xref: /dragonfly/sys/kern/kern_intr.c (revision 10cbe914)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  * $DragonFly: src/sys/kern/kern_intr.c,v 1.55 2008/09/01 12:49:00 sephe Exp $
28  *
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/sysctl.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/random.h>
39 #include <sys/serialize.h>
40 #include <sys/interrupt.h>
41 #include <sys/bus.h>
42 #include <sys/machintr.h>
43 
44 #include <machine/frame.h>
45 
46 #include <sys/interrupt.h>
47 
48 #include <sys/thread2.h>
49 #include <sys/mplock2.h>
50 
51 struct info_info;
52 
53 typedef struct intrec {
54     struct intrec *next;
55     struct intr_info *info;
56     inthand2_t	*handler;
57     void	*argument;
58     char	*name;
59     int		intr;
60     int		intr_flags;
61     struct lwkt_serialize *serializer;
62 } *intrec_t;
63 
64 struct intr_info {
65 	intrec_t	i_reclist;
66 	struct thread	i_thread;
67 	struct random_softc i_random;
68 	int		i_running;
69 	long		i_count;	/* interrupts dispatched */
70 	int		i_mplock_required;
71 	int		i_fast;
72 	int		i_slow;
73 	int		i_state;
74 	int		i_errorticks;
75 	unsigned long	i_straycount;
76 } intr_info_ary[MAX_INTS];
77 
78 int max_installed_hard_intr;
79 int max_installed_soft_intr;
80 
81 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
82 
83 /*
84  * Assert that callers into interrupt handlers don't return with
85  * dangling tokens, spinlocks, or mp locks.
86  */
87 #ifdef INVARIANTS
88 
89 #define TD_INVARIANTS_DECLARE   \
90         int spincount;          \
91         lwkt_tokref_t curstop
92 
93 #define TD_INVARIANTS_GET(td)                                   \
94         do {                                                    \
95                 spincount = (td)->td_gd->gd_spinlocks_wr;       \
96                 curstop = (td)->td_toks_stop;                   \
97         } while(0)
98 
99 #define TD_INVARIANTS_TEST(td, name)                                    \
100         do {                                                            \
101                 KASSERT(spincount == (td)->td_gd->gd_spinlocks_wr,      \
102                         ("spincount mismatch after interrupt handler %s", \
103                         name));                                         \
104                 KASSERT(curstop == (td)->td_toks_stop,                  \
105                         ("token count mismatch after interrupt handler %s", \
106                         name));                                         \
107         } while(0)
108 
109 #else
110 
111 /* !INVARIANTS */
112 
113 #define TD_INVARIANTS_DECLARE
114 #define TD_INVARIANTS_GET(td)
115 #define TD_INVARIANTS_TEST(td, name)
116 
117 #endif /* ndef INVARIANTS */
118 
119 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
120 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
121 static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
122 static void ithread_handler(void *arg);
123 static void ithread_emergency(void *arg);
124 static void report_stray_interrupt(int intr, struct intr_info *info);
125 static void int_moveto_destcpu(int *, int *, int);
126 static void int_moveto_origcpu(int, int);
127 
128 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
129 
130 static struct systimer emergency_intr_timer;
131 static struct thread emergency_intr_thread;
132 
133 #define ISTATE_NOTHREAD		0
134 #define ISTATE_NORMAL		1
135 #define ISTATE_LIVELOCKED	2
136 
137 static int livelock_limit = 40000;
138 static int livelock_lowater = 20000;
139 static int livelock_debug = -1;
140 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
141         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
142 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
143         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
144 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
145         CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
146 
147 static int emergency_intr_enable = 0;	/* emergency interrupt polling */
148 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
149 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
150         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
151 
152 static int emergency_intr_freq = 10;	/* emergency polling frequency */
153 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
154 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
155         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
156 
157 /*
158  * Sysctl support routines
159  */
160 static int
161 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
162 {
163 	int error, enabled;
164 
165 	enabled = emergency_intr_enable;
166 	error = sysctl_handle_int(oidp, &enabled, 0, req);
167 	if (error || req->newptr == NULL)
168 		return error;
169 	emergency_intr_enable = enabled;
170 	if (emergency_intr_enable) {
171 		systimer_adjust_periodic(&emergency_intr_timer,
172 					 emergency_intr_freq);
173 	} else {
174 		systimer_adjust_periodic(&emergency_intr_timer, 1);
175 	}
176 	return 0;
177 }
178 
179 static int
180 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
181 {
182         int error, phz;
183 
184         phz = emergency_intr_freq;
185         error = sysctl_handle_int(oidp, &phz, 0, req);
186         if (error || req->newptr == NULL)
187                 return error;
188         if (phz <= 0)
189                 return EINVAL;
190         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
191                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
192 
193         emergency_intr_freq = phz;
194 	if (emergency_intr_enable) {
195 		systimer_adjust_periodic(&emergency_intr_timer,
196 					 emergency_intr_freq);
197 	} else {
198 		systimer_adjust_periodic(&emergency_intr_timer, 1);
199 	}
200         return 0;
201 }
202 
203 /*
204  * Register an SWI or INTerrupt handler.
