xref: /dragonfly/sys/kern/kern_fork.c (revision 71126e33)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.30 2004/10/12 19:20:46 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 #include <sys/caps.h>
60 
61 #include <vm/vm.h>
62 #include <sys/lock.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_zone.h>
67 
68 #include <sys/vmmeter.h>
69 #include <sys/user.h>
70 
71 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
72 
73 /*
74  * These are the stuctures used to create a callout list for things to do
75  * when forking a process
76  */
77 struct forklist {
78 	forklist_fn function;
79 	TAILQ_ENTRY(forklist) next;
80 };
81 
82 TAILQ_HEAD(forklist_head, forklist);
83 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
84 
85 int forksleep; /* Place for fork1() to sleep on. */
86 
87 /* ARGSUSED */
88 int
89 fork(struct fork_args *uap)
90 {
91 	struct proc *p = curproc;
92 	struct proc *p2;
93 	int error;
94 
95 	error = fork1(p, RFFDG | RFPROC, &p2);
96 	if (error == 0) {
97 		start_forked_proc(p, p2);
98 		uap->sysmsg_fds[0] = p2->p_pid;
99 		uap->sysmsg_fds[1] = 0;
100 	}
101 	return error;
102 }
103 
104 /* ARGSUSED */
105 int
106 vfork(struct vfork_args *uap)
107 {
108 	struct proc *p = curproc;
109 	struct proc *p2;
110 	int error;
111 
112 	error = fork1(p, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
113 	if (error == 0) {
114 		start_forked_proc(p, p2);
115 		uap->sysmsg_fds[0] = p2->p_pid;
116 		uap->sysmsg_fds[1] = 0;
117 	}
118 	return error;
119 }
120 
121 /*
122  * Handle rforks.  An rfork may (1) operate on the current process without
123  * creating a new, (2) create a new process that shared the current process's
124  * vmspace, signals, and/or descriptors, or (3) create a new process that does
125  * not share these things (normal fork).
126  *
127  * Note that we only call start_forked_proc() if a new process is actually
128  * created.
129  *
130  * rfork { int flags }
131  */
132 int
133 rfork(struct rfork_args *uap)
134 {
135 	struct proc *p = curproc;
136 	struct proc *p2;
137 	int error;
138 
139 	if ((uap->flags & RFKERNELONLY) != 0)
140 		return (EINVAL);
141 
142 	error = fork1(p, uap->flags, &p2);
143 	if (error == 0) {
144 		if (p2)
145 			start_forked_proc(p, p2);
146 		uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
147 		uap->sysmsg_fds[1] = 0;
148 	}
149 	return error;
150 }
151 
152 
153 int	nprocs = 1;		/* process 0 */
154 static int nextpid = 0;
155 
156 /*
157  * Random component to nextpid generation.  We mix in a random factor to make
158  * it a little harder to predict.  We sanity check the modulus value to avoid
159  * doing it in critical paths.  Don't let it be too small or we pointlessly
160  * waste randomness entropy, and don't let it be impossibly large.  Using a
161  * modulus that is too big causes a LOT more process table scans and slows
162  * down fork processing as the pidchecked caching is defeated.
163  */
164 static int randompid = 0;
165 
166 static int
167 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
168 {
169 		int error, pid;
170 
171 		pid = randompid;
172 		error = sysctl_handle_int(oidp, &pid, 0, req);
173 		if (error || !req->newptr)
174 			return (error);
175 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
176 			pid = PID_MAX - 100;
177 		else if (pid < 2)			/* NOP */
178 			pid = 0;
179 		else if (pid < 100)			/* Make it reasonable */
180 			pid = 100;
181 		randompid = pid;
182 		return (error);
183 }
184 
185 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
186     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
187 
188 int
189 fork1(struct proc *p1, int flags, struct proc **procp)
190 {
191 	struct proc *p2, *pptr;
192 	uid_t uid;
193 	struct proc *newproc;
194 	int ok;
195 	static int curfail = 0, pidchecked = 0;
196 	static struct timeval lastfail;
197 	struct forklist *ep;
198 	struct filedesc_to_leader *fdtol;
199 
200 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
201 		return (EINVAL);
202 
203 	/*
204 	 * Here we don't create a new process, but we divorce
205 	 * certain parts of a process from itself.
