xref: /dragonfly/sys/kern/kern_fork.c (revision f02303f9)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.67 2007/03/13 00:18:59 corecode Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 #include <sys/caps.h>
60 
61 #include <vm/vm.h>
62 #include <sys/lock.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_zone.h>
67 
68 #include <sys/vmmeter.h>
69 #include <sys/thread2.h>
70 #include <sys/signal2.h>
71 
72 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
73 
74 /*
75  * These are the stuctures used to create a callout list for things to do
76  * when forking a process
77  */
78 struct forklist {
79 	forklist_fn function;
80 	TAILQ_ENTRY(forklist) next;
81 };
82 
83 TAILQ_HEAD(forklist_head, forklist);
84 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
85 
86 static struct lwp *lwp_fork(struct lwp *, struct proc *, int flags);
87 
88 int forksleep; /* Place for fork1() to sleep on. */
89 
90 /* ARGSUSED */
91 int
92 sys_fork(struct fork_args *uap)
93 {
94 	struct lwp *lp = curthread->td_lwp;
95 	struct proc *p2;
96 	int error;
97 
98 	error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
99 	if (error == 0) {
100 		start_forked_proc(lp, p2);
101 		uap->sysmsg_fds[0] = p2->p_pid;
102 		uap->sysmsg_fds[1] = 0;
103 	}
104 	return error;
105 }
106 
107 /* ARGSUSED */
108 int
109 sys_vfork(struct vfork_args *uap)
110 {
111 	struct lwp *lp = curthread->td_lwp;
112 	struct proc *p2;
113 	int error;
114 
115 	error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
116 	if (error == 0) {
117 		start_forked_proc(lp, p2);
118 		uap->sysmsg_fds[0] = p2->p_pid;
119 		uap->sysmsg_fds[1] = 0;
120 	}
121 	return error;
122 }
123 
124 /*
125  * Handle rforks.  An rfork may (1) operate on the current process without
126  * creating a new, (2) create a new process that shared the current process's
127  * vmspace, signals, and/or descriptors, or (3) create a new process that does
128  * not share these things (normal fork).
129  *
130  * Note that we only call start_forked_proc() if a new process is actually
131  * created.
132  *
133  * rfork { int flags }
134  */
135 int
136 sys_rfork(struct rfork_args *uap)
137 {
138 	struct lwp *lp = curthread->td_lwp;
139 	struct proc *p2;
140 	int error;
141 
142 	if ((uap->flags & RFKERNELONLY) != 0)
143 		return (EINVAL);
144 
145 	error = fork1(lp, uap->flags | RFPGLOCK, &p2);
146 	if (error == 0) {
147 		if (p2)
148 			start_forked_proc(lp, p2);
149 		uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
150 		uap->sysmsg_fds[1] = 0;
151 	}
152 	return error;
153 }
154 
155 int
156 sys_lwp_create(struct lwp_create_args *uap)
157 {
158 	struct proc *p = curproc;
159 	struct lwp *lp;
160 	struct lwp_params params;
161 	int error;
162 
163 	error = copyin(uap->params, &params, sizeof(params));
164 	if (error)
165 		goto fail2;
166 
167 	lp = lwp_fork(curthread->td_lwp, p, RFPROC);
168 	error = cpu_prepare_lwp(lp, &params);
169 	if (params.tid1 != NULL &&
170 	    (error = copyout(&lp->lwp_tid, params.tid1, sizeof(lp->lwp_tid))))
171 		goto fail;
172 	if (params.tid2 != NULL &&
173 	    (error = copyout(&lp->lwp_tid, params.tid2, sizeof(lp->lwp_tid))))
174 		goto fail;
175 
176 	/*
177 	 * Now schedule the new lwp.
