xref: /dragonfly/sys/kern/kern_fork.c (revision 8f8e1daf)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40  */
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysproto.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/sysctl.h>
50 #include <sys/malloc.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/vnode.h>
54 #include <sys/acct.h>
55 #include <sys/ktrace.h>
56 #include <sys/unistd.h>
57 #include <sys/jail.h>
58 
59 #include <vm/vm.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_map.h>
63 #include <vm/vm_extern.h>
64 
65 #include <sys/vmmeter.h>
66 #include <sys/refcount.h>
67 #include <sys/thread2.h>
68 #include <sys/signal2.h>
69 #include <sys/spinlock2.h>
70 
71 #include <sys/dsched.h>
72 
73 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
74 
75 /*
76  * These are the stuctures used to create a callout list for things to do
77  * when forking a process
78  */
79 struct forklist {
80 	forklist_fn function;
81 	TAILQ_ENTRY(forklist) next;
82 };
83 
84 TAILQ_HEAD(forklist_head, forklist);
85 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
86 
87 static struct lwp *lwp_fork(struct lwp *, struct proc *, int flags);
88 
89 int forksleep; /* Place for fork1() to sleep on. */
90 
91 /*
92  * Red-Black tree support for LWPs
93  */
94 
95 static int
96 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
97 {
98 	if (lp1->lwp_tid < lp2->lwp_tid)
99 		return(-1);
100 	if (lp1->lwp_tid > lp2->lwp_tid)
101 		return(1);
102 	return(0);
103 }
104 
105 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
106 
107 /*
108  * Fork system call
109  *
110  * MPALMOSTSAFE
111  */
112 int
113 sys_fork(struct fork_args *uap)
114 {
115 	struct lwp *lp = curthread->td_lwp;
116 	struct proc *p2;
117 	int error;
118 
119 	error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
120 	if (error == 0) {
121 		PHOLD(p2);
122 		start_forked_proc(lp, p2);
123 		uap->sysmsg_fds[0] = p2->p_pid;
124 		uap->sysmsg_fds[1] = 0;
125 		PRELE(p2);
126 	}
127 	return error;
128 }
129 
130 /*
131  * MPALMOSTSAFE
132  */
133 int
134 sys_vfork(struct vfork_args *uap)
135 {
136 	struct lwp *lp = curthread->td_lwp;
137 	struct proc *p2;
138 	int error;
139 
140 	error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
141 	if (error == 0) {
142 		PHOLD(p2);
143 		start_forked_proc(lp, p2);
144 		uap->sysmsg_fds[0] = p2->p_pid;
145 		uap->sysmsg_fds[1] = 0;
146 		PRELE(p2);
147 	}
148 	return error;
149 }
150 
151 /*
152  * Handle rforks.  An rfork may (1) operate on the current process without
153  * creating a new, (2) create a new process that shared the current process's
154  * vmspace, signals, and/or descriptors, or (3) create a new process that does
155  * not share these things (normal fork).
156  *
157  * Note that we only call start_forked_proc() if a new process is actually
158  * created.
159  *
160  * rfork { int flags }
161  *
162  * MPALMOSTSAFE
163  */
164 int
165 sys_rfork(struct rfork_args *uap)
166 {
167 	struct lwp *lp = curthread->td_lwp;
168 	struct proc *p2;
169 	int error;
170 
171 	if ((uap->flags & RFKERNELONLY) != 0)
172 		return (EINVAL);
173 
174 	error = fork1(lp, uap->flags | RFPGLOCK, &p2);
175 	if (error == 0) {
176 		if (p2) {
177 			PHOLD(p2);
178 			start_forked_proc(lp, p2);
179 			uap->sysmsg_fds[0] = p2->p_pid;
180 			uap->sysmsg_fds[1] = 0;
181 			PRELE(p2);
182 		} else {
183 			uap->sysmsg_fds[0] = 0;
184 			uap->sysmsg_fds[1] = 0;
185 		}
186 	}
187 	return error;
188 }
189 
190 /*
191  * MPALMOSTSAFE
192  */
193 int
194 sys_lwp_create(struct lwp_create_args *uap)
195 {
196 	struct proc *p = curproc;
197 	struct lwp *lp;
198 	struct lwp_params params;
199 	int error;
200 
201 	error = copyin(uap->params, &params, sizeof(params));
202 	if (error)
203 		goto fail2;
204 
205 	lwkt_gettoken(&p->p_token);
206 	plimit_lwp_fork(p);	/* force exclusive access */
207 	lp = lwp_fork(curthread->td_lwp, p, RFPROC);
208 	error = cpu_prepare_lwp(lp, &params);
209 	if (error)
210 		goto fail;
211 	if (params.tid1 != NULL &&
212 	    (error = copyout(&lp->lwp_tid, params.tid1, sizeof(lp->lwp_tid))))
213 		goto fail;
214 	if (params.tid2 != NULL &&
215 	    (error = copyout(&lp->lwp_tid, params.tid2, sizeof(lp->lwp_tid))))
216 		goto fail;
217 
218 	/*
219 	 * Now schedule the new lwp.
