
113 {
114 	struct lwp *lp = curthread->td_lwp;
115 	struct proc *p2;
116 	int error;
117 
118 	error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
119 	if (error == 0) {
120 		PHOLD(p2);
121 		start_forked_proc(lp, p2);
122 		uap->sysmsg_fds[0] = p2->p_pid;
123 		uap->sysmsg_fds[1] = 0;
124 		PRELE(p2);
125 	}
126 	return error;
127 }
128 
129 /*
130  * vfork() system call
131  */
132 int
133 sys_vfork(struct vfork_args *uap)
134 {
135 	struct lwp *lp = curthread->td_lwp;
136 	struct proc *p2;
137 	int error;
138 
139 	error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
140 	if (error == 0) {
141 		PHOLD(p2);
142 		start_forked_proc(lp, p2);
143 		uap->sysmsg_fds[0] = p2->p_pid;
144 		uap->sysmsg_fds[1] = 0;
145 		PRELE(p2);
146 	}
147 	return error;
148 }
149 
150 /*
151  * Handle rforks.  An rfork may (1) operate on the current process without
152  * creating a new, (2) create a new process that shared the current process's
153  * vmspace, signals, and/or descriptors, or (3) create a new process that does
154  * not share these things (normal fork).
155  *
156  * Note that we only call start_forked_proc() if a new process is actually
157  * created.
158  *
159  * rfork { int flags }
160  */
161 int
162 sys_rfork(struct rfork_args *uap)
163 {
164 	struct lwp *lp = curthread->td_lwp;
165 	struct proc *p2;
166 	int error;
167 
168 	if ((uap->flags & RFKERNELONLY) != 0)
169 		return (EINVAL);
170 
171 	error = fork1(lp, uap->flags | RFPGLOCK, &p2);
172 	if (error == 0) {
173 		if (p2) {
174 			PHOLD(p2);
175 			start_forked_proc(lp, p2);
176 			uap->sysmsg_fds[0] = p2->p_pid;
177 			uap->sysmsg_fds[1] = 0;
178 			PRELE(p2);
179 		} else {
180 			uap->sysmsg_fds[0] = 0;
181 			uap->sysmsg_fds[1] = 0;
182 		}
183 	}
184 	return error;
185 }
186 
187 static int
188 lwp_create1(struct lwp_params *uprm, const cpumask_t *umask)
189 {
190 	struct proc *p = curproc;
191 	struct lwp *lp;
192 	struct lwp_params params;
193 	cpumask_t *mask = NULL, mask0;
194 	int error;
195 
196 	error = copyin(uprm, &params, sizeof(params));
197 	if (error)
198 		goto fail2;
199 
200 	if (umask != NULL) {
201 		error = copyin(umask, &mask0, sizeof(mask0));
202 		if (error)
203 			goto fail2;
204 		CPUMASK_ANDMASK(mask0, smp_active_mask);
205 		if (CPUMASK_TESTNZERO(mask0))
206 			mask = &mask0;
207 	}
208 
209 	lwkt_gettoken(&p->p_token);
210 	plimit_lwp_fork(p);	/* force exclusive access */
211 	lp = lwp_fork(curthread->td_lwp, p, RFPROC | RFMEM, mask);
212 	error = cpu_prepare_lwp(lp, &params);
213 	if (error)
214 		goto fail;
215 	if (params.lwp_tid1 != NULL &&
216 	    (error = copyout(&lp->lwp_tid, params.lwp_tid1, sizeof(lp->lwp_tid))))
217 		goto fail;
218 	if (params.lwp_tid2 != NULL &&
219 	    (error = copyout(&lp->lwp_tid, params.lwp_tid2, sizeof(lp->lwp_tid))))
220 		goto fail;
221 
222 	/*
223 	 * Now schedule the new lwp.
224 	 */
225 	p->p_usched->resetpriority(lp);
226 	crit_enter();
227 	lp->lwp_stat = LSRUN;
228 	p->p_usched->setrunqueue(lp);
229 	crit_exit();
230 	lwkt_reltoken(&p->p_token);
231 
232 	return (0);
233 
234 fail:
235 	/*
236 	 * Make sure no one is using this lwp, before it is removed from
237 	 * the tree.  If we didn't wait it here, lwp tree iteration with
238 	 * blocking operation would be broken.
