xref: /dragonfly/sys/kern/kern_fork.c (revision af79c6e5)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.13 2003/06/06 20:21:32 tegge Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.17 2003/11/27 19:57:37 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 
60 #include <vm/vm.h>
61 #include <sys/lock.h>
62 #include <vm/pmap.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_extern.h>
65 #include <vm/vm_zone.h>
66 
67 #include <sys/vmmeter.h>
68 #include <sys/user.h>
69 
70 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
71 
72 /*
73  * These are the stuctures used to create a callout list for things to do
74  * when forking a process
75  */
76 struct forklist {
77 	forklist_fn function;
78 	TAILQ_ENTRY(forklist) next;
79 };
80 
81 TAILQ_HEAD(forklist_head, forklist);
82 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
83 
84 int forksleep; /* Place for fork1() to sleep on. */
85 
86 /* ARGSUSED */
87 int
88 fork(struct fork_args *uap)
89 {
90 	struct proc *p = curproc;
91 	struct proc *p2;
92 	int error;
93 
94 	error = fork1(p, RFFDG | RFPROC, &p2);
95 	if (error == 0) {
96 		start_forked_proc(p, p2);
97 		uap->sysmsg_fds[0] = p2->p_pid;
98 		uap->sysmsg_fds[1] = 0;
99 	}
100 	return error;
101 }
102 
103 /* ARGSUSED */
104 int
105 vfork(struct vfork_args *uap)
106 {
107 	struct proc *p = curproc;
108 	struct proc *p2;
109 	int error;
110 
111 	error = fork1(p, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
112 	if (error == 0) {
113 		start_forked_proc(p, p2);
114 		uap->sysmsg_fds[0] = p2->p_pid;
115 		uap->sysmsg_fds[1] = 0;
116 	}
117 	return error;
118 }
119 
120 int
121 rfork(struct rfork_args *uap)
122 {
123 	struct proc *p = curproc;
124 	struct proc *p2;
125 	int error;
126 
127 	/* Don't allow kernel only flags */
128 	if ((uap->flags & RFKERNELONLY) != 0)
129 		return (EINVAL);
130 
131 	error = fork1(p, uap->flags, &p2);
132 	if (error == 0) {
133 		start_forked_proc(p, p2);
134 		uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
135 		uap->sysmsg_fds[1] = 0;
136 	}
137 	return error;
138 }
139 
140 
141 int	nprocs = 1;		/* process 0 */
142 static int nextpid = 0;
143 
144 /*
145  * Random component to nextpid generation.  We mix in a random factor to make
146  * it a little harder to predict.  We sanity check the modulus value to avoid
147  * doing it in critical paths.  Don't let it be too small or we pointlessly
148  * waste randomness entropy, and don't let it be impossibly large.  Using a
149  * modulus that is too big causes a LOT more process table scans and slows
150  * down fork processing as the pidchecked caching is defeated.
151  */
152 static int randompid = 0;
153 
154 static int
155 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
156 {
157 		int error, pid;
158 
159 		pid = randompid;
160 		error = sysctl_handle_int(oidp, &pid, 0, req);
161 		if (error || !req->newptr)
162 			return (error);
163 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
164 			pid = PID_MAX - 100;
165 		else if (pid < 2)			/* NOP */
166 			pid = 0;
167 		else if (pid < 100)			/* Make it reasonable */
168 			pid = 100;
169 		randompid = pid;
170 		return (error);
171 }
172 
173 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
174     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
175 
176 int
177 fork1(p1, flags, procp)
178 	struct proc *p1;
179 	int flags;
180 	struct proc **procp;
181 {
182 	struct proc *p2, *pptr;
183 	uid_t uid;
184 	struct proc *newproc;
185 	int ok;
186 	static int pidchecked = 0;
187 	struct forklist *ep;
188 	struct filedesc_to_leader *fdtol;
189 
190 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
191 		return (EINVAL);
192 
193 	/*
194 	 * Here we don't create a new process, but we divorce
195 	 * certain parts of a process from itself.
196 	 */
197 	if ((flags & RFPROC) == 0) {
198 
199 		vm_fork(p1, 0, flags);
200 
201 		/*
202 		 * Close all file descriptors.
203 		 */
204 		if (flags & RFCFDG) {
205 			struct filedesc *fdtmp;
206 			fdtmp = fdinit(p1);
207 			fdfree(p1);
208 			p1->p_fd = fdtmp;
209 		}
210 
211 		/*
212 		 * Unshare file descriptors (from parent.)