205  */
206 void *
207 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
208 		struct lwkt_serialize *serializer)
209 {
210     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
211 	panic("register_swi: bad intr %d", intr);
212     return(register_int(intr, handler, arg, name, serializer, 0));
213 }
214 
215 void *
216 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name,
217 		struct lwkt_serialize *serializer)
218 {
219     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
220 	panic("register_swi: bad intr %d", intr);
221     return(register_int(intr, handler, arg, name, serializer, INTR_MPSAFE));
222 }
223 
224 void *
225 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
226 		struct lwkt_serialize *serializer, int intr_flags)
227 {
228     struct intr_info *info;
229     struct intrec **list;
230     intrec_t rec;
231     int orig_cpuid, cpuid;
232 
233     if (intr < 0 || intr >= MAX_INTS)
234 	panic("register_int: bad intr %d", intr);
235     if (name == NULL)
236 	name = "???";
237     info = &intr_info_ary[intr];
238 
239     /*
240      * Construct an interrupt handler record
241      */
242     rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
243     rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
244     strcpy(rec->name, name);
245 
246     rec->info = info;
247     rec->handler = handler;
248     rec->argument = arg;
249     rec->intr = intr;
250     rec->intr_flags = intr_flags;
251     rec->next = NULL;
252     rec->serializer = serializer;
253 
254     /*
255      * Create an emergency polling thread and set up a systimer to wake
256      * it up.
257      */
258     if (emergency_intr_thread.td_kstack == NULL) {
259 	lwkt_create(ithread_emergency, NULL, NULL, &emergency_intr_thread,
260 		    TDF_STOPREQ | TDF_INTTHREAD, -1, "ithread emerg");
261 	systimer_init_periodic_nq(&emergency_intr_timer,
262 		    emergency_intr_timer_callback, &emergency_intr_thread,
263 		    (emergency_intr_enable ? emergency_intr_freq : 1));
264     }
265 
266     int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
267 
268     /*
269      * Create an interrupt thread if necessary, leave it in an unscheduled
270      * state.
271      */
272     if (info->i_state == ISTATE_NOTHREAD) {
273 	info->i_state = ISTATE_NORMAL;
274 	lwkt_create(ithread_handler, (void *)(intptr_t)intr, NULL,
275 		    &info->i_thread, TDF_STOPREQ | TDF_INTTHREAD, -1,
276 		    "ithread %d", intr);
277 	if (intr >= FIRST_SOFTINT)
278 	    lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
279 	else
280 	    lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
281 	info->i_thread.td_preemptable = lwkt_preempt;
282     }
283 
284     list = &info->i_reclist;
285 
286     /*
287      * Keep track of how many fast and slow interrupts we have.
288      * Set i_mplock_required if any handler in the chain requires
289      * the MP lock to operate.
290      */
291     if ((intr_flags & INTR_MPSAFE) == 0)
292 	info->i_mplock_required = 1;
293     if (intr_flags & INTR_CLOCK)
294 	++info->i_fast;
295     else
296 	++info->i_slow;
297 
298     /*
299      * Enable random number generation keying off of this interrupt.
300      */
301     if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
302 	info->i_random.sc_enabled = 1;
303 	info->i_random.sc_intr = intr;
304     }
305 
306     /*
307      * Add the record to the interrupt list.