239 	 */
240 	while (lp->lwp_lock > 0)
241 		tsleep(lp, 0, "lwpfail", 1);
242 	lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
243 	--p->p_nthreads;
244 	/* lwp_dispose expects an exited lwp, and a held proc */
245 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
246 	lp->lwp_thread->td_flags |= TDF_EXITING;
247 	lwkt_remove_tdallq(lp->lwp_thread);
248 	PHOLD(p);
249 	biosched_done(lp->lwp_thread);
250 	dsched_exit_thread(lp->lwp_thread);
251 	lwp_dispose(lp);
252 	lwkt_reltoken(&p->p_token);
253 fail2:
254 	return (error);
255 }
256 
257 /*
258  * Low level thread create used by pthreads.
259  */
260 int
261 sys_lwp_create(struct lwp_create_args *uap)
262 {
263 
264 	return (lwp_create1(uap->params, NULL));
265 }
266 
267 int
268 sys_lwp_create2(struct lwp_create2_args *uap)
269 {
270 
271 	return (lwp_create1(uap->params, uap->mask));
272 }
273 
274 int	nprocs = 1;		/* process 0 */
275 
276 int
277 fork1(struct lwp *lp1, int flags, struct proc **procp)
278 {
279 	struct proc *p1 = lp1->lwp_proc;
280 	struct proc *p2;
281 	struct proc *pptr;
282 	struct pgrp *p1grp;
283 	struct pgrp *plkgrp;
284 	struct sysreaper *reap;
285 	uid_t uid;
286 	int ok, error;
287 	static int curfail = 0;
288 	static struct timeval lastfail;
289 	struct forklist *ep;
290 	struct filedesc_to_leader *fdtol;
291 
292 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
293 		return (EINVAL);
294 
295 	lwkt_gettoken(&p1->p_token);
296 	plkgrp = NULL;
297 	p2 = NULL;
298 
299 	/*
300 	 * Here we don't create a new process, but we divorce
301 	 * certain parts of a process from itself.
302 	 */
303 	if ((flags & RFPROC) == 0) {
304 		/*
305 		 * This kind of stunt does not work anymore if
306 		 * there are native threads (lwps) running
307 		 */
308 		if (p1->p_nthreads != 1) {
309 			error = EINVAL;
310 			goto done;
311 		}
312 
313 		vm_fork(p1, 0, flags);
314 
315 		/*
316 		 * Close all file descriptors.
317 		 */
318 		if (flags & RFCFDG) {
319 			struct filedesc *fdtmp;
320 			fdtmp = fdinit(p1);
321 			fdfree(p1, fdtmp);
322 		}
323 
324 		/*
325 		 * Unshare file descriptors (from parent.)
326 		 */
327 		if (flags & RFFDG) {
328 			if (p1->p_fd->fd_refcnt > 1) {
329 				struct filedesc *newfd;
330 				error = fdcopy(p1, &newfd);
331 				if (error != 0) {
332 					error = ENOMEM;
333 					goto done;
334 				}
335 				fdfree(p1, newfd);
336 			}
337 		}
338 		*procp = NULL;
339 		error = 0;
340 		goto done;
341 	}
342 
343 	/*
344 	 * Interlock against process group signal delivery.  If signals
345 	 * are pending after the interlock is obtained we have to restart
346 	 * the system call to process the signals.  If we don't the child
347 	 * can miss a pgsignal (such as ^C) sent during the fork.
348 	 *
349 	 * We can't use CURSIG() here because it will process any STOPs
350 	 * and cause the process group lock to be held indefinitely.  If
351 	 * a STOP occurs, the fork will be restarted after the CONT.
352 	 */
353 	p1grp = p1->p_pgrp;
354 	if ((flags & RFPGLOCK) && (plkgrp = p1->p_pgrp) != NULL) {
355 		pgref(plkgrp);
356 		lockmgr(&plkgrp->pg_lock, LK_SHARED);
357 		if (CURSIG_NOBLOCK(lp1)) {
358 			error = ERESTART;
359 			goto done;
360 		}
361 	}
362 
363 	/*
364 	 * Although process entries are dynamically created, we still keep
365 	 * a global limit on the maximum number we will create.  Don't allow
366 	 * a nonprivileged user to use the last ten processes; don't let root
367 	 * exceed the limit. The variable nprocs is the current number of
368 	 * processes, maxproc is the limit.
369 	 */
370 	uid = lp1->lwp_thread->td_ucred->cr_ruid;
371 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
372 		if (ppsratecheck(&lastfail, &curfail, 1))
373 			kprintf("maxproc limit exceeded by uid %d, please "
374 			       "see tuning(7) and login.conf(5).\n", uid);
375 		tsleep(&forksleep, 0, "fork", hz / 2);
376 		error = EAGAIN;
377 		goto done;
378 	}
379 
380 	/*
381 	 * Increment the nprocs resource before blocking can occur.  There
382 	 * are hard-limits as to the number of processes that can run.