178 	 */
179 	p->p_usched->resetpriority(lp);
180 	crit_enter();
181 	lp->lwp_stat = LSRUN;
182 	p->p_usched->setrunqueue(lp);
183 	crit_exit();
184 
185 	return (0);
186 
187 fail:
188 	--p->p_nthreads;
189 	LIST_REMOVE(lp, lwp_list);
190 	/* lwp_dispose expects a exited lwp */
191 	lp->lwp_thread->td_flags = TDF_EXITING;
192 	lwp_dispose(lp);
193 fail2:
194 	return (error);
195 }
196 
197 int	nprocs = 1;		/* process 0 */
198 
199 int
200 fork1(struct lwp *lp1, int flags, struct proc **procp)
201 {
202 	struct proc *p1 = lp1->lwp_proc;
203 	struct proc *p2, *pptr;
204 	struct pgrp *pgrp;
205 	uid_t uid;
206 	int ok, error;
207 	static int curfail = 0;
208 	static struct timeval lastfail;
209 	struct forklist *ep;
210 	struct filedesc_to_leader *fdtol;
211 
212 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
213 		return (EINVAL);
214 
215 	/*
216 	 * Here we don't create a new process, but we divorce
217 	 * certain parts of a process from itself.
218 	 */
219 	if ((flags & RFPROC) == 0) {
220 
221 		/*
222 		 * This kind of stunt does not work anymore if
223 		 * there are native threads (lwps) running
224 		 */
225 		if (p1->p_nthreads != 1)
226 			return (EINVAL);
227 
228 		vm_fork(p1, 0, flags);
229 
230 		/*
231 		 * Close all file descriptors.
232 		 */
233 		if (flags & RFCFDG) {
234 			struct filedesc *fdtmp;
235 			fdtmp = fdinit(p1);
236 			fdfree(p1);
237 			p1->p_fd = fdtmp;
238 		}
239 
240 		/*
241 		 * Unshare file descriptors (from parent.)
242 		 */
243 		if (flags & RFFDG) {
244 			if (p1->p_fd->fd_refcnt > 1) {
245 				struct filedesc *newfd;
246 				newfd = fdcopy(p1);
247 				fdfree(p1);
248 				p1->p_fd = newfd;
249 			}
250 		}
251 		*procp = NULL;
252 		return (0);
253 	}
254 
255 	/*
256 	 * Interlock against process group signal delivery.  If signals
257 	 * are pending after the interlock is obtained we have to restart
258 	 * the system call to process the signals.  If we don't the child
259 	 * can miss a pgsignal (such as ^C) sent during the fork.
260 	 *
261 	 * We can't use CURSIG() here because it will process any STOPs
262 	 * and cause the process group lock to be held indefinitely.  If
263 	 * a STOP occurs, the fork will be restarted after the CONT.
264 	 */
265 	error = 0;
266 	pgrp = NULL;
267 	if ((flags & RFPGLOCK) && (pgrp = p1->p_pgrp) != NULL) {
268 		lockmgr(&pgrp->pg_lock, LK_SHARED);
269 		if (CURSIGNB(lp1)) {
270 			error = ERESTART;
271 			goto done;
272 		}
273 	}
274 
275 	/*
276 	 * Although process entries are dynamically created, we still keep
277 	 * a global limit on the maximum number we will create.  Don't allow
278 	 * a nonprivileged user to use the last ten processes; don't let root
279 	 * exceed the limit. The variable nprocs is the current number of
280 	 * processes, maxproc is the limit.
281 	 */
282 	uid = p1->p_ucred->cr_ruid;
283 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
284 		if (ppsratecheck(&lastfail, &curfail, 1))
285 			kprintf("maxproc limit exceeded by uid %d, please "
286 			       "see tuning(7) and login.conf(5).\n", uid);
287 		tsleep(&forksleep, 0, "fork", hz / 2);
288 		error = EAGAIN;
289 		goto done;
290 	}
291 	/*
292 	 * Increment the nprocs resource before blocking can occur.  There
293 	 * are hard-limits as to the number of processes that can run.
294 	 */
295 	nprocs++;
296 
297 	/*
298 	 * Increment the count of procs running with this uid. Don't allow
299 	 * a nonprivileged user to exceed their current limit.