308      */
309     crit_enter();
310     while (*list != NULL)
311 	list = &(*list)->next;
312     *list = rec;
313     crit_exit();
314 
315     /*
316      * Update max_installed_hard_intr to make the emergency intr poll
317      * a bit more efficient.
318      */
319     if (intr < FIRST_SOFTINT) {
320 	if (max_installed_hard_intr <= intr)
321 	    max_installed_hard_intr = intr + 1;
322     } else {
323 	if (max_installed_soft_intr <= intr)
324 	    max_installed_soft_intr = intr + 1;
325     }
326 
327     /*
328      * Setup the machine level interrupt vector
329      *
330      * XXX temporary workaround for some ACPI brokedness.  ACPI installs
331      * its interrupt too early, before the IOAPICs have been configured,
332      * which means the IOAPIC is not enabled by the registration of the
333      * ACPI interrupt.  Anything else sharing that IRQ will wind up not
334      * being enabled.  Temporarily work around the problem by always
335      * installing and enabling on every new interrupt handler, even
336      * if one has already been setup on that irq.
337      */
338     if (intr < FIRST_SOFTINT /* && info->i_slow + info->i_fast == 1*/) {
339 	if (machintr_vector_setup(intr, intr_flags))
340 	    kprintf("machintr_vector_setup: failed on irq %d\n", intr);
341     }
342 
343     int_moveto_origcpu(orig_cpuid, cpuid);
344 
345     return(rec);
346 }
347 
348 void
349 unregister_swi(void *id)
350 {
351     unregister_int(id);
352 }
353 
354 void
355 unregister_int(void *id)
356 {
357     struct intr_info *info;
358     struct intrec **list;
359     intrec_t rec;
360     int intr, orig_cpuid, cpuid;
361 
362     intr = ((intrec_t)id)->intr;
363 
364     if (intr < 0 || intr >= MAX_INTS)
365 	panic("register_int: bad intr %d", intr);
366 
367     info = &intr_info_ary[intr];
368 
369     int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
370 
371     /*
372      * Remove the interrupt descriptor, adjust the descriptor count,
373      * and teardown the machine level vector if this was the last interrupt.
374      */
375     crit_enter();
376     list = &info->i_reclist;
377     while ((rec = *list) != NULL) {
378 	if (rec == id)
379 	    break;
380 	list = &rec->next;
381     }
382     if (rec) {
383 	intrec_t rec0;
384 
385 	*list = rec->next;
386 	if (rec->intr_flags & INTR_CLOCK)
387 	    --info->i_fast;
388 	else
389 	    --info->i_slow;
390 	if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
391 	    machintr_vector_teardown(intr);
392 
393 	/*
394 	 * Clear i_mplock_required if no handlers in the chain require the
395 	 * MP lock.
396 	 */
397 	for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
398 	    if ((rec0->intr_flags & INTR_MPSAFE) == 0)
399 		break;
400 	}
401 	if (rec0 == NULL)
402 	    info->i_mplock_required = 0;
403     }
404 
405     crit_exit();
406 
407     int_moveto_origcpu(orig_cpuid, cpuid);
408 
409     /*
410      * Free the record.