220 	 */
221 	p->p_usched->resetpriority(lp);
222 	crit_enter();
223 	lp->lwp_stat = LSRUN;
224 	p->p_usched->setrunqueue(lp);
225 	crit_exit();
226 	lwkt_reltoken(&p->p_token);
227 
228 	return (0);
229 
230 fail:
231 	lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
232 	--p->p_nthreads;
233 	/* lwp_dispose expects an exited lwp, and a held proc */
234 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
235 	lp->lwp_thread->td_flags |= TDF_EXITING;
236 	lwkt_remove_tdallq(lp->lwp_thread);
237 	PHOLD(p);
238 	biosched_done(lp->lwp_thread);
239 	dsched_exit_thread(lp->lwp_thread);
240 	lwp_dispose(lp);
241 	lwkt_reltoken(&p->p_token);
242 fail2:
243 	return (error);
244 }
245 
246 int	nprocs = 1;		/* process 0 */
247 
248 int
249 fork1(struct lwp *lp1, int flags, struct proc **procp)
250 {
251 	struct proc *p1 = lp1->lwp_proc;
252 	struct proc *p2;
253 	struct proc *pptr;
254 	struct pgrp *p1grp;
255 	struct pgrp *plkgrp;
256 	uid_t uid;
257 	int ok, error;
258 	static int curfail = 0;
259 	static struct timeval lastfail;
260 	struct forklist *ep;
261 	struct filedesc_to_leader *fdtol;
262 
263 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
264 		return (EINVAL);
265 
266 	lwkt_gettoken(&p1->p_token);
267 	plkgrp = NULL;
268 	p2 = NULL;
269 
270 	/*
271 	 * Here we don't create a new process, but we divorce
272 	 * certain parts of a process from itself.
273 	 */
274 	if ((flags & RFPROC) == 0) {
275 		/*
276 		 * This kind of stunt does not work anymore if
277 		 * there are native threads (lwps) running
278 		 */
279 		if (p1->p_nthreads != 1) {
280 			error = EINVAL;
281 			goto done;
282 		}
283 
284 		vm_fork(p1, 0, flags);
285 
286 		/*
287 		 * Close all file descriptors.
288 		 */
289 		if (flags & RFCFDG) {
290 			struct filedesc *fdtmp;
291 			fdtmp = fdinit(p1);
292 			fdfree(p1, fdtmp);
293 		}
294 
295 		/*
296 		 * Unshare file descriptors (from parent.)
297 		 */
298 		if (flags & RFFDG) {
299 			if (p1->p_fd->fd_refcnt > 1) {
300 				struct filedesc *newfd;
301 				error = fdcopy(p1, &newfd);
302 				if (error != 0) {
303 					error = ENOMEM;
304 					goto done;
305 				}
306 				fdfree(p1, newfd);
307 			}
308 		}
309 		*procp = NULL;
310 		error = 0;
311 		goto done;
312 	}
313 
314 	/*
315 	 * Interlock against process group signal delivery.  If signals
316 	 * are pending after the interlock is obtained we have to restart
317 	 * the system call to process the signals.  If we don't the child
318 	 * can miss a pgsignal (such as ^C) sent during the fork.
319 	 *
320 	 * We can't use CURSIG() here because it will process any STOPs
321 	 * and cause the process group lock to be held indefinitely.  If
322 	 * a STOP occurs, the fork will be restarted after the CONT.