383 	 */
384 	atomic_add_int(&nprocs, 1);
385 
386 	/*
387 	 * Increment the count of procs running with this uid. Don't allow
388 	 * a nonprivileged user to exceed their current limit.
389 	 */
390 	ok = chgproccnt(lp1->lwp_thread->td_ucred->cr_ruidinfo, 1,
391 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
392 	if (!ok) {
393 		/*
394 		 * Back out the process count
395 		 */
396 		atomic_add_int(&nprocs, -1);
397 		if (ppsratecheck(&lastfail, &curfail, 1))
398 			kprintf("maxproc limit exceeded by uid %d, please "
399 			       "see tuning(7) and login.conf(5).\n", uid);
400 		tsleep(&forksleep, 0, "fork", hz / 2);
401 		error = EAGAIN;
402 		goto done;
403 	}
404 
405 	/*
406 	 * Allocate a new process, don't get fancy: zero the structure.
407 	 */
408 	p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
409 
410 	/*
411 	 * Core initialization.  SIDL is a safety state that protects the
412 	 * partially initialized process once it starts getting hooked
413 	 * into system structures and becomes addressable.
414 	 *
415 	 * We must be sure to acquire p2->p_token as well, we must hold it
416 	 * once the process is on the allproc list to avoid things such
417 	 * as competing modifications to p_flags.
418 	 */
419 	mycpu->gd_forkid += ncpus;
420 	p2->p_forkid = mycpu->gd_forkid + mycpu->gd_cpuid;
421 	p2->p_lasttid = -1;	/* first tid will be 0 */
422 	p2->p_stat = SIDL;
423 
424 	/*
425 	 * NOTE: Process 0 will not have a reaper, but process 1 (init) and
426 	 *	 all other processes always will.
427 	 */
428 	if ((reap = p1->p_reaper) != NULL) {
429 		reaper_hold(reap);
430 		p2->p_reaper = reap;
431 	} else {
432 		p2->p_reaper = NULL;
433 	}
434 
435 	RB_INIT(&p2->p_lwp_tree);
436 	spin_init(&p2->p_spin, "procfork1");
437 	lwkt_token_init(&p2->p_token, "proc");
438 	lwkt_gettoken(&p2->p_token);
439 
440 	/*
441 	 * Setup linkage for kernel based threading XXX lwp.  Also add the
442 	 * process to the allproclist.
443 	 *
444 	 * The process structure is addressable after this point.
445 	 */
446 	if (flags & RFTHREAD) {
447 		p2->p_peers = p1->p_peers;
448 		p1->p_peers = p2;
449 		p2->p_leader = p1->p_leader;
450 	} else {
451 		p2->p_leader = p2;
452 	}
453 	proc_add_allproc(p2);
454 
455 	/*
456 	 * Initialize the section which is copied verbatim from the parent.
457 	 */
458 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
459 	      ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
460 
461 	/*
462 	 * Duplicate sub-structures as needed.  Increase reference counts
463 	 * on shared objects.
464 	 *
465 	 * NOTE: because we are now on the allproc list it is possible for
466 	 *	 other consumers to gain temporary references to p2
467 	 *	 (p2->p_lock can change).
468 	 */
469 	if (p1->p_flags & P_PROFIL)
470 		startprofclock(p2);
471 	p2->p_ucred = crhold(lp1->lwp_thread->td_ucred);
472 
473 	if (jailed(p2->p_ucred))
474 		p2->p_flags |= P_JAILED;
475 
476 	if (p2->p_args)
477 		refcount_acquire(&p2->p_args->ar_ref);
478 
479 	p2->p_usched = p1->p_usched;
480 	/* XXX: verify copy of the secondary iosched stuff */
481 	dsched_enter_proc(p2);
482 
483 	if (flags & RFSIGSHARE) {
484 		p2->p_sigacts = p1->p_sigacts;
485 		refcount_acquire(&p2->p_sigacts->ps_refcnt);
486 	} else {
487 		p2->p_sigacts = kmalloc(sizeof(*p2->p_sigacts),
488 					M_SUBPROC, M_WAITOK);
489 		bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
490 		refcount_init(&p2->p_sigacts->ps_refcnt, 1);
491 	}
492 	if (flags & RFLINUXTHPN)
493 	        p2->p_sigparent = SIGUSR1;
494 	else
495 	        p2->p_sigparent = SIGCHLD;
496 
497 	/* bump references to the text vnode (for procfs) */
498 	p2->p_textvp = p1->p_textvp;
499 	if (p2->p_textvp)
500 		vref(p2->p_textvp);
501 
502 	/* copy namecache handle to the text file */
503 	if (p1->p_textnch.mount)
504 		cache_copy(&p1->p_textnch, &p2->p_textnch);
505 
506 	/*
507 	 * Handle file descriptors
508 	 */
509 	if (flags & RFCFDG) {
510 		p2->p_fd = fdinit(p1);
511 		fdtol = NULL;
512 	} else if (flags & RFFDG) {
513 		error = fdcopy(p1, &p2->p_fd);
514 		if (error != 0) {
515 			error = ENOMEM;
516 			goto done;
517 		}
518 		fdtol = NULL;
519 	} else {
520 		p2->p_fd = fdshare(p1);
521 		if (p1->p_fdtol == NULL) {
522 			p1->p_fdtol = filedesc_to_leader_alloc(NULL,
523 							       p1->p_leader);
524 		}
525 		if ((flags & RFTHREAD) != 0) {
526 			/*
527 			 * Shared file descriptor table and
528 			 * shared process leaders.