411      */
412     if (rec != NULL) {
413 	kfree(rec->name, M_DEVBUF);
414 	kfree(rec, M_DEVBUF);
415     } else {
416 	kprintf("warning: unregister_int: int %d handler for %s not found\n",
417 		intr, ((intrec_t)id)->name);
418     }
419 }
420 
421 const char *
422 get_registered_name(int intr)
423 {
424     intrec_t rec;
425 
426     if (intr < 0 || intr >= MAX_INTS)
427 	panic("register_int: bad intr %d", intr);
428 
429     if ((rec = intr_info_ary[intr].i_reclist) == NULL)
430 	return(NULL);
431     else if (rec->next)
432 	return("mux");
433     else
434 	return(rec->name);
435 }
436 
437 int
438 count_registered_ints(int intr)
439 {
440     struct intr_info *info;
441 
442     if (intr < 0 || intr >= MAX_INTS)
443 	panic("register_int: bad intr %d", intr);
444     info = &intr_info_ary[intr];
445     return(info->i_fast + info->i_slow);
446 }
447 
448 long
449 get_interrupt_counter(int intr)
450 {
451     struct intr_info *info;
452 
453     if (intr < 0 || intr >= MAX_INTS)
454 	panic("register_int: bad intr %d", intr);
455     info = &intr_info_ary[intr];
456     return(info->i_count);
457 }
458 
459 
460 void
461 swi_setpriority(int intr, int pri)
462 {
463     struct intr_info *info;
464 
465     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
466 	panic("register_swi: bad intr %d", intr);
467     info = &intr_info_ary[intr];
468     if (info->i_state != ISTATE_NOTHREAD)
469 	lwkt_setpri(&info->i_thread, pri);
470 }
471 
472 void
473 register_randintr(int intr)
474 {
475     struct intr_info *info;
476 
477     if (intr < 0 || intr >= MAX_INTS)
478 	panic("register_randintr: bad intr %d", intr);
479     info = &intr_info_ary[intr];
480     info->i_random.sc_intr = intr;
481     info->i_random.sc_enabled = 1;
482 }
483 
484 void
485 unregister_randintr(int intr)
486 {
487     struct intr_info *info;
488 
489     if (intr < 0 || intr >= MAX_INTS)
490 	panic("register_swi: bad intr %d", intr);
491     info = &intr_info_ary[intr];
492     info->i_random.sc_enabled = -1;
493 }
494 
495 int
496 next_registered_randintr(int intr)
497 {
498     struct intr_info *info;
499 
500     if (intr < 0 || intr >= MAX_INTS)
501 	panic("register_swi: bad intr %d", intr);
502     while (intr < MAX_INTS) {
503 	info = &intr_info_ary[intr];
504 	if (info->i_random.sc_enabled > 0)
505 	    break;
506 	++intr;
507     }
508     return(intr);
509 }
510 
511 /*
512  * Dispatch an interrupt.  If there's nothing to do we have a stray
513  * interrupt and can just return, leaving the interrupt masked.
514  *
515  * We need to schedule the interrupt and set its i_running bit.  If
516  * we are not on the interrupt thread's cpu we have to send a message
517  * to the correct cpu that will issue the desired action (interlocking
518  * with the interrupt thread's critical section).  We do NOT attempt to
519  * reschedule interrupts whos i_running bit is already set because
520  * this would prematurely wakeup a livelock-limited interrupt thread.
521  *
522  * i_running is only tested/set on the same cpu as the interrupt thread.
523  *
524  * We are NOT in a critical section, which will allow the scheduled
525  * interrupt to preempt us.  The MP lock might *NOT* be held here.
526  */
527 #ifdef SMP
528 
529 static void
530 sched_ithd_remote(void *arg)
531 {
532     sched_ithd((int)(intptr_t)arg);
533 }
534 
535 #endif
536 
537 void
538 sched_ithd(int intr)
539 {
540     struct intr_info *info;
541 
542     info = &intr_info_ary[intr];
543 
544     ++info->i_count;
545     if (info->i_state != ISTATE_NOTHREAD) {
546 	if (info->i_reclist == NULL) {
547 	    report_stray_interrupt(intr, info);
548 	} else {
549 #ifdef SMP
550 	    if (info->i_thread.td_gd == mycpu) {
551 		if (info->i_running == 0) {
552 		    info->i_running = 1;
553 		    if (info->i_state != ISTATE_LIVELOCKED)
554 			lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
555 		}
556 	    } else {
557 		lwkt_send_ipiq(info->i_thread.td_gd,
558 				sched_ithd_remote, (void *)(intptr_t)intr);
559 	    }
560 #else
561 	    if (info->i_running == 0) {
562 		info->i_running = 1;
563 		if (info->i_state != ISTATE_LIVELOCKED)
564 		    lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
565 	    }
566 #endif
567 	}
568     } else {
569 	report_stray_interrupt(intr, info);
570     }
571 }
572 
573 static void
574 report_stray_interrupt(int intr, struct intr_info *info)
575 {
576 	++info->i_straycount;
577 	if (info->i_straycount < 10) {
578 		if (info->i_errorticks == ticks)
579 			return;
580 		info->i_errorticks = ticks;
581 		kprintf("sched_ithd: stray interrupt %d on cpu %d\n",
582 			intr, mycpuid);
583 	} else if (info->i_straycount == 10) {
584 		kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - "
585 			"there will be no further reports\n",
586 			info->i_straycount, intr, mycpuid);
587 	}
588 }
589 
590 /*
591  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
592  * might not be held).