323 	 */
324 	p1grp = p1->p_pgrp;
325 	if ((flags & RFPGLOCK) && (plkgrp = p1->p_pgrp) != NULL) {
326 		pgref(plkgrp);
327 		lockmgr(&plkgrp->pg_lock, LK_SHARED);
328 		if (CURSIG_NOBLOCK(lp1)) {
329 			error = ERESTART;
330 			goto done;
331 		}
332 	}
333 
334 	/*
335 	 * Although process entries are dynamically created, we still keep
336 	 * a global limit on the maximum number we will create.  Don't allow
337 	 * a nonprivileged user to use the last ten processes; don't let root
338 	 * exceed the limit. The variable nprocs is the current number of
339 	 * processes, maxproc is the limit.
340 	 */
341 	uid = lp1->lwp_thread->td_ucred->cr_ruid;
342 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
343 		if (ppsratecheck(&lastfail, &curfail, 1))
344 			kprintf("maxproc limit exceeded by uid %d, please "
345 			       "see tuning(7) and login.conf(5).\n", uid);
346 		tsleep(&forksleep, 0, "fork", hz / 2);
347 		error = EAGAIN;
348 		goto done;
349 	}
350 
351 	/*
352 	 * Increment the nprocs resource before blocking can occur.  There
353 	 * are hard-limits as to the number of processes that can run.
354 	 */
355 	atomic_add_int(&nprocs, 1);
356 
357 	/*
358 	 * Increment the count of procs running with this uid. Don't allow
359 	 * a nonprivileged user to exceed their current limit.
360 	 */
361 	ok = chgproccnt(lp1->lwp_thread->td_ucred->cr_ruidinfo, 1,
362 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
363 	if (!ok) {
364 		/*
365 		 * Back out the process count
366 		 */
367 		atomic_add_int(&nprocs, -1);
368 		if (ppsratecheck(&lastfail, &curfail, 1))
369 			kprintf("maxproc limit exceeded by uid %d, please "
370 			       "see tuning(7) and login.conf(5).\n", uid);
371 		tsleep(&forksleep, 0, "fork", hz / 2);
372 		error = EAGAIN;
373 		goto done;
374 	}
375 
376 	/*
377 	 * Allocate a new process, don't get fancy: zero the structure.
378 	 */
379 	p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
380 
381 	/*
382 	 * Core initialization.  SIDL is a safety state that protects the
383 	 * partially initialized process once it starts getting hooked
384 	 * into system structures and becomes addressable.
385 	 *
386 	 * We must be sure to acquire p2->p_token as well, we must hold it
387 	 * once the process is on the allproc list to avoid things such
388 	 * as competing modifications to p_flags.
389 	 */
390 	p2->p_lasttid = -1;	/* first tid will be 0 */
391 	p2->p_stat = SIDL;
392 
393 	RB_INIT(&p2->p_lwp_tree);
394 	spin_init(&p2->p_spin);
395 	lwkt_token_init(&p2->p_token, "proc");
396 	lwkt_gettoken(&p2->p_token);
397 
398 	/*
399 	 * Setup linkage for kernel based threading XXX lwp.  Also add the
400 	 * process to the allproclist.
401 	 *
402 	 * The process structure is addressable after this point.
403 	 */
404 	if (flags & RFTHREAD) {
405 		p2->p_peers = p1->p_peers;
406 		p1->p_peers = p2;
407 		p2->p_leader = p1->p_leader;
408 	} else {
409 		p2->p_leader = p2;
410 	}
411 	proc_add_allproc(p2);
412 
413 	/*
414 	 * Initialize the section which is copied verbatim from the parent.
415 	 */
416 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
417 	      ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
418 
419 	/*
420 	 * Duplicate sub-structures as needed.  Increase reference counts
421 	 * on shared objects.
422 	 *
423 	 * NOTE: because we are now on the allproc list it is possible for
424 	 *	 other consumers to gain temporary references to p2
425 	 *	 (p2->p_lock can change).