529 			 */
530 			fdtol = p1->p_fdtol;
531 			fdtol->fdl_refcount++;
532 		} else {
533 			/*
534 			 * Shared file descriptor table, and
535 			 * different process leaders
536 			 */
537 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
538 		}
539 	}
540 	p2->p_fdtol = fdtol;
541 	p2->p_limit = plimit_fork(p1);
542 
543 	/*
544 	 * Preserve some more flags in subprocess.  P_PROFIL has already
545 	 * been preserved.
546 	 */
547 	p2->p_flags |= p1->p_flags & P_SUGID;
548 	if (p1->p_session->s_ttyvp != NULL && (p1->p_flags & P_CONTROLT))
549 		p2->p_flags |= P_CONTROLT;
550 	if (flags & RFPPWAIT) {
551 		p2->p_flags |= P_PPWAIT;
552 		if (p1->p_upmap)
553 			atomic_add_int(&p1->p_upmap->invfork, 1);
554 	}
555 
556 	/*
557 	 * Inherit the virtual kernel structure (allows a virtual kernel
558 	 * to fork to simulate multiple cpus).
559 	 */
560 	if (p1->p_vkernel)
561 		vkernel_inherit(p1, p2);
562 
563 	/*
564 	 * Once we are on a pglist we may receive signals.  XXX we might
565 	 * race a ^C being sent to the process group by not receiving it
566 	 * at all prior to this line.
567 	 */
568 	pgref(p1grp);
569 	lwkt_gettoken(&p1grp->pg_token);
570 	LIST_INSERT_AFTER(p1, p2, p_pglist);
571 	lwkt_reltoken(&p1grp->pg_token);
572 
573 	/*
574 	 * Attach the new process to its parent.
575 	 *
576 	 * If RFNOWAIT is set, the newly created process becomes a child
577 	 * of the reaper (typically init).  This effectively disassociates
578 	 * the child from the parent.
579 	 *
580 	 * Temporarily hold pptr for the RFNOWAIT case to avoid ripouts.
581 	 */
582 	if (flags & RFNOWAIT) {
583 		pptr = reaper_get(reap);
584 		if (pptr == NULL) {
585 			pptr = initproc;
586 			PHOLD(pptr);
587 		}
588 	} else {
589 		pptr = p1;
590 	}
591 	p2->p_pptr = pptr;
592 	LIST_INIT(&p2->p_children);
593 
594 	lwkt_gettoken(&pptr->p_token);
595 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
596 	lwkt_reltoken(&pptr->p_token);
597 
598 	if (flags & RFNOWAIT)
599 		PRELE(pptr);
600 
601 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
602 	callout_init_mp(&p2->p_ithandle);
603 
604 #ifdef KTRACE
605 	/*
606 	 * Copy traceflag and tracefile if enabled.  If not inherited,
607 	 * these were zeroed above but we still could have a trace race
608 	 * so make sure p2's p_tracenode is NULL.
609 	 */
610 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
611 		p2->p_traceflag = p1->p_traceflag;
612 		p2->p_tracenode = ktrinherit(p1->p_tracenode);
613 	}
614 #endif
615 
616 	/*
617 	 * This begins the section where we must prevent the parent
618 	 * from being swapped.
619 	 *
620 	 * Gets PRELE'd in the caller in start_forked_proc().