206 	 */
207 	if ((flags & RFPROC) == 0) {
208 
209 		vm_fork(p1, 0, flags);
210 
211 		/*
212 		 * Close all file descriptors.
213 		 */
214 		if (flags & RFCFDG) {
215 			struct filedesc *fdtmp;
216 			fdtmp = fdinit(p1);
217 			fdfree(p1);
218 			p1->p_fd = fdtmp;
219 		}
220 
221 		/*
222 		 * Unshare file descriptors (from parent.)
223 		 */
224 		if (flags & RFFDG) {
225 			if (p1->p_fd->fd_refcnt > 1) {
226 				struct filedesc *newfd;
227 				newfd = fdcopy(p1);
228 				fdfree(p1);
229 				p1->p_fd = newfd;
230 			}
231 		}
232 		*procp = NULL;
233 		return (0);
234 	}
235 
236 	/*
237 	 * Although process entries are dynamically created, we still keep
238 	 * a global limit on the maximum number we will create.  Don't allow
239 	 * a nonprivileged user to use the last ten processes; don't let root
240 	 * exceed the limit. The variable nprocs is the current number of
241 	 * processes, maxproc is the limit.
242 	 */
243 	uid = p1->p_ucred->cr_ruid;
244 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
245 		if (ppsratecheck(&lastfail, &curfail, 1))
246 			printf("maxproc limit exceeded by uid %d, please "
247 			       "see tuning(7) and login.conf(5).\n", uid);
248 		tsleep(&forksleep, 0, "fork", hz / 2);
249 		return (EAGAIN);
250 	}
251 	/*
252 	 * Increment the nprocs resource before blocking can occur.  There
253 	 * are hard-limits as to the number of processes that can run.
254 	 */
255 	nprocs++;
256 
257 	/*
258 	 * Increment the count of procs running with this uid. Don't allow
259 	 * a nonprivileged user to exceed their current limit.
260 	 */
261 	ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1,
262 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
263 	if (!ok) {
264 		/*
265 		 * Back out the process count
266 		 */
267 		nprocs--;
268 		if (ppsratecheck(&lastfail, &curfail, 1))
269 			printf("maxproc limit exceeded by uid %d, please "
270 			       "see tuning(7) and login.conf(5).\n", uid);
271 		tsleep(&forksleep, 0, "fork", hz / 2);
272 		return (EAGAIN);
273 	}
274 
275 	/* Allocate new proc. */
276 	newproc = zalloc(proc_zone);
277 
278 	/*
279 	 * Setup linkage for kernel based threading
280 	 */
281 	if ((flags & RFTHREAD) != 0) {
282 		newproc->p_peers = p1->p_peers;
283 		p1->p_peers = newproc;
284 		newproc->p_leader = p1->p_leader;
285 	} else {
286 		newproc->p_peers = 0;
287 		newproc->p_leader = newproc;
288 	}
289 
290 	newproc->p_wakeup = 0;
291 	newproc->p_vmspace = NULL;
292 	TAILQ_INIT(&newproc->p_sysmsgq);
293 
294 	/*
295 	 * Find an unused process ID.  We remember a range of unused IDs
296 	 * ready to use (from nextpid+1 through pidchecked-1).
297 	 */
298 	nextpid++;
299 	if (randompid)
300 		nextpid += arc4random() % randompid;
301 retry:
302 	/*
303 	 * If the process ID prototype has wrapped around,
304 	 * restart somewhat above 0, as the low-numbered procs
305 	 * tend to include daemons that don't exit.