426 	 */
427 	if (p1->p_flags & P_PROFIL)
428 		startprofclock(p2);
429 	p2->p_ucred = crhold(lp1->lwp_thread->td_ucred);
430 
431 	if (jailed(p2->p_ucred))
432 		p2->p_flags |= P_JAILED;
433 
434 	if (p2->p_args)
435 		refcount_acquire(&p2->p_args->ar_ref);
436 
437 	p2->p_usched = p1->p_usched;
438 	/* XXX: verify copy of the secondary iosched stuff */
439 	dsched_new_proc(p2);
440 
441 	if (flags & RFSIGSHARE) {
442 		p2->p_sigacts = p1->p_sigacts;
443 		refcount_acquire(&p2->p_sigacts->ps_refcnt);
444 	} else {
445 		p2->p_sigacts = kmalloc(sizeof(*p2->p_sigacts),
446 					M_SUBPROC, M_WAITOK);
447 		bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
448 		refcount_init(&p2->p_sigacts->ps_refcnt, 1);
449 	}
450 	if (flags & RFLINUXTHPN)
451 	        p2->p_sigparent = SIGUSR1;
452 	else
453 	        p2->p_sigparent = SIGCHLD;
454 
455 	/* bump references to the text vnode (for procfs) */
456 	p2->p_textvp = p1->p_textvp;
457 	if (p2->p_textvp)
458 		vref(p2->p_textvp);
459 
460 	/* copy namecache handle to the text file */
461 	if (p1->p_textnch.mount)
462 		cache_copy(&p1->p_textnch, &p2->p_textnch);
463 
464 	/*
465 	 * Handle file descriptors
466 	 */
467 	if (flags & RFCFDG) {
468 		p2->p_fd = fdinit(p1);
469 		fdtol = NULL;
470 	} else if (flags & RFFDG) {
471 		error = fdcopy(p1, &p2->p_fd);
472 		if (error != 0) {
473 			error = ENOMEM;
474 			goto done;
475 		}
476 		fdtol = NULL;
477 	} else {
478 		p2->p_fd = fdshare(p1);
479 		if (p1->p_fdtol == NULL) {
480 			p1->p_fdtol = filedesc_to_leader_alloc(NULL,
481 							       p1->p_leader);
482 		}
483 		if ((flags & RFTHREAD) != 0) {
484 			/*
485 			 * Shared file descriptor table and
486 			 * shared process leaders.
487 			 */
488 			fdtol = p1->p_fdtol;
489 			fdtol->fdl_refcount++;
490 		} else {
491 			/*
492 			 * Shared file descriptor table, and
493 			 * different process leaders
494 			 */
495 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
496 		}
497 	}
498 	p2->p_fdtol = fdtol;
499 	p2->p_limit = plimit_fork(p1);
500 
501 	/*
502 	 * Preserve some more flags in subprocess.  P_PROFIL has already
503 	 * been preserved.
504 	 */
505 	p2->p_flags |= p1->p_flags & P_SUGID;
506 	if (p1->p_session->s_ttyvp != NULL && (p1->p_flags & P_CONTROLT))
507 		p2->p_flags |= P_CONTROLT;
508 	if (flags & RFPPWAIT)
509 		p2->p_flags |= P_PPWAIT;
510 
511 	/*
512 	 * Inherit the virtual kernel structure (allows a virtual kernel
513 	 * to fork to simulate multiple cpus).
514 	 */
515 	if (p1->p_vkernel)
516 		vkernel_inherit(p1, p2);
517 
518 	/*
519 	 * Once we are on a pglist we may receive signals.  XXX we might
520 	 * race a ^C being sent to the process group by not receiving it
521 	 * at all prior to this line.
522 	 */
523 	pgref(p1grp);
524 	lwkt_gettoken(&p1grp->pg_token);
525 	LIST_INSERT_AFTER(p1, p2, p_pglist);
526 	lwkt_reltoken(&p1grp->pg_token);
527 
528 	/*
529 	 * Attach the new process to its parent.
530 	 *
531 	 * If RFNOWAIT is set, the newly created process becomes a child
532 	 * of init.  This effectively disassociates the child from the
533 	 * parent.
534 	 */
535 	if (flags & RFNOWAIT)
536 		pptr = initproc;
537 	else
538 		pptr = p1;
539 	p2->p_pptr = pptr;
540 	LIST_INIT(&p2->p_children);
541 
542 	lwkt_gettoken(&pptr->p_token);
543 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
544 	lwkt_reltoken(&pptr->p_token);
545 
546 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
547 	callout_init_mp(&p2->p_ithandle);
548 
549 #ifdef KTRACE
550 	/*
551 	 * Copy traceflag and tracefile if enabled.  If not inherited,
552 	 * these were zeroed above but we still could have a trace race
553 	 * so make sure p2's p_tracenode is NULL.