593  */
594 static void
595 ithread_livelock_wakeup(systimer_t st)
596 {
597     struct intr_info *info;
598 
599     info = &intr_info_ary[(int)(intptr_t)st->data];
600     if (info->i_state != ISTATE_NOTHREAD)
601 	lwkt_schedule(&info->i_thread);
602 }
603 
604 /*
605  * Schedule ithread within fast intr handler
606  *
607  * XXX Protect sched_ithd() call with gd_intr_nesting_level?
608  * Interrupts aren't enabled, but still...
609  */
610 static __inline void
611 ithread_fast_sched(int intr, thread_t td)
612 {
613     ++td->td_nest_count;
614 
615     /*
616      * We are already in critical section, exit it now to
617      * allow preemption.
618      */
619     crit_exit_quick(td);
620     sched_ithd(intr);
621     crit_enter_quick(td);
622 
623     --td->td_nest_count;
624 }
625 
626 /*
627  * This function is called directly from the ICU or APIC vector code assembly
628  * to process an interrupt.  The critical section and interrupt deferral
629  * checks have already been done but the function is entered WITHOUT
630  * a critical section held.  The BGL may or may not be held.
631  *
632  * Must return non-zero if we do not want the vector code to re-enable
633  * the interrupt (which we don't if we have to schedule the interrupt)
634  */
635 int ithread_fast_handler(struct intrframe *frame);
636 
637 int
638 ithread_fast_handler(struct intrframe *frame)
639 {
640     int intr;
641     struct intr_info *info;
642     struct intrec **list;
643     int must_schedule;
644 #ifdef SMP
645     int got_mplock;
646 #endif
647     TD_INVARIANTS_DECLARE;
648     intrec_t rec, nrec;
649     globaldata_t gd;
650     thread_t td;
651 
652     intr = frame->if_vec;
653     gd = mycpu;
654     td = curthread;
655 
656     /* We must be in critical section. */
657     KKASSERT(td->td_critcount);
658 
659     info = &intr_info_ary[intr];
660 
661     /*
662      * If we are not processing any FAST interrupts, just schedule the thing.
663      */
664     if (info->i_fast == 0) {
665     	++gd->gd_cnt.v_intr;
666 	ithread_fast_sched(intr, td);
667 	return(1);
668     }
669 
670     /*
671      * This should not normally occur since interrupts ought to be
672      * masked if the ithread has been scheduled or is running.
673      */
674     if (info->i_running)
675 	return(1);
676 
677     /*
678      * Bump the interrupt nesting level to process any FAST interrupts.
679      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
680      * schedule the interrupt thread to deal with the issue instead.
681      *
682      * To reduce overhead, just leave the MP lock held once it has been
683      * obtained.
684      */
685     ++gd->gd_intr_nesting_level;
686     ++gd->gd_cnt.v_intr;
687     must_schedule = info->i_slow;
688 #ifdef SMP
689     got_mplock = 0;
690 #endif
691 
692     TD_INVARIANTS_GET(td);
693     list = &info->i_reclist;
694 
695     for (rec = *list; rec; rec = nrec) {
696 	/* rec may be invalid after call */
697 	nrec = rec->next;
698 
699 	if (rec->intr_flags & INTR_CLOCK) {
700 #ifdef SMP
701 	    if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
702 		if (try_mplock() == 0) {
703 		    /* Couldn't get the MP lock; just schedule it. */
704 		    must_schedule = 1;
705 		    break;
706 		}
707 		got_mplock = 1;
708 	    }
709 #endif
710 	    if (rec->serializer) {
711 		must_schedule += lwkt_serialize_handler_try(
712 					rec->serializer, rec->handler,
713 					rec->argument, frame);
714 	    } else {
715 		rec->handler(rec->argument, frame);
716 	    }
717 	    TD_INVARIANTS_TEST(td, rec->name);
718 	}
719     }
720 
721     /*
722      * Cleanup
723      */
724     --gd->gd_intr_nesting_level;
725 #ifdef SMP
726     if (got_mplock)
727 	rel_mplock();
728 #endif
729 
730     /*
731      * If we had a problem, or mixed fast and slow interrupt handlers are
732      * registered, schedule the ithread to catch the missed records (it
733      * will just re-run all of them).  A return value of 0 indicates that
734      * all handlers have been run and the interrupt can be re-enabled, and
735      * a non-zero return indicates that the interrupt thread controls
736      * re-enablement.