213 		 */
214 		if (flags & RFFDG) {
215 			if (p1->p_fd->fd_refcnt > 1) {
216 				struct filedesc *newfd;
217 				newfd = fdcopy(p1);
218 				fdfree(p1);
219 				p1->p_fd = newfd;
220 			}
221 		}
222 		*procp = NULL;
223 		return (0);
224 	}
225 
226 	/*
227 	 * Although process entries are dynamically created, we still keep
228 	 * a global limit on the maximum number we will create.  Don't allow
229 	 * a nonprivileged user to use the last ten processes; don't let root
230 	 * exceed the limit. The variable nprocs is the current number of
231 	 * processes, maxproc is the limit.
232 	 */
233 	uid = p1->p_ucred->cr_ruid;
234 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
235 		tsleep(&forksleep, 0, "fork", hz / 2);
236 		return (EAGAIN);
237 	}
238 	/*
239 	 * Increment the nprocs resource before blocking can occur.  There
240 	 * are hard-limits as to the number of processes that can run.
241 	 */
242 	nprocs++;
243 
244 	/*
245 	 * Increment the count of procs running with this uid. Don't allow
246 	 * a nonprivileged user to exceed their current limit.
247 	 */
248 	ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1,
249 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
250 	if (!ok) {
251 		/*
252 		 * Back out the process count
253 		 */
254 		nprocs--;
255 		tsleep(&forksleep, 0, "fork", hz / 2);
256 		return (EAGAIN);
257 	}
258 
259 	/* Allocate new proc. */
260 	newproc = zalloc(proc_zone);
261 
262 	/*
263 	 * Setup linkage for kernel based threading
264 	 */
265 	if((flags & RFTHREAD) != 0) {
266 		newproc->p_peers = p1->p_peers;
267 		p1->p_peers = newproc;
268 		newproc->p_leader = p1->p_leader;
269 	} else {
270 		newproc->p_peers = 0;
271 		newproc->p_leader = newproc;
272 	}
273 
274 	newproc->p_wakeup = 0;
275 	newproc->p_vmspace = NULL;
276 
277 	/*
278 	 * Find an unused process ID.  We remember a range of unused IDs
279 	 * ready to use (from nextpid+1 through pidchecked-1).
280 	 */
281 	nextpid++;
282 	if (randompid)
283 		nextpid += arc4random() % randompid;
284 retry:
285 	/*
286 	 * If the process ID prototype has wrapped around,
287 	 * restart somewhat above 0, as the low-numbered procs
288 	 * tend to include daemons that don't exit.
289 	 */
290 	if (nextpid >= PID_MAX) {
291 		nextpid = nextpid % PID_MAX;
292 		if (nextpid < 100)
293 			nextpid += 100;
294 		pidchecked = 0;
295 	}
296 	if (nextpid >= pidchecked) {
297 		int doingzomb = 0;
298 
299 		pidchecked = PID_MAX;
300 		/*
301 		 * Scan the active and zombie procs to check whether this pid
302 		 * is in use.  Remember the lowest pid that's greater
303 		 * than nextpid, so we can avoid checking for a while.
304 		 */
305 		p2 = LIST_FIRST(&allproc);
306 again:
307 		for (; p2 != 0; p2 = LIST_NEXT(p2, p_list)) {
308 			while (p2->p_pid == nextpid ||
309 			    p2->p_pgrp->pg_id == nextpid ||
310 			    p2->p_session->s_sid == nextpid) {
311 				nextpid++;
312 				if (nextpid >= pidchecked)
313 					goto retry;
314 			}
315 			if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
316 				pidchecked = p2->p_pid;
317 			if (p2->p_pgrp->pg_id > nextpid &&
318 			    pidchecked > p2->p_pgrp->pg_id)
319 				pidchecked = p2->p_pgrp->pg_id;
320 			if (p2->p_session->s_sid > nextpid &&
321 			    pidchecked > p2->p_session->s_sid)
322 				pidchecked = p2->p_session->s_sid;
323 		}
324 		if (!doingzomb) {
325 			doingzomb = 1;
326 			p2 = LIST_FIRST(&zombproc);
327 			goto again;
328 		}
329 	}
330 
331 	p2 = newproc;
332 	p2->p_stat = SIDL;			/* protect against others */
333 	p2->p_pid = nextpid;
334 	LIST_INSERT_HEAD(&allproc, p2, p_list);
335 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
336 
337 	/*
338 	 * Make a proc table entry for the new process.
339 	 * Start by zeroing the section of proc that is zero-initialized,
340 	 * then copy the section that is copied directly from the parent.
341 	 */
342 	bzero(&p2->p_startzero,
343 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
344 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
345 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
346 
347 	p2->p_aioinfo = NULL;
348 
349 	/*
350 	 * Duplicate sub-structures as needed.
351 	 * Increase reference counts on shared objects.
352 	 * The p_stats and p_sigacts substructs are set in vm_fork.