300 	 */
301 	ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1,
302 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
303 	if (!ok) {
304 		/*
305 		 * Back out the process count
306 		 */
307 		nprocs--;
308 		if (ppsratecheck(&lastfail, &curfail, 1))
309 			kprintf("maxproc limit exceeded by uid %d, please "
310 			       "see tuning(7) and login.conf(5).\n", uid);
311 		tsleep(&forksleep, 0, "fork", hz / 2);
312 		error = EAGAIN;
313 		goto done;
314 	}
315 
316 	/* Allocate new proc. */
317 	p2 = zalloc(proc_zone);
318 	bzero(p2, sizeof(*p2));
319 
320 	/*
321 	 * Setup linkage for kernel based threading XXX lwp
322 	 */
323 	if (flags & RFTHREAD) {
324 		p2->p_peers = p1->p_peers;
325 		p1->p_peers = p2;
326 		p2->p_leader = p1->p_leader;
327 	} else {
328 		p2->p_leader = p2;
329 	}
330 
331 	LIST_INIT(&p2->p_lwps);
332 
333 	/*
334 	 * Setting the state to SIDL protects the partially initialized
335 	 * process once it starts getting hooked into the rest of the system.
336 	 */
337 	p2->p_stat = SIDL;
338 	proc_add_allproc(p2);
339 
340 	/*
341 	 * Make a proc table entry for the new process.
342 	 * The whole structure was zeroed above, so copy the section that is
343 	 * copied directly from the parent.
344 	 */
345 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
346 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
347 
348 	/*
349 	 * Duplicate sub-structures as needed.
350 	 * Increase reference counts on shared objects.
351 	 */
352 	if (p1->p_flag & P_PROFIL)
353 		startprofclock(p2);
354 	p2->p_ucred = crhold(p1->p_ucred);
355 
356 	if (jailed(p2->p_ucred))
357 		p2->p_flag |= P_JAILED;
358 
359 	if (p2->p_args)
360 		p2->p_args->ar_ref++;
361 
362 	p2->p_usched = p1->p_usched;
363 
364 	if (flags & RFSIGSHARE) {
365 		p2->p_sigacts = p1->p_sigacts;
366 		p2->p_sigacts->ps_refcnt++;
367 	} else {
368 		p2->p_sigacts = (struct sigacts *)kmalloc(sizeof(*p2->p_sigacts),
369 		    M_SUBPROC, M_WAITOK);
370 		bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
371 		p2->p_sigacts->ps_refcnt = 1;
372 	}
373 	if (flags & RFLINUXTHPN)
374 	        p2->p_sigparent = SIGUSR1;
375 	else
376 	        p2->p_sigparent = SIGCHLD;
377 
378 	/* bump references to the text vnode (for procfs) */
379 	p2->p_textvp = p1->p_textvp;
380 	if (p2->p_textvp)
381 		vref(p2->p_textvp);
382 
383 	/*
384 	 * Handle file descriptors
385 	 */
386 	if (flags & RFCFDG) {
387 		p2->p_fd = fdinit(p1);
388 		fdtol = NULL;
389 	} else if (flags & RFFDG) {
390 		p2->p_fd = fdcopy(p1);
391 		fdtol = NULL;
392 	} else {
393 		p2->p_fd = fdshare(p1);
394 		if (p1->p_fdtol == NULL)
395 			p1->p_fdtol =
396 				filedesc_to_leader_alloc(NULL,
397 							 p1->p_leader);
398 		if ((flags & RFTHREAD) != 0) {
399 			/*
400 			 * Shared file descriptor table and
401 			 * shared process leaders.
402 			 */
403 			fdtol = p1->p_fdtol;
404 			fdtol->fdl_refcount++;
405 		} else {
406 			/*
407 			 * Shared file descriptor table, and
408 			 * different process leaders
409 			 */
410 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
411 		}
412 	}
413 	p2->p_fdtol = fdtol;
414 	p2->p_limit = plimit_fork(p1->p_limit);
415 
416 	/*
417 	 * Preserve some more flags in subprocess.  P_PROFIL has already
418 	 * been preserved.
419 	 */
420 	p2->p_flag |= p1->p_flag & P_SUGID;
421 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
422 		p2->p_flag |= P_CONTROLT;
423 	if (flags & RFPPWAIT)
424 		p2->p_flag |= P_PPWAIT;
425 
426 	/*
427 	 * Inherit the virtual kernel structure (allows a virtual kernel
428 	 * to fork to simulate multiple cpus).
429 	 */
430 	if (p1->p_vkernel)
431 		vkernel_inherit(p1, p2);
432 
433 	/*
434 	 * Once we are on a pglist we may receive signals.  XXX we might
435 	 * race a ^C being sent to the process group by not receiving it
436 	 * at all prior to this line.