621 	 */
622 	PHOLD(p1);
623 
624 	vm_fork(p1, p2, flags);
625 
626 	/*
627 	 * Create the first lwp associated with the new proc.
628 	 * It will return via a different execution path later, directly
629 	 * into userland, after it was put on the runq by
630 	 * start_forked_proc().
631 	 */
632 	lwp_fork(lp1, p2, flags, NULL);
633 
634 	if (flags == (RFFDG | RFPROC | RFPGLOCK)) {
635 		mycpu->gd_cnt.v_forks++;
636 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize +
637 					     p2->p_vmspace->vm_ssize;
638 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK)) {
639 		mycpu->gd_cnt.v_vforks++;
640 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
641 					      p2->p_vmspace->vm_ssize;
642 	} else if (p1 == &proc0) {
643 		mycpu->gd_cnt.v_kthreads++;
644 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
645 						p2->p_vmspace->vm_ssize;
646 	} else {
647 		mycpu->gd_cnt.v_rforks++;
648 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
649 					      p2->p_vmspace->vm_ssize;
650 	}
651 
652 	/*
653 	 * Both processes are set up, now check if any loadable modules want
654 	 * to adjust anything.
655 	 *   What if they have an error? XXX
656 	 */
657 	TAILQ_FOREACH(ep, &fork_list, next) {
658 		(*ep->function)(p1, p2, flags);
659 	}
660 
661 	/*
662 	 * Set the start time.  Note that the process is not runnable.  The
663 	 * caller is responsible for making it runnable.
664 	 */
665 	microtime(&p2->p_start);
666 	p2->p_acflag = AFORK;
667 
668 	/*
669 	 * tell any interested parties about the new process
670 	 */
671 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
672 
673 	/*
674 	 * Return child proc pointer to parent.
675 	 */
676 	*procp = p2;
677 	error = 0;
678 done:
679 	if (p2)
680 		lwkt_reltoken(&p2->p_token);
681 	lwkt_reltoken(&p1->p_token);
682 	if (plkgrp) {
683 		lockmgr(&plkgrp->pg_lock, LK_RELEASE);
684 		pgrel(plkgrp);
685 	}
686 	return (error);
687 }
688 
689 static struct lwp *
690 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags,
691     const cpumask_t *mask)
692 {
693 	globaldata_t gd = mycpu;
694 	struct lwp *lp;
695 	struct thread *td;
696 
697 	lp = kmalloc(sizeof(struct lwp), M_LWP, M_WAITOK|M_ZERO);
698 
699 	lp->lwp_proc = destproc;
700 	lp->lwp_vmspace = destproc->p_vmspace;
701 	lp->lwp_stat = LSRUN;
702 	bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
703 	    (unsigned) ((caddr_t)&lp->lwp_endcopy -
704 			(caddr_t)&lp->lwp_startcopy));
705 	if (mask != NULL)
706 		lp->lwp_cpumask = *mask;
707 
708 	/*
709 	 * Reset the sigaltstack if memory is shared, otherwise inherit
710 	 * it.
711 	 */
712 	if (flags & RFMEM) {
713 		lp->lwp_sigstk.ss_flags = SS_DISABLE;
714 		lp->lwp_sigstk.ss_size = 0;
715 		lp->lwp_sigstk.ss_sp = NULL;
716 		lp->lwp_flags &= ~LWP_ALTSTACK;
717 	} else {
718 		lp->lwp_flags |= origlp->lwp_flags & LWP_ALTSTACK;
719 	}
720 
721 	/*
722 	 * Set cpbase to the last timeout that occured (not the upcoming
723 	 * timeout).
724 	 *
725 	 * A critical section is required since a timer IPI can update
726 	 * scheduler specific data.
727 	 */
728 	crit_enter();
729 	lp->lwp_cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
730 	destproc->p_usched->heuristic_forking(origlp, lp);
731 	crit_exit();
732 	CPUMASK_ANDMASK(lp->lwp_cpumask, usched_mastermask);
733 	lwkt_token_init(&lp->lwp_token, "lwp_token");
734 	spin_init(&lp->lwp_spin, "lwptoken");
735 
736 	/*
737 	 * Assign the thread to the current cpu to begin with so we
738 	 * can manipulate it.