353 	 *
354 	 * P_CP_RELEASED indicates that the process is starting out in
355 	 * the kernel (in the fork trampoline).  The flag will be converted
356 	 * to P_CURPROC when the new process calls userret() and attempts
357 	 * to return to userland
358 	 */
359 	p2->p_flag = P_INMEM | P_CP_RELEASED;
360 	if (p1->p_flag & P_PROFIL)
361 		startprofclock(p2);
362 	p2->p_ucred = crhold(p1->p_ucred);
363 
364 	if (p2->p_ucred->cr_prison) {
365 		p2->p_ucred->cr_prison->pr_ref++;
366 		p2->p_flag |= P_JAILED;
367 	}
368 
369 	if (p2->p_args)
370 		p2->p_args->ar_ref++;
371 
372 	if (flags & RFSIGSHARE) {
373 		p2->p_procsig = p1->p_procsig;
374 		p2->p_procsig->ps_refcnt++;
375 		if (p1->p_sigacts == &p1->p_addr->u_sigacts) {
376 			struct sigacts *newsigacts;
377 			int s;
378 
379 			/* Create the shared sigacts structure */
380 			MALLOC(newsigacts, struct sigacts *,
381 			    sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
382 			s = splhigh();
383 			/*
384 			 * Set p_sigacts to the new shared structure.
385 			 * Note that this is updating p1->p_sigacts at the
386 			 * same time, since p_sigacts is just a pointer to
387 			 * the shared p_procsig->ps_sigacts.
388 			 */
389 			p2->p_sigacts  = newsigacts;
390 			bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts,
391 			    sizeof(*p2->p_sigacts));
392 			*p2->p_sigacts = p1->p_addr->u_sigacts;
393 			splx(s);
394 		}
395 	} else {
396 		MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
397 		    M_SUBPROC, M_WAITOK);
398 		bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
399 		p2->p_procsig->ps_refcnt = 1;
400 		p2->p_sigacts = NULL;	/* finished in vm_fork() */
401 	}
402 	if (flags & RFLINUXTHPN)
403 	        p2->p_sigparent = SIGUSR1;
404 	else
405 	        p2->p_sigparent = SIGCHLD;
406 
407 	/* bump references to the text vnode (for procfs) */
408 	p2->p_textvp = p1->p_textvp;
409 	if (p2->p_textvp)
410 		VREF(p2->p_textvp);
411 
412 	if (flags & RFCFDG) {
413 		p2->p_fd = fdinit(p1);
414 		fdtol = NULL;
415 	} else if (flags & RFFDG) {
416 		p2->p_fd = fdcopy(p1);
417 		fdtol = NULL;
418 	} else {
419 		p2->p_fd = fdshare(p1);
420 		if (p1->p_fdtol == NULL)
421 			p1->p_fdtol =
422 				filedesc_to_leader_alloc(NULL,
423 							 p1->p_leader);
424 		if ((flags & RFTHREAD) != 0) {
425 			/*
426 			 * Shared file descriptor table and
427 			 * shared process leaders.
428 			 */
429 			fdtol = p1->p_fdtol;
430 			fdtol->fdl_refcount++;
431 		} else {
432 			/*
433 			 * Shared file descriptor table, and
434 			 * different process leaders
435 			 */
436 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
437 		}
438 	}
439 	p2->p_fdtol = fdtol;
440 
441 	/*
442 	 * If p_limit is still copy-on-write, bump refcnt,
443 	 * otherwise get a copy that won't be modified.
444 	 * (If PL_SHAREMOD is clear, the structure is shared
445 	 * copy-on-write.)
446 	 */
447 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
448 		p2->p_limit = limcopy(p1->p_limit);
449 	else {
450 		p2->p_limit = p1->p_limit;
451 		p2->p_limit->p_refcnt++;
452 	}
453 
454 	/*
455 	 * Preserve some more flags in subprocess.  P_PROFIL has already
456 	 * been preserved.
457 	 */
458 	p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK);
459 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
460 		p2->p_flag |= P_CONTROLT;
461 	if (flags & RFPPWAIT)
462 		p2->p_flag |= P_PPWAIT;
463 
464 	LIST_INSERT_AFTER(p1, p2, p_pglist);
465 
466 	/*
467 	 * Attach the new process to its parent.
468 	 *
469 	 * If RFNOWAIT is set, the newly created process becomes a child
470 	 * of init.  This effectively disassociates the child from the
471 	 * parent.