306 	 */
307 	if (nextpid >= PID_MAX) {
308 		nextpid = nextpid % PID_MAX;
309 		if (nextpid < 100)
310 			nextpid += 100;
311 		pidchecked = 0;
312 	}
313 	if (nextpid >= pidchecked) {
314 		int doingzomb = 0;
315 
316 		pidchecked = PID_MAX;
317 		/*
318 		 * Scan the active and zombie procs to check whether this pid
319 		 * is in use.  Remember the lowest pid that's greater
320 		 * than nextpid, so we can avoid checking for a while.
321 		 */
322 		p2 = LIST_FIRST(&allproc);
323 again:
324 		for (; p2 != 0; p2 = LIST_NEXT(p2, p_list)) {
325 			while (p2->p_pid == nextpid ||
326 			    p2->p_pgrp->pg_id == nextpid ||
327 			    p2->p_session->s_sid == nextpid) {
328 				nextpid++;
329 				if (nextpid >= pidchecked)
330 					goto retry;
331 			}
332 			if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
333 				pidchecked = p2->p_pid;
334 			if (p2->p_pgrp->pg_id > nextpid &&
335 			    pidchecked > p2->p_pgrp->pg_id)
336 				pidchecked = p2->p_pgrp->pg_id;
337 			if (p2->p_session->s_sid > nextpid &&
338 			    pidchecked > p2->p_session->s_sid)
339 				pidchecked = p2->p_session->s_sid;
340 		}
341 		if (!doingzomb) {
342 			doingzomb = 1;
343 			p2 = LIST_FIRST(&zombproc);
344 			goto again;
345 		}
346 	}
347 
348 	p2 = newproc;
349 	p2->p_stat = SIDL;			/* protect against others */
350 	p2->p_pid = nextpid;
351 	LIST_INSERT_HEAD(&allproc, p2, p_list);
352 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
353 
354 	/*
355 	 * Make a proc table entry for the new process.
356 	 * Start by zeroing the section of proc that is zero-initialized,
357 	 * then copy the section that is copied directly from the parent.
358 	 */
359 	bzero(&p2->p_startzero,
360 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
361 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
362 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
363 
364 	p2->p_aioinfo = NULL;
365 
366 	/*
367 	 * Duplicate sub-structures as needed.
368 	 * Increase reference counts on shared objects.
369 	 * The p_stats and p_sigacts substructs are set in vm_fork.
370 	 */
371 	p2->p_flag = P_INMEM;
372 	if (p1->p_flag & P_PROFIL)
373 		startprofclock(p2);
374 	p2->p_ucred = crhold(p1->p_ucred);
375 
376 	if (p2->p_ucred->cr_prison) {
377 		p2->p_ucred->cr_prison->pr_ref++;
378 		p2->p_flag |= P_JAILED;
379 	}
380 
381 	if (p2->p_args)
382 		p2->p_args->ar_ref++;
383 
384 	if (flags & RFSIGSHARE) {
385 		p2->p_procsig = p1->p_procsig;
386 		p2->p_procsig->ps_refcnt++;
387 		if (p1->p_sigacts == &p1->p_addr->u_sigacts) {
388 			struct sigacts *newsigacts;
389 			int s;
390 
391 			/* Create the shared sigacts structure */
392 			MALLOC(newsigacts, struct sigacts *,
393 			    sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
394 			s = splhigh();
395 			/*
396 			 * Set p_sigacts to the new shared structure.
397 			 * Note that this is updating p1->p_sigacts at the
398 			 * same time, since p_sigacts is just a pointer to
399 			 * the shared p_procsig->ps_sigacts.
