xref: /dragonfly/sys/kern/kern_intr.c (revision 49781055)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  * $DragonFly: src/sys/kern/kern_intr.c,v 1.41 2006/01/25 19:56:21 dillon Exp $
28  *
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/sysctl.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/thread2.h>
39 #include <sys/random.h>
40 #include <sys/serialize.h>
41 #include <sys/bus.h>
42 #include <sys/machintr.h>
43 
44 #include <machine/ipl.h>
45 #include <machine/frame.h>
46 
47 #include <sys/interrupt.h>
48 
49 struct info_info;
50 
51 typedef struct intrec {
52     struct intrec *next;
53     struct intr_info *info;
54     inthand2_t	*handler;
55     void	*argument;
56     char	*name;
57     int		intr;
58     int		intr_flags;
59     struct lwkt_serialize *serializer;
60 } *intrec_t;
61 
62 struct intr_info {
63 	intrec_t	i_reclist;
64 	struct thread	i_thread;
65 	struct random_softc i_random;
66 	int		i_running;
67 	long		i_count;	/* interrupts dispatched */
68 	int		i_mplock_required;
69 	int		i_fast;
70 	int		i_slow;
71 	int		i_state;
72 } intr_info_ary[MAX_INTS];
73 
74 int max_installed_hard_intr;
75 int max_installed_soft_intr;
76 
77 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
78 
79 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
80 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
81 static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
82 static void ithread_handler(void *arg);
83 static void ithread_emergency(void *arg);
84 
85 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
86 
87 static struct systimer emergency_intr_timer;
88 static struct thread emergency_intr_thread;
89 
90 #define ISTATE_NOTHREAD		0
91 #define ISTATE_NORMAL		1
92 #define ISTATE_LIVELOCKED	2
93 
94 #ifdef SMP
95 static int intr_mpsafe = 0;
96 TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe);
97 SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe,
98         CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL");
99 #endif
100 static int livelock_limit = 50000;
101 static int livelock_lowater = 20000;
102 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
103         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
104 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
105         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
106 
107 static int emergency_intr_enable = 0;	/* emergency interrupt polling */
108 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
109 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
110         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
111 
112 static int emergency_intr_freq = 10;	/* emergency polling frequency */
113 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
114 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
115         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
116 
117 /*
118  * Sysctl support routines
119  */
120 static int
121 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
122 {
123 	int error, enabled;
124 
125 	enabled = emergency_intr_enable;
126 	error = sysctl_handle_int(oidp, &enabled, 0, req);
127 	if (error || req->newptr == NULL)
128 		return error;
129 	emergency_intr_enable = enabled;
130 	if (emergency_intr_enable) {
131 		emergency_intr_timer.periodic =
132 			sys_cputimer->fromhz(emergency_intr_freq);
133 	} else {
134 		emergency_intr_timer.periodic = sys_cputimer->fromhz(1);
135 	}
136 	return 0;
137 }
138 
139 static int
140 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
141 {
142         int error, phz;
143 
144         phz = emergency_intr_freq;
145         error = sysctl_handle_int(oidp, &phz, 0, req);
146         if (error || req->newptr == NULL)
147                 return error;
148         if (phz <= 0)
149                 return EINVAL;
150         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
151                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
152 
153         emergency_intr_freq = phz;
154 	if (emergency_intr_enable) {
155 		emergency_intr_timer.periodic =
156 			sys_cputimer->fromhz(emergency_intr_freq);
157 	} else {
158 		emergency_intr_timer.periodic = sys_cputimer->fromhz(1);
159 	}
160         return 0;
161 }
162 
163 /*
164  * Register an SWI or INTerrupt handler.
165  */
166 void *
167 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
168 		struct lwkt_serialize *serializer)
169 {
170     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
171 	panic("register_swi: bad intr %d", intr);
172     return(register_int(intr, handler, arg, name, serializer, 0));
173 }
174 
175 void *
176 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
177 		struct lwkt_serialize *serializer, int intr_flags)
178 {
179     struct intr_info *info;
180     struct intrec **list;
181     intrec_t rec;
182 
183     if (intr < 0 || intr >= MAX_INTS)
184 	panic("register_int: bad intr %d", intr);
185     if (name == NULL)
186 	name = "???";
187     info = &intr_info_ary[intr];
188 
189     /*
190      * Construct an interrupt handler record
191      */
192     rec = malloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
193     rec->name = malloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
194     strcpy(rec->name, name);
195 
196     rec->info = info;
197     rec->handler = handler;
198     rec->argument = arg;
199     rec->intr = intr;
200     rec->intr_flags = intr_flags;
201     rec->next = NULL;
202     rec->serializer = serializer;
203 
204     /*
205      * Create an emergency polling thread and set up a systimer to wake
206      * it up.