737      */
738     if (must_schedule > 0)
739 	ithread_fast_sched(intr, td);
740     else if (must_schedule == 0)
741 	++info->i_count;
742     return(must_schedule);
743 }
744 
745 /*
746  * Interrupt threads run this as their main loop.
747  *
748  * The handler begins execution outside a critical section and no MP lock.
749  *
750  * The i_running state starts at 0.  When an interrupt occurs, the hardware
751  * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
752  * until all routines have run.  We then call ithread_done() to reenable
753  * the HW interrupt and deschedule us until the next interrupt.
754  *
755  * We are responsible for atomically checking i_running and ithread_done()
756  * is responsible for atomically checking for platform-specific delayed
757  * interrupts.  i_running for our irq is only set in the context of our cpu,
758  * so a critical section is a sufficient interlock.
759  */
760 #define LIVELOCK_TIMEFRAME(freq)	((freq) >> 2)	/* 1/4 second */
761 
762 static void
763 ithread_handler(void *arg)
764 {
765     struct intr_info *info;
766     int use_limit;
767     __uint32_t lseconds;
768     int intr;
769     int mpheld;
770     struct intrec **list;
771     intrec_t rec, nrec;
772     globaldata_t gd;
773     struct systimer ill_timer;	/* enforced freq. timer */
774     u_int ill_count;		/* interrupt livelock counter */
775     TD_INVARIANTS_DECLARE;
776 
777     ill_count = 0;
778     intr = (int)(intptr_t)arg;
779     info = &intr_info_ary[intr];
780     list = &info->i_reclist;
781 
782     /*
783      * The loop must be entered with one critical section held.  The thread
784      * does not hold the mplock on startup.
785      */
786     gd = mycpu;
787     lseconds = gd->gd_time_seconds;
788     crit_enter_gd(gd);
789     mpheld = 0;
790 
791     for (;;) {
792 	/*
793 	 * The chain is only considered MPSAFE if all its interrupt handlers
794 	 * are MPSAFE.  However, if intr_mpsafe has been turned off we
795 	 * always operate with the BGL.
796 	 */
797 #ifdef SMP
798 	if (info->i_mplock_required != mpheld) {
799 	    if (info->i_mplock_required) {
800 		KKASSERT(mpheld == 0);
801 		get_mplock();
802 		mpheld = 1;
803 	    } else {
804 		KKASSERT(mpheld != 0);
805 		rel_mplock();
806 		mpheld = 0;
807 	    }
808 	}
809 #endif
810 
811 	TD_INVARIANTS_GET(gd->gd_curthread);
812 
813 	/*
814 	 * If an interrupt is pending, clear i_running and execute the
815 	 * handlers.  Note that certain types of interrupts can re-trigger
816 	 * and set i_running again.
817 	 *
818 	 * Each handler is run in a critical section.  Note that we run both
819 	 * FAST and SLOW designated service routines.
820 	 */
821 	if (info->i_running) {
822 	    ++ill_count;
823 	    info->i_running = 0;
824 
825 	    if (*list == NULL)
826 		report_stray_interrupt(intr, info);
827 
828 	    for (rec = *list; rec; rec = nrec) {
829 		/* rec may be invalid after call */
830 		nrec = rec->next;
831 		if (rec->serializer) {
832 		    lwkt_serialize_handler_call(rec->serializer, rec->handler,
833 						rec->argument, NULL);
834 		} else {
835 		    rec->handler(rec->argument, NULL);
836 		}
837 		TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
838 	    }
839 	}
840 
841 	/*
842 	 * This is our interrupt hook to add rate randomness to the random
843 	 * number generator.
844 	 */
845 	if (info->i_random.sc_enabled > 0)
846 	    add_interrupt_randomness(intr);
847 
848 	/*
849 	 * Unmask the interrupt to allow it to trigger again.  This only
850 	 * applies to certain types of interrupts (typ level interrupts).
851 	 * This can result in the interrupt retriggering, but the retrigger
852 	 * will not be processed until we cycle our critical section.