739 	 */
740 	td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, gd->gd_cpuid, 0);
741 	lp->lwp_thread = td;
742 	td->td_ucred = crhold(destproc->p_ucred);
743 	td->td_proc = destproc;
744 	td->td_lwp = lp;
745 	td->td_switch = cpu_heavy_switch;
746 #ifdef NO_LWKT_SPLIT_USERPRI
747 	lwkt_setpri(td, TDPRI_USER_NORM);
748 #else
749 	lwkt_setpri(td, TDPRI_KERN_USER);
750 #endif
751 	lwkt_set_comm(td, "%s", destproc->p_comm);
752 
753 	/*
754 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
755 	 * and make the child ready to run.
756 	 */
757 	cpu_fork(origlp, lp, flags);
758 	kqueue_init(&lp->lwp_kqueue, destproc->p_fd);
759 
760 	/*
761 	 * Assign a TID to the lp.  Loop until the insert succeeds (returns
762 	 * NULL).
763 	 *
764 	 * If we are in a vfork assign the same TID as the lwp that did the
765 	 * vfork().  This way if the user program messes around with
766 	 * pthread calls inside the vfork(), it will operate like an
767 	 * extension of the (blocked) parent.  Also note that since the
768 	 * address space is being shared, insofar as pthreads is concerned,
769 	 * the code running in the vfork() is part of the original process.
770 	 */
771 	if (flags & RFPPWAIT) {
772 		lp->lwp_tid = origlp->lwp_tid - 1;
773 	} else {
774 		lp->lwp_tid = destproc->p_lasttid;
775 	}
776 
777 	do {
778 		if (++lp->lwp_tid < 0)
779 			lp->lwp_tid = 1;
780 	} while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
781 
782 	destproc->p_lasttid = lp->lwp_tid;
783 	destproc->p_nthreads++;
784 
785 	/*
786 	 * This flag is set and never cleared.  It means that the process
787 	 * was threaded at some point.  Used to improve exit performance.
788 	 */
789 	destproc->p_flags |= P_MAYBETHREADED;
790 
791 	return (lp);
792 }
793 
794 /*
795  * The next two functionms are general routines to handle adding/deleting
796  * items on the fork callout list.
797  *
798  * at_fork():
799  * Take the arguments given and put them onto the fork callout list,
800  * However first make sure that it's not already there.
801  * Returns 0 on success or a standard error number.
802  */
803 int
804 at_fork(forklist_fn function)
805 {
806 	struct forklist *ep;
807 
808 #ifdef INVARIANTS
809 	/* let the programmer know if he's been stupid */
810 	if (rm_at_fork(function)) {
811 		kprintf("WARNING: fork callout entry (%p) already present\n",
812 		    function);
813 	}
814 #endif
815 	ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
816 	ep->function = function;
817 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
818 	return (0);
819 }
820 
821 /*
822  * Scan the exit callout list for the given item and remove it..
823  * Returns the number of items removed (0 or 1)
824  */
825 int
826 rm_at_fork(forklist_fn function)
827 {
828 	struct forklist *ep;
829 
830 	TAILQ_FOREACH(ep, &fork_list, next) {
831 		if (ep->function == function) {
832 			TAILQ_REMOVE(&fork_list, ep, next);
833 			kfree(ep, M_ATFORK);
834 			return(1);
835 		}
836 	}
837 	return (0);
838 }
839 
840 /*
841  * Add a forked process to the run queue after any remaining setup, such
842  * as setting the fork handler, has been completed.
843  *
844  * p2 is held by the caller.
845  */
846 void
847 start_forked_proc(struct lwp *lp1, struct proc *p2)
848 {
849 	struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
850 	int pflags;
851 
852 	/*
853 	 * Move from SIDL to RUN queue, and activate the process's thread.
854 	 * Activation of the thread effectively makes the process "a"
855 	 * current process, so we do not setrunqueue().
856 	 *
857 	 * YYY setrunqueue works here but we should clean up the trampoline
858 	 * code so we just schedule the LWKT thread and let the trampoline
859 	 * deal with the userland scheduler on return to userland.
860 	 */
861 	KASSERT(p2->p_stat == SIDL,
862 	    ("cannot start forked process, bad status: %p", p2));
863 	p2->p_usched->resetpriority(lp2);
864 	crit_enter();
865 	p2->p_stat = SACTIVE;
866 	lp2->lwp_stat = LSRUN;
867 	p2->p_usched->setrunqueue(lp2);
868 	crit_exit();
869 
870 	/*
871 	 * Now can be swapped.
872 	 */
873 	PRELE(lp1->lwp_proc);
874 
875 	/*
876 	 * Preserve synchronization semantics of vfork.  P_PPWAIT is set in
877 	 * the child until it has retired the parent's resources.  The parent
878 	 * must wait for the flag to be cleared by the child.