437 	 */
438 	LIST_INSERT_AFTER(p1, p2, p_pglist);
439 
440 	/*
441 	 * Attach the new process to its parent.
442 	 *
443 	 * If RFNOWAIT is set, the newly created process becomes a child
444 	 * of init.  This effectively disassociates the child from the
445 	 * parent.
446 	 */
447 	if (flags & RFNOWAIT)
448 		pptr = initproc;
449 	else
450 		pptr = p1;
451 	p2->p_pptr = pptr;
452 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
453 	LIST_INIT(&p2->p_children);
454 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
455 	callout_init(&p2->p_ithandle);
456 
457 #ifdef KTRACE
458 	/*
459 	 * Copy traceflag and tracefile if enabled.  If not inherited,
460 	 * these were zeroed above but we still could have a trace race
461 	 * so make sure p2's p_tracenode is NULL.
462 	 */
463 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
464 		p2->p_traceflag = p1->p_traceflag;
465 		p2->p_tracenode = ktrinherit(p1->p_tracenode);
466 	}
467 #endif
468 
469 	/*
470 	 * This begins the section where we must prevent the parent
471 	 * from being swapped.
472 	 *
473 	 * Gets PRELE'd in the caller in start_forked_proc().
474 	 */
475 	PHOLD(p1);
476 
477 	vm_fork(p1, p2, flags);
478 
479 	/*
480 	 * Create the first lwp associated with the new proc.
481 	 * It will return via a different execution path later, directly
482 	 * into userland, after it was put on the runq by
483 	 * start_forked_proc().
484 	 */
485 	lwp_fork(lp1, p2, flags);
486 
487 	if (flags == (RFFDG | RFPROC)) {
488 		mycpu->gd_cnt.v_forks++;
489 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
490 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
491 		mycpu->gd_cnt.v_vforks++;
492 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
493 	} else if (p1 == &proc0) {
494 		mycpu->gd_cnt.v_kthreads++;
495 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
496 	} else {
497 		mycpu->gd_cnt.v_rforks++;
498 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
499 	}
500 
501 	/*
502 	 * Both processes are set up, now check if any loadable modules want
503 	 * to adjust anything.
504 	 *   What if they have an error? XXX
505 	 */
506 	TAILQ_FOREACH(ep, &fork_list, next) {
507 		(*ep->function)(p1, p2, flags);
508 	}
509 
510 	/*
511 	 * Set the start time.  Note that the process is not runnable.  The
512 	 * caller is responsible for making it runnable.
513 	 */
514 	microtime(&p2->p_start);
515 	p2->p_acflag = AFORK;
516 
517 	/*
518 	 * tell any interested parties about the new process
519 	 */
520 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
521 
522 	/*
523 	 * Return child proc pointer to parent.
524 	 */
525 	*procp = p2;
526 done:
527 	if (pgrp)
528 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
529 	return (error);
530 }
531 
532 static struct lwp *
533 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags)
534 {
535 	struct lwp *lp;
536 	struct thread *td;
537 	lwpid_t tid;
538 
539 	/*
540 	 * We need to prevent wrap-around collisions.
541 	 * Until we have a nice tid allocator, we need to
542 	 * start searching for free tids once we wrap around.
543 	 *
544 	 * XXX give me a nicer allocator
545 	 */
546 	if (destproc->p_lasttid + 1 <= 0) {
547 		tid = 0;
548 restart:
549 		FOREACH_LWP_IN_PROC(lp, destproc) {
550 			if (lp->lwp_tid != tid)
551 				continue;
552 			/* tids match, search next. */
553 			tid++;
554 			/*
555 			 * Wait -- the whole tid space is depleted?
556 			 * Impossible.
557 			 */
558 			if (tid <= 0)
559 				panic("lwp_fork: All tids depleted?!");
560 			goto restart;
561 		}
562 		/* When we come here, the tid is not occupied */
563 	} else {
564 		tid = destproc->p_lasttid++;
565 	}
566 
567 	lp = zalloc(lwp_zone);
568 	bzero(lp, sizeof(*lp));
569 	lp->lwp_proc = destproc;
570 	lp->lwp_tid = tid;
571 	LIST_INSERT_HEAD(&destproc->p_lwps, lp, lwp_list);
572 	destproc->p_nthreads++;
573 	lp->lwp_stat = LSRUN;
574 	bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
575 	    (unsigned) ((caddr_t)&lp->lwp_endcopy -
576 			(caddr_t)&lp->lwp_startcopy));
577 	lp->lwp_flag |= origlp->lwp_flag & LWP_ALTSTACK;
578 	/*
579 	 * Set cpbase to the last timeout that occured (not the upcoming
580 	 * timeout).