400 			 */
401 			p2->p_sigacts  = newsigacts;
402 			bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts,
403 			    sizeof(*p2->p_sigacts));
404 			*p2->p_sigacts = p1->p_addr->u_sigacts;
405 			splx(s);
406 		}
407 	} else {
408 		MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
409 		    M_SUBPROC, M_WAITOK);
410 		bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
411 		p2->p_procsig->ps_refcnt = 1;
412 		p2->p_sigacts = NULL;	/* finished in vm_fork() */
413 	}
414 	if (flags & RFLINUXTHPN)
415 	        p2->p_sigparent = SIGUSR1;
416 	else
417 	        p2->p_sigparent = SIGCHLD;
418 
419 	/* bump references to the text vnode (for procfs) */
420 	p2->p_textvp = p1->p_textvp;
421 	if (p2->p_textvp)
422 		vref(p2->p_textvp);
423 
424 	if (flags & RFCFDG) {
425 		p2->p_fd = fdinit(p1);
426 		fdtol = NULL;
427 	} else if (flags & RFFDG) {
428 		p2->p_fd = fdcopy(p1);
429 		fdtol = NULL;
430 	} else {
431 		p2->p_fd = fdshare(p1);
432 		if (p1->p_fdtol == NULL)
433 			p1->p_fdtol =
434 				filedesc_to_leader_alloc(NULL,
435 							 p1->p_leader);
436 		if ((flags & RFTHREAD) != 0) {
437 			/*
438 			 * Shared file descriptor table and
439 			 * shared process leaders.
440 			 */
441 			fdtol = p1->p_fdtol;
442 			fdtol->fdl_refcount++;
443 		} else {
444 			/*
445 			 * Shared file descriptor table, and
446 			 * different process leaders
447 			 */
448 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
449 		}
450 	}
451 	p2->p_fdtol = fdtol;
452 
453 	/*
454 	 * If p_limit is still copy-on-write, bump refcnt,
455 	 * otherwise get a copy that won't be modified.
456 	 * (If PL_SHAREMOD is clear, the structure is shared
457 	 * copy-on-write.)
458 	 */
459 	if (p1->p_limit->p_lflags & PL_SHAREMOD) {
460 		p2->p_limit = limcopy(p1->p_limit);
461 	} else {
462 		p2->p_limit = p1->p_limit;
463 		p2->p_limit->p_refcnt++;
464 	}
465 
466 	/*
467 	 * Preserve some more flags in subprocess.  P_PROFIL has already
468 	 * been preserved.
469 	 */
470 	p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK);
471 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
472 		p2->p_flag |= P_CONTROLT;
473 	if (flags & RFPPWAIT)
474 		p2->p_flag |= P_PPWAIT;
475 
476 	/*
477 	 * Once we are on a pglist we may receive signals.  XXX we might
478 	 * race a ^C being sent to the process group by not receiving it
479 	 * at all prior to this line.
480 	 */
481 	LIST_INSERT_AFTER(p1, p2, p_pglist);
482 
483 	/*
484 	 * Attach the new process to its parent.
485 	 *
486 	 * If RFNOWAIT is set, the newly created process becomes a child
487 	 * of init.  This effectively disassociates the child from the
488 	 * parent.
489 	 */
490 	if (flags & RFNOWAIT)
491 		pptr = initproc;
492 	else
493 		pptr = p1;
494 	p2->p_pptr = pptr;
495 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
496 	LIST_INIT(&p2->p_children);
497 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
498 	callout_init(&p2->p_ithandle);
499 
500 #ifdef KTRACE
501 	/*
502 	 * Copy traceflag and tracefile if enabled.  If not inherited,
503 	 * these were zeroed above but we still could have a trace race
504 	 * so make sure p2's p_tracep is NULL.
505 	 */
506 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracep == NULL) {
507 		p2->p_traceflag = p1->p_traceflag;
508 		if ((p2->p_tracep = p1->p_tracep) != NULL)
509 			vref(p2->p_tracep);
510 	}
511 #endif
512 
513 	/*
514 	 * Give the child process an estcpu skewed towards the batch side
515 	 * of the parent.  This prevents batch programs from glitching
516 	 * interactive programs when they are first started.  If the child
517 	 * is not a batch program it's priority will be corrected by the
518 	 * scheduler.
519 	 *
520 	 * The interactivity model always starts at 0 (par value).
521 	 */
522 	p2->p_estcpu_fork = p2->p_estcpu =
523 		ESTCPULIM(p1->p_estcpu + ESTCPURAMP);
524 	p2->p_interactive = 0;
525 
526 	/*
527 	 * This begins the section where we must prevent the parent
528 	 * from being swapped.