554 	 */
555 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
556 		p2->p_traceflag = p1->p_traceflag;
557 		p2->p_tracenode = ktrinherit(p1->p_tracenode);
558 	}
559 #endif
560 
561 	/*
562 	 * This begins the section where we must prevent the parent
563 	 * from being swapped.
564 	 *
565 	 * Gets PRELE'd in the caller in start_forked_proc().
566 	 */
567 	PHOLD(p1);
568 
569 	vm_fork(p1, p2, flags);
570 
571 	/*
572 	 * Create the first lwp associated with the new proc.
573 	 * It will return via a different execution path later, directly
574 	 * into userland, after it was put on the runq by
575 	 * start_forked_proc().
576 	 */
577 	lwp_fork(lp1, p2, flags);
578 
579 	if (flags == (RFFDG | RFPROC | RFPGLOCK)) {
580 		mycpu->gd_cnt.v_forks++;
581 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize +
582 					     p2->p_vmspace->vm_ssize;
583 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK)) {
584 		mycpu->gd_cnt.v_vforks++;
585 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
586 					      p2->p_vmspace->vm_ssize;
587 	} else if (p1 == &proc0) {
588 		mycpu->gd_cnt.v_kthreads++;
589 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
590 						p2->p_vmspace->vm_ssize;
591 	} else {
592 		mycpu->gd_cnt.v_rforks++;
593 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
594 					      p2->p_vmspace->vm_ssize;
595 	}
596 
597 	/*
598 	 * Both processes are set up, now check if any loadable modules want
599 	 * to adjust anything.
600 	 *   What if they have an error? XXX
601 	 */
602 	TAILQ_FOREACH(ep, &fork_list, next) {
603 		(*ep->function)(p1, p2, flags);
604 	}
605 
606 	/*
607 	 * Set the start time.  Note that the process is not runnable.  The
608 	 * caller is responsible for making it runnable.
609 	 */
610 	microtime(&p2->p_start);
611 	p2->p_acflag = AFORK;
612 
613 	/*
614 	 * tell any interested parties about the new process
615 	 */
616 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
617 
618 	/*
619 	 * Return child proc pointer to parent.
620 	 */
621 	*procp = p2;
622 	error = 0;
623 done:
624 	if (p2)
625 		lwkt_reltoken(&p2->p_token);
626 	lwkt_reltoken(&p1->p_token);
627 	if (plkgrp) {
628 		lockmgr(&plkgrp->pg_lock, LK_RELEASE);
629 		pgrel(plkgrp);
630 	}
631 	return (error);
632 }
633 
634 static struct lwp *
635 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags)
636 {
637 	globaldata_t gd = mycpu;
638 	struct lwp *lp;
639 	struct thread *td;
640 
641 	lp = kmalloc(sizeof(struct lwp), M_LWP, M_WAITOK|M_ZERO);
642 
643 	lp->lwp_proc = destproc;
644 	lp->lwp_vmspace = destproc->p_vmspace;
645 	lp->lwp_stat = LSRUN;
646 	bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
647 	    (unsigned) ((caddr_t)&lp->lwp_endcopy -
648 			(caddr_t)&lp->lwp_startcopy));
649 	lp->lwp_flags |= origlp->lwp_flags & LWP_ALTSTACK;
650 	/*
651 	 * Set cpbase to the last timeout that occured (not the upcoming
652 	 * timeout).
653 	 *
654 	 * A critical section is required since a timer IPI can update
655 	 * scheduler specific data.
656 	 */
657 	crit_enter();
658 	lp->lwp_cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
659 	destproc->p_usched->heuristic_forking(origlp, lp);
660 	crit_exit();
661 	lp->lwp_cpumask &= usched_mastermask;
662 	lwkt_token_init(&lp->lwp_token, "lwp_token");
663 	spin_init(&lp->lwp_spin);
664 
665 	/*
666 	 * Assign the thread to the current cpu to begin with so we
667 	 * can manipulate it.