853 	 *
854 	 * Only unmask interrupts while handlers are installed.  It is
855 	 * possible to hit a situation where no handlers are installed
856 	 * due to a device driver livelocking and then tearing down its
857 	 * interrupt on close (the parallel bus being a good example).
858 	 */
859 	if (*list)
860 	    machintr_intren(intr);
861 
862 	/*
863 	 * Do a quick exit/enter to catch any higher-priority interrupt
864 	 * sources, such as the statclock, so thread time accounting
865 	 * will still work.  This may also cause an interrupt to re-trigger.
866 	 */
867 	crit_exit_gd(gd);
868 	crit_enter_gd(gd);
869 
870 	/*
871 	 * LIVELOCK STATE MACHINE
872 	 */
873 	switch(info->i_state) {
874 	case ISTATE_NORMAL:
875 	    /*
876 	     * Reset the count each second.
877 	     */
878 	    if (lseconds != gd->gd_time_seconds) {
879 		lseconds = gd->gd_time_seconds;
880 		ill_count = 0;
881 	    }
882 
883 	    /*
884 	     * If we did not exceed the frequency limit, we are done.
885 	     * If the interrupt has not retriggered we deschedule ourselves.
886 	     */
887 	    if (ill_count <= livelock_limit) {
888 		if (info->i_running == 0) {
889 		    lwkt_deschedule_self(gd->gd_curthread);
890 		    lwkt_switch();
891 		}
892 		break;
893 	    }
894 
895 	    /*
896 	     * Otherwise we are livelocked.  Set up a periodic systimer
897 	     * to wake the thread up at the limit frequency.
898 	     */
899 	    kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n",
900 		   intr, ill_count, livelock_limit);
901 	    info->i_state = ISTATE_LIVELOCKED;
902 	    if ((use_limit = livelock_limit) < 100)
903 		use_limit = 100;
904 	    else if (use_limit > 500000)
905 		use_limit = 500000;
906 	    systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
907 				      (void *)(intptr_t)intr, use_limit);
908 	    /* fall through */
909 	case ISTATE_LIVELOCKED:
910 	    /*
911 	     * Wait for our periodic timer to go off.  Since the interrupt
912 	     * has re-armed it can still set i_running, but it will not
913 	     * reschedule us while we are in a livelocked state.
914 	     */
915 	    lwkt_deschedule_self(gd->gd_curthread);
916 	    lwkt_switch();
917 
918 	    /*
919 	     * Check once a second to see if the livelock condition no
920 	     * longer applies.
921 	     */
922 	    if (lseconds != gd->gd_time_seconds) {
923 		lseconds = gd->gd_time_seconds;
924 		if (ill_count < livelock_lowater) {
925 		    info->i_state = ISTATE_NORMAL;
926 		    systimer_del(&ill_timer);
927 		    kprintf("intr %d at %d/%d hz, livelock removed\n",
928 			   intr, ill_count, livelock_lowater);
929 		} else if (livelock_debug == intr ||
930 			   (bootverbose && cold)) {
931 		    kprintf("intr %d at %d/%d hz, in livelock\n",
932 			   intr, ill_count, livelock_lowater);
933 		}
934 		ill_count = 0;
935 	    }
936 	    break;
937 	}
938     }
939     /* not reached */
940 }
941 
942 /*
943  * Emergency interrupt polling thread.  The thread begins execution
944  * outside a critical section with the BGL held.
945  *
946  * If emergency interrupt polling is enabled, this thread will
947  * execute all system interrupts not marked INTR_NOPOLL at the
948  * specified polling frequency.
949  *
950  * WARNING!  This thread runs *ALL* interrupt service routines that
951  * are not marked INTR_NOPOLL, which basically means everything except
952  * the 8254 clock interrupt and the ATA interrupt.  It has very high
953  * overhead and should only be used in situations where the machine
954  * cannot otherwise be made to work.  Due to the severe performance
955  * degredation, it should not be enabled on production machines.