529 	 */
530 	PHOLD(p1);
531 
532 	/*
533 	 * Finish creating the child process.  It will return via a different
534 	 * execution path later.  (ie: directly into user mode)
535 	 */
536 	vm_fork(p1, p2, flags);
537 	caps_fork(p1, p2, flags);
538 
539 	if (flags == (RFFDG | RFPROC)) {
540 		mycpu->gd_cnt.v_forks++;
541 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
542 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
543 		mycpu->gd_cnt.v_vforks++;
544 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
545 	} else if (p1 == &proc0) {
546 		mycpu->gd_cnt.v_kthreads++;
547 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
548 	} else {
549 		mycpu->gd_cnt.v_rforks++;
550 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
551 	}
552 
553 	/*
554 	 * Both processes are set up, now check if any loadable modules want
555 	 * to adjust anything.
556 	 *   What if they have an error? XXX
557 	 */
558 	TAILQ_FOREACH(ep, &fork_list, next) {
559 		(*ep->function)(p1, p2, flags);
560 	}
561 
562 	/*
563 	 * Make child runnable and add to run queue.
564 	 */
565 	microtime(&p2->p_thread->td_start);
566 	p2->p_acflag = AFORK;
567 
568 	/*
569 	 * tell any interested parties about the new process
570 	 */
571 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
572 
573 	/*
574 	 * Return child proc pointer to parent.
575 	 */
576 	*procp = p2;
577 	return (0);
578 }
579 
580 /*
581  * The next two functionms are general routines to handle adding/deleting
582  * items on the fork callout list.
583  *
584  * at_fork():
585  * Take the arguments given and put them onto the fork callout list,
586  * However first make sure that it's not already there.
587  * Returns 0 on success or a standard error number.
588  */
589 int
590 at_fork(forklist_fn function)
591 {
592 	struct forklist *ep;
593 
594 #ifdef INVARIANTS
595 	/* let the programmer know if he's been stupid */
596 	if (rm_at_fork(function)) {
597 		printf("WARNING: fork callout entry (%p) already present\n",
598 		    function);
599 	}
600 #endif
601 	ep = malloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
602 	ep->function = function;
603 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
604 	return (0);
605 }
606 
607 /*
608  * Scan the exit callout list for the given item and remove it..
609  * Returns the number of items removed (0 or 1)
610  */
611 int
612 rm_at_fork(forklist_fn function)
613 {
614 	struct forklist *ep;
615 
616 	TAILQ_FOREACH(ep, &fork_list, next) {
617 		if (ep->function == function) {
618 			TAILQ_REMOVE(&fork_list, ep, next);
619 			free(ep, M_ATFORK);
620 			return(1);
621 		}
622 	}
623 	return (0);
624 }
625 
626 /*
627  * Add a forked process to the run queue after any remaining setup, such
628  * as setting the fork handler, has been completed.
629  */
630 void
631 start_forked_proc(struct proc *p1, struct proc *p2)
632 {
633 	/*
634 	 * Move from SIDL to RUN queue, and activate the process's thread.
635 	 * Activation of the thread effectively makes the process "a"
636 	 * current process, so we do not setrunqueue().
637 	 *
638 	 * YYY setrunqueue works here but we should clean up the trampoline
639 	 * code so we just schedule the LWKT thread and let the trampoline
640 	 * deal with the userland scheduler on return to userland.
641 	 */
642 	KASSERT(p2 && p2->p_stat == SIDL,
643 	    ("cannot start forked process, bad status: %p", p2));
644 	resetpriority(p2);
645 	(void) splhigh();
646 	p2->p_stat = SRUN;
647 	setrunqueue(p2);
648 	(void) spl0();
649 
650 	/*
651 	 * Now can be swapped.
652 	 */
653 	PRELE(p1);
654 
655 	/*
656 	 * Preserve synchronization semantics of vfork.  If waiting for
657 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
658 	 * proc (in case of exit).
659 	 */
660 	while (p2->p_flag & P_PPWAIT)
661 		tsleep(p1, 0, "ppwait", 0);
662 }
663 
664