472 	 */
473 	if (flags & RFNOWAIT)
474 		pptr = initproc;
475 	else
476 		pptr = p1;
477 	p2->p_pptr = pptr;
478 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
479 	LIST_INIT(&p2->p_children);
480 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
481 
482 #ifdef KTRACE
483 	/*
484 	 * Copy traceflag and tracefile if enabled.  If not inherited,
485 	 * these were zeroed above but we still could have a trace race
486 	 * so make sure p2's p_tracep is NULL.
487 	 */
488 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracep == NULL) {
489 		p2->p_traceflag = p1->p_traceflag;
490 		if ((p2->p_tracep = p1->p_tracep) != NULL)
491 			VREF(p2->p_tracep);
492 	}
493 #endif
494 
495 	/*
496 	 * set priority of child to be that of parent
497 	 */
498 	p2->p_estcpu = p1->p_estcpu;
499 
500 	/*
501 	 * This begins the section where we must prevent the parent
502 	 * from being swapped.
503 	 */
504 	PHOLD(p1);
505 
506 	/*
507 	 * Finish creating the child process.  It will return via a different
508 	 * execution path later.  (ie: directly into user mode)
509 	 */
510 	vm_fork(p1, p2, flags);
511 
512 	if (flags == (RFFDG | RFPROC)) {
513 		mycpu->gd_cnt.v_forks++;
514 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
515 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
516 		mycpu->gd_cnt.v_vforks++;
517 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
518 	} else if (p1 == &proc0) {
519 		mycpu->gd_cnt.v_kthreads++;
520 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
521 	} else {
522 		mycpu->gd_cnt.v_rforks++;
523 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
524 	}
525 
526 	/*
527 	 * Both processes are set up, now check if any loadable modules want
528 	 * to adjust anything.
529 	 *   What if they have an error? XXX
530 	 */
531 	TAILQ_FOREACH(ep, &fork_list, next) {
532 		(*ep->function)(p1, p2, flags);
533 	}
534 
535 	/*
536 	 * Make child runnable and add to run queue.
537 	 */
538 	microtime(&(p2->p_stats->p_start));
539 	p2->p_acflag = AFORK;
540 
541 	/*
542 	 * tell any interested parties about the new process
543 	 */
544 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
545 
546 	/*
547 	 * Return child proc pointer to parent.
548 	 */
549 	*procp = p2;
550 	return (0);
551 }
552 
553 /*
554  * The next two functionms are general routines to handle adding/deleting
555  * items on the fork callout list.
556  *
557  * at_fork():
558  * Take the arguments given and put them onto the fork callout list,
559  * However first make sure that it's not already there.
560  * Returns 0 on success or a standard error number.
561  */
562 
563 int
564 at_fork(function)
565 	forklist_fn function;
566 {
567 	struct forklist *ep;
568 
569 #ifdef INVARIANTS
570 	/* let the programmer know if he's been stupid */
571 	if (rm_at_fork(function))
572 		printf("WARNING: fork callout entry (%p) already present\n",
573 		    function);
574 #endif
575 	ep = malloc(sizeof(*ep), M_ATFORK, M_NOWAIT);
576 	if (ep == NULL)
577 		return (ENOMEM);
578 	ep->function = function;
579 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
580 	return (0);
581 }
582 
583 /*
584  * Scan the exit callout list for the given item and remove it..
585  * Returns the number of items removed (0 or 1)
586  */
587 
588 int
589 rm_at_fork(function)
590 	forklist_fn function;
591 {
592 	struct forklist *ep;
593 
594 	TAILQ_FOREACH(ep, &fork_list, next) {
595 		if (ep->function == function) {
596 			TAILQ_REMOVE(&fork_list, ep, next);
597 			free(ep, M_ATFORK);
598 			return(1);
599 		}
600 	}
601 	return (0);
602 }
603 
604 /*
605  * Add a forked process to the run queue after any remaining setup, such
606  * as setting the fork handler, has been completed.
607  */
608 
609 void
610 start_forked_proc(struct proc *p1, struct proc *p2)
611 {
612 	/*
613 	 * Move from SIDL to RUN queue, and activate the process's thread.
614 	 * Activation of the thread effectively makes the process "a"
615 	 * current process, so we do not setrunqueue().
616 	 */
617 	KASSERT(p2->p_stat == SIDL,
618 	    ("cannot start forked process, bad status: %p", p2));
619 	(void) splhigh();
620 	p2->p_stat = SRUN;
621 	setrunqueue(p2);
622 	(void) spl0();
623 
624 	/*
625 	 * Now can be swapped.
626 	 */
627 	PRELE(p1);
628 
629 	/*
630 	 * Preserve synchronization semantics of vfork.  If waiting for
631 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
632 	 * proc (in case of exit).
633 	 */
634 	while (p2->p_flag & P_PPWAIT)
635 		tsleep(p1, 0, "ppwait", 0);
636 }
637 
638