879 	 *
880 	 * Interlock the flag/tsleep with atomic ops to avoid unnecessary
881 	 * p_token conflicts.
882 	 *
883 	 * XXX Is this use of an atomic op on a field that is not normally
884 	 *     manipulated with atomic ops ok?
885 	 */
886 	while ((pflags = p2->p_flags) & P_PPWAIT) {
887 		cpu_ccfence();
888 		tsleep_interlock(lp1->lwp_proc, 0);
889 		if (atomic_cmpset_int(&p2->p_flags, pflags, pflags))
890 			tsleep(lp1->lwp_proc, PINTERLOCKED, "ppwait", 0);
891 	}
892 }
893 
894 /*
895  * procctl (idtype_t idtype, id_t id, int cmd, void *arg)
896  */
897 int
898 sys_procctl(struct procctl_args *uap)
899 {
900 	struct proc *p = curproc;
901 	struct proc *p2;
902 	struct sysreaper *reap;
903 	union reaper_info udata;
904 	int error;
905 
906 	if (uap->idtype != P_PID || uap->id != (id_t)p->p_pid)
907 		return EINVAL;
908 
909 	switch(uap->cmd) {
910 	case PROC_REAP_ACQUIRE:
911 		lwkt_gettoken(&p->p_token);
912 		reap = kmalloc(sizeof(*reap), M_REAPER, M_WAITOK|M_ZERO);
913 		if (p->p_reaper == NULL || p->p_reaper->p != p) {
914 			reaper_init(p, reap);
915 			error = 0;
916 		} else {
917 			kfree(reap, M_REAPER);
918 			error = EALREADY;
919 		}
920 		lwkt_reltoken(&p->p_token);
921 		break;
922 	case PROC_REAP_RELEASE:
923 		lwkt_gettoken(&p->p_token);
924 release_again:
925 		reap = p->p_reaper;
926 		KKASSERT(reap != NULL);
927 		if (reap->p == p) {
928 			reaper_hold(reap);	/* in case of thread race */
929 			lockmgr(&reap->lock, LK_EXCLUSIVE);
930 			if (reap->p != p) {
931 				lockmgr(&reap->lock, LK_RELEASE);
932 				reaper_drop(reap);
933 				goto release_again;
934 			}
935 			reap->p = NULL;
936 			p->p_reaper = reap->parent;
937 			if (p->p_reaper)
938 				reaper_hold(p->p_reaper);
939 			lockmgr(&reap->lock, LK_RELEASE);
940 			reaper_drop(reap);	/* our ref */
941 			reaper_drop(reap);	/* old p_reaper ref */
942 			error = 0;
943 		} else {
944 			error = ENOTCONN;
945 		}
946 		lwkt_reltoken(&p->p_token);
947 		break;
948 	case PROC_REAP_STATUS:
949 		bzero(&udata, sizeof(udata));
950 		lwkt_gettoken_shared(&p->p_token);
951 		if ((reap = p->p_reaper) != NULL && reap->p == p) {
952 			udata.status.flags = reap->flags;
953 			udata.status.refs = reap->refs - 1; /* minus ours */
954 		}
955 		p2 = LIST_FIRST(&p->p_children);
956 		udata.status.pid_head = p2 ? p2->p_pid : -1;
957 		lwkt_reltoken(&p->p_token);
958 
959 		if (uap->data) {
960 			error = copyout(&udata, uap->data,
961 					sizeof(udata.status));
962 		} else {
963 			error = 0;
964 		}
965 		break;
966 	default:
967 		error = EINVAL;
968 		break;
969 	}
970 	return error;
971 }
972 
973 /*
974  * Bump ref on reaper, preventing destruction
975  */
976 void
977 reaper_hold(struct sysreaper *reap)
978 {
979 	KKASSERT(reap->refs > 0);
980 	refcount_acquire(&reap->refs);
981 }
982 
983 /*
984  * Drop ref on reaper, destroy the structure on the 1->0
985  * transition and loop on the parent.