207      */
208     if (emergency_intr_thread.td_kstack == NULL) {
209 	lwkt_create(ithread_emergency, NULL, NULL,
210 		    &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1,
211 		    "ithread emerg");
212 	systimer_init_periodic_nq(&emergency_intr_timer,
213 		    emergency_intr_timer_callback, &emergency_intr_thread,
214 		    (emergency_intr_enable ? emergency_intr_freq : 1));
215     }
216 
217     /*
218      * Create an interrupt thread if necessary, leave it in an unscheduled
219      * state.
220      */
221     if (info->i_state == ISTATE_NOTHREAD) {
222 	info->i_state = ISTATE_NORMAL;
223 	lwkt_create((void *)ithread_handler, (void *)intr, NULL,
224 	    &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1,
225 	    "ithread %d", intr);
226 	if (intr >= FIRST_SOFTINT)
227 	    lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
228 	else
229 	    lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
230 	info->i_thread.td_preemptable = lwkt_preempt;
231     }
232 
233     list = &info->i_reclist;
234 
235     /*
236      * Keep track of how many fast and slow interrupts we have.
237      * Set i_mplock_required if any handler in the chain requires
238      * the MP lock to operate.
239      */
240     if ((intr_flags & INTR_MPSAFE) == 0)
241 	info->i_mplock_required = 1;
242     if (intr_flags & INTR_FAST)
243 	++info->i_fast;
244     else
245 	++info->i_slow;
246 
247     /*
248      * Enable random number generation keying off of this interrupt.
249      */
250     if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
251 	info->i_random.sc_enabled = 1;
252 	info->i_random.sc_intr = intr;
253     }
254 
255     /*
256      * Add the record to the interrupt list.
257      */
258     crit_enter();
259     while (*list != NULL)
260 	list = &(*list)->next;
261     *list = rec;
262     crit_exit();
263 
264     /*
265      * Update max_installed_hard_intr to make the emergency intr poll
266      * a bit more efficient.
267      */
268     if (intr < FIRST_SOFTINT) {
269 	if (max_installed_hard_intr <= intr)
270 	    max_installed_hard_intr = intr + 1;
271     } else {
272 	if (max_installed_soft_intr <= intr)
273 	    max_installed_soft_intr = intr + 1;
274     }
275 
276     /*
277      * Setup the machine level interrupt vector
278      *
279      * XXX temporary workaround for some ACPI brokedness.  ACPI installs
280      * its interrupt too early, before the IOAPICs have been configured,
281      * which means the IOAPIC is not enabled by the registration of the
282      * ACPI interrupt.  Anything else sharing that IRQ will wind up not
283      * being enabled.  Temporarily work around the problem by always
284      * installing and enabling on every new interrupt handler, even
285      * if one has already been setup on that irq.
286      */
287     if (intr < FIRST_SOFTINT /* && info->i_slow + info->i_fast == 1*/) {
288 	if (machintr_vector_setup(intr, intr_flags))
289 	    printf("machintr_vector_setup: failed on irq %d\n", intr);
290     }
291 
292     return(rec);
293 }
294 
295 void
296 unregister_swi(void *id)
297 {
298     unregister_int(id);
299 }
300 
301 void
302 unregister_int(void *id)
303 {
304     struct intr_info *info;
305     struct intrec **list;
306     intrec_t rec;
307     int intr;
308 
309     intr = ((intrec_t)id)->intr;
310 
311     if (intr < 0 || intr >= MAX_INTS)
312 	panic("register_int: bad intr %d", intr);
313 
314     info = &intr_info_ary[intr];
315 
316     /*
317      * Remove the interrupt descriptor, adjust the descriptor count,
318      * and teardown the machine level vector if this was the last interrupt.
319      */
320     crit_enter();
321     list = &info->i_reclist;
322     while ((rec = *list) != NULL) {
323 	if (rec == id)
324 	    break;
325 	list = &rec->next;
326     }
327     if (rec) {
328 	intrec_t rec0;
329 
330 	*list = rec->next;
331 	if (rec->intr_flags & INTR_FAST)
332 	