956  */
957 static void
958 ithread_emergency(void *arg __unused)
959 {
960     struct intr_info *info;
961     intrec_t rec, nrec;
962     int intr;
963     thread_t td __debugvar = curthread;
964     TD_INVARIANTS_DECLARE;
965 
966     get_mplock();
967     TD_INVARIANTS_GET(td);
968 
969     for (;;) {
970 	for (intr = 0; intr < max_installed_hard_intr; ++intr) {
971 	    info = &intr_info_ary[intr];
972 	    for (rec = info->i_reclist; rec; rec = nrec) {
973 		/* rec may be invalid after call */
974 		nrec = rec->next;
975 		if ((rec->intr_flags & INTR_NOPOLL) == 0) {
976 		    if (rec->serializer) {
977 			lwkt_serialize_handler_try(rec->serializer,
978 						rec->handler, rec->argument, NULL);
979 		    } else {
980 			rec->handler(rec->argument, NULL);
981 		    }
982 		    TD_INVARIANTS_TEST(td, rec->name);
983 		}
984 	    }
985 	}
986 	lwkt_deschedule_self(curthread);
987 	lwkt_switch();
988     }
989 }
990 
991 /*
992  * Systimer callback - schedule the emergency interrupt poll thread
993  * 		       if emergency polling is enabled.
994  */
995 static
996 void
997 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
998 {
999     if (emergency_intr_enable)
1000 	lwkt_schedule(info->data);
1001 }
1002 
1003 int
1004 ithread_cpuid(int intr)
1005 {
1006 	const struct intr_info *info;
1007 
1008 	KKASSERT(intr >= 0 && intr < MAX_INTS);
1009 	info = &intr_info_ary[intr];
1010 
1011 	if (info->i_state == ISTATE_NOTHREAD)
1012 		return -1;
1013 	return info->i_thread.td_gd->gd_cpuid;
1014 }
1015 
1016 /*
1017  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1018  * The data for this machine dependent, and the declarations are in machine
1019  * dependent code.  The layout of intrnames and intrcnt however is machine
1020  * independent.
1021  *
1022  * We do not know the length of intrcnt and intrnames at compile time, so
1023  * calculate things at run time.
1024  */
1025 
1026 static int
1027 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1028 {
1029     struct intr_info *info;
1030     intrec_t rec;
1031     int error = 0;
1032     int len;
1033     int intr;
1034     char buf[64];
1035 
1036     for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
1037 	info = &intr_info_ary[intr];
1038 
1039 	len = 0;
1040 	buf[0] = 0;
1041 	for (rec = info->i_reclist; rec; rec = rec->next) {
1042 	    ksnprintf(buf + len, sizeof(buf) - len, "%s%s",
1043 		(len ? "/" : ""), rec->name);
1044 	    len += strlen(buf + len);
1045 	}
1046 	if (len == 0) {
1047 	    ksnprintf(buf, sizeof(buf), "irq%d", intr);
1048 	    len = strlen(buf);
1049 	}
1050 	error = SYSCTL_OUT(req, buf, len + 1);
1051     }
1052     return (error);
1053 }
1054 
1055 
1056 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1057 	NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1058 
1059 static int
1060 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1061 {
1062     struct intr_info *info;
1063     int error = 0;
1064     int intr;
1065 
1066     for (intr = 0; intr < max_installed_hard_intr; ++intr) {
1067 	info = &intr_info_ary[intr];
1068 
1069 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1070 	if (error)
1071 		goto failed;
1072     }
1073     for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
1074 	info = &intr_info_ary[intr];
1075 
1076 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1077 	if (error)
1078 		goto failed;
1079     }
1080 failed:
1081     return(error);
1082 }
1083 
1084 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1085 	NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1086 
1087 static void
1088 int_moveto_destcpu(int *orig_cpuid0, int *cpuid0, int intr)
1089 {
1090     int orig_cpuid = mycpuid, cpuid;
1091     char envpath[32];
1092 
1093     cpuid = orig_cpuid;
1094     ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr);
1095     kgetenv_int(envpath, &cpuid);
1096     if (cpuid >= ncpus)
1097 	cpuid = orig_cpuid;
1098 
1099     if (cpuid != orig_cpuid)
1100 	lwkt_migratecpu(cpuid);
1101 
1102     *orig_cpuid0 = orig_cpuid;
1103     *cpuid0 = cpuid;
1104 }
1105 
1106 static void
1107 int_moveto_origcpu(int orig_cpuid, int cpuid)
1108 {
1109     if (cpuid != orig_cpuid)
1110 	lwkt_migratecpu(orig_cpuid);
1111 }
1112