986  */
987 void
988 reaper_drop(struct sysreaper *next)
989 {
990 	struct sysreaper *reap;
991 
992 	while ((reap = next) != NULL) {
993 		if (refcount_release(&reap->refs)) {
994 			next = reap->parent;
995 			KKASSERT(reap->p == NULL);
996 			reap->parent = NULL;
997 			kfree(reap, M_REAPER);
998 		} else {
999 			next = NULL;
1000 		}
1001 	}
1002 }
1003 
1004 /*
1005  * Initialize a static or newly allocated reaper structure
1006  */
1007 void
1008 reaper_init(struct proc *p, struct sysreaper *reap)
1009 {
1010 	reap->parent = p->p_reaper;
1011 	reap->p = p;
1012 	if (p == initproc) {
1013 		reap->flags = REAPER_STAT_OWNED | REAPER_STAT_REALINIT;
1014 		reap->refs = 2;
1015 	} else {
1016 		reap->flags = REAPER_STAT_OWNED;
1017 		reap->refs = 1;
1018 	}
1019 	lockinit(&reap->lock, "subrp", 0, 0);
1020 	cpu_sfence();
1021 	p->p_reaper = reap;
1022 }
1023 
1024 /*
1025  * Called with p->p_token held during exit.
1026  *
1027  * This is a bit simpler than RELEASE because there are no threads remaining
1028  * to race.  We only release if we own the reaper, the exit code will handle
1029  * the final p_reaper release.
1030  */
1031 struct sysreaper *
1032 reaper_exit(struct proc *p)
1033 {
1034 	struct sysreaper *reap;
1035 
1036 	/*
1037 	 * Release acquired reaper
1038 	 */
1039 	if ((reap = p->p_reaper) != NULL && reap->p == p) {
1040 		lockmgr(&reap->lock, LK_EXCLUSIVE);
1041 		p->p_reaper = reap->parent;
1042 		if (p->p_reaper)
1043 			reaper_hold(p->p_reaper);
1044 		reap->p = NULL;
1045 		lockmgr(&reap->lock, LK_RELEASE);
1046 		reaper_drop(reap);
1047 	}
1048 
1049 	/*
1050 	 * Return and clear reaper (caller is holding p_token for us)
1051 	 * (reap->p does not equal p).  Caller must drop it.
1052 	 */
1053 	if ((reap = p->p_reaper) != NULL) {
1054 		p->p_reaper = NULL;
1055 	}
1056 	return reap;
1057 }
1058 
1059 /*
1060  * Return a held (PHOLD) process representing the reaper for process (p).
1061  * NULL should not normally be returned.  Caller should PRELE() the returned
1062  * reaper process when finished.
1063  *
1064  * Remove dead internal nodes while we are at it.
1065  *
1066  * Process (p)'s token must be held on call.
1067  * The returned process's token is NOT acquired by this routine.
1068  */
1069 struct proc *
1070 reaper_get(struct sysreaper *reap)
1071 {
1072 	struct sysreaper *next;
1073 	struct proc *reproc;
1074 
1075 	if (reap == NULL)
1076 		return NULL;
1077 
1078 	/*
1079 	 * Extra hold for loop
1080 	 */
1081 	reaper_hold(reap);
1082 
1083 	while (reap) {
1084 		lockmgr(&reap->lock, LK_SHARED);
1085 		if (reap->p) {
1086 			/*
1087 			 * Probable reaper
1088 			 */
1089 			if (reap->p) {
1090 				reproc = reap->p;
1091 				PHOLD(reproc);
1092 				lockmgr(&reap->lock, LK_RELEASE);
1093 				reaper_drop(reap);
1094 				return reproc;
1095 			}
1096 
1097 			/*
1098 			 * Raced, try again
1099 			 */
1100 			lockmgr(&reap->lock, LK_RELEASE);
1101 			continue;
1102 		}
1103 
1104 		/*
1105 		 * Traverse upwards in the reaper topology, destroy
1106 		 * dead internal nodes when possible.
1107 		 *
1108 		 * NOTE: Our ref on next means that a dead node should
1109 		 *	 have 2 (ours and reap->parent's).
1110 		 */
1111 		next = reap->parent;
1112 		while (next) {
1113 			reaper_hold(next);
1114 			if (next->refs == 2 && next->p == NULL) {
1115 				lockmgr(&reap->lock, LK_RELEASE);
1116 				lockmgr(&reap->lock, LK_EXCLUSIVE);
1117 				if (next->refs == 2 &&
1118 				    reap->parent == next &&
1119 				    next->p == NULL) {
1120 					/*
1121 					 * reap->parent inherits ref from next.
1122 					 */
1123 					reap->parent = next->parent;
1124 					next->parent = NULL;
1125 					reaper_drop(next);	/* ours */
1126 					reaper_drop(next);	/* old parent */
1127 					next = reap->parent;
1128 					continue;	/* possible chain */
1129 				}
1130 			}
1131 			break;
1132 		}
1133 		lockmgr(&reap->lock, LK_RELEASE);
1134 		reaper_drop(reap);
1135 		reap = next;
1136 	}
1137 	return NULL;
1138 }
1139