581 	 *
582 	 * A critical section is required since a timer IPI can update
583 	 * scheduler specific data.
584 	 */
585 	crit_enter();
586 	lp->lwp_cpbase = mycpu->gd_schedclock.time -
587 			mycpu->gd_schedclock.periodic;
588 	destproc->p_usched->heuristic_forking(origlp, lp);
589 	crit_exit();
590 
591 	td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, -1, 0);
592 	lp->lwp_thread = td;
593 	td->td_proc = destproc;
594 	td->td_lwp = lp;
595 	td->td_switch = cpu_heavy_switch;
596 #ifdef SMP
597 	KKASSERT(td->td_mpcount == 1);
598 #endif
599 	lwkt_setpri(td, TDPRI_KERN_USER);
600 	lwkt_set_comm(td, "%s", destproc->p_comm);
601 
602 	/*
603 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
604 	 * and make the child ready to run.
605 	 */
606 	cpu_fork(origlp, lp, flags);
607 	caps_fork(origlp->lwp_thread, lp->lwp_thread);
608 
609 	return (lp);
610 }
611 
612 /*
613  * The next two functionms are general routines to handle adding/deleting
614  * items on the fork callout list.
615  *
616  * at_fork():
617  * Take the arguments given and put them onto the fork callout list,
618  * However first make sure that it's not already there.
619  * Returns 0 on success or a standard error number.
620  */
621 int
622 at_fork(forklist_fn function)
623 {
624 	struct forklist *ep;
625 
626 #ifdef INVARIANTS
627 	/* let the programmer know if he's been stupid */
628 	if (rm_at_fork(function)) {
629 		kprintf("WARNING: fork callout entry (%p) already present\n",
630 		    function);
631 	}
632 #endif
633 	ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
634 	ep->function = function;
635 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
636 	return (0);
637 }
638 
639 /*
640  * Scan the exit callout list for the given item and remove it..
641  * Returns the number of items removed (0 or 1)
642  */
643 int
644 rm_at_fork(forklist_fn function)
645 {
646 	struct forklist *ep;
647 
648 	TAILQ_FOREACH(ep, &fork_list, next) {
649 		if (ep->function == function) {
650 			TAILQ_REMOVE(&fork_list, ep, next);
651 			kfree(ep, M_ATFORK);
652 			return(1);
653 		}
654 	}
655 	return (0);
656 }
657 
658 /*
659  * Add a forked process to the run queue after any remaining setup, such
660  * as setting the fork handler, has been completed.
661  */
662 void
663 start_forked_proc(struct lwp *lp1, struct proc *p2)
664 {
665 	struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
666 
667 	/*
668 	 * Move from SIDL to RUN queue, and activate the process's thread.
669 	 * Activation of the thread effectively makes the process "a"
670 	 * current process, so we do not setrunqueue().
671 	 *
672 	 * YYY setrunqueue works here but we should clean up the trampoline
673 	 * code so we just schedule the LWKT thread and let the trampoline
674 	 * deal with the userland scheduler on return to userland.
675 	 */
676 	KASSERT(p2->p_stat == SIDL,
677 	    ("cannot start forked process, bad status: %p", p2));
678 	p2->p_usched->resetpriority(lp2);
679 	crit_enter();
680 	p2->p_stat = SACTIVE;
681 	lp2->lwp_stat = LSRUN;
682 	p2->p_usched->setrunqueue(lp2);
683 	crit_exit();
684 
685 	/*
686 	 * Now can be swapped.
687 	 */
688 	PRELE(lp1->lwp_proc);
689 
690 	/*
691 	 * Preserve synchronization semantics of vfork.  If waiting for
692 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
693 	 * proc (in case of exit).
694 	 */
695 	while (p2->p_flag & P_PPWAIT)
696 		tsleep(lp1->lwp_proc, 0, "ppwait", 0);
697 }
698