668 	 */
669 	td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, gd->gd_cpuid, 0);
670 	lp->lwp_thread = td;
671 	td->td_proc = destproc;
672 	td->td_lwp = lp;
673 	td->td_switch = cpu_heavy_switch;
674 #ifdef NO_LWKT_SPLIT_USERPRI
675 	lwkt_setpri(td, TDPRI_USER_NORM);
676 #else
677 	lwkt_setpri(td, TDPRI_KERN_USER);
678 #endif
679 	lwkt_set_comm(td, "%s", destproc->p_comm);
680 
681 	/*
682 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
683 	 * and make the child ready to run.
684 	 */
685 	cpu_fork(origlp, lp, flags);
686 	kqueue_init(&lp->lwp_kqueue, destproc->p_fd);
687 
688 	/*
689 	 * Assign a TID to the lp.  Loop until the insert succeeds (returns
690 	 * NULL).
691 	 */
692 	lp->lwp_tid = destproc->p_lasttid;
693 	do {
694 		if (++lp->lwp_tid < 0)
695 			lp->lwp_tid = 1;
696 	} while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
697 	destproc->p_lasttid = lp->lwp_tid;
698 	destproc->p_nthreads++;
699 
700 	return (lp);
701 }
702 
703 /*
704  * The next two functionms are general routines to handle adding/deleting
705  * items on the fork callout list.
706  *
707  * at_fork():
708  * Take the arguments given and put them onto the fork callout list,
709  * However first make sure that it's not already there.
710  * Returns 0 on success or a standard error number.
711  */
712 int
713 at_fork(forklist_fn function)
714 {
715 	struct forklist *ep;
716 
717 #ifdef INVARIANTS
718 	/* let the programmer know if he's been stupid */
719 	if (rm_at_fork(function)) {
720 		kprintf("WARNING: fork callout entry (%p) already present\n",
721 		    function);
722 	}
723 #endif
724 	ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
725 	ep->function = function;
726 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
727 	return (0);
728 }
729 
730 /*
731  * Scan the exit callout list for the given item and remove it..
732  * Returns the number of items removed (0 or 1)
733  */
734 int
735 rm_at_fork(forklist_fn function)
736 {
737 	struct forklist *ep;
738 
739 	TAILQ_FOREACH(ep, &fork_list, next) {
740 		if (ep->function == function) {
741 			TAILQ_REMOVE(&fork_list, ep, next);
742 			kfree(ep, M_ATFORK);
743 			return(1);
744 		}
745 	}
746 	return (0);
747 }
748 
749 /*
750  * Add a forked process to the run queue after any remaining setup, such
751  * as setting the fork handler, has been completed.
752  *
753  * p2 is held by the caller.
754  */
755 void
756 start_forked_proc(struct lwp *lp1, struct proc *p2)
757 {
758 	struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
759 
760 	/*
761 	 * Move from SIDL to RUN queue, and activate the process's thread.
762 	 * Activation of the thread effectively makes the process "a"
763 	 * current process, so we do not setrunqueue().
764 	 *
765 	 * YYY setrunqueue works here but we should clean up the trampoline
766 	 * code so we just schedule the LWKT thread and let the trampoline
767 	 * deal with the userland scheduler on return to userland.
768 	 */
769 	KASSERT(p2->p_stat == SIDL,
770 	    ("cannot start forked process, bad status: %p", p2));
771 	p2->p_usched->resetpriority(lp2);
772 	crit_enter();
773 	p2->p_stat = SACTIVE;
774 	lp2->lwp_stat = LSRUN;
775 	p2->p_usched->setrunqueue(lp2);
776 	crit_exit();
777 
778 	/*
779 	 * Now can be swapped.
780 	 */
781 	PRELE(lp1->lwp_proc);
782 
783 	/*
784 	 * Preserve synchronization semantics of vfork.  If waiting for
785 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
786 	 * proc (in case of exec or exit).
787 	 *
788 	 * We must hold our p_token to interlock the flag/tsleep
789 	 */
790 	lwkt_gettoken(&p2->p_token);
791 	while (p2->p_flags & P_PPWAIT)
792 		tsleep(lp1->lwp_proc, 0, "ppwait", 0);
793 	lwkt_reltoken(&p2->p_token);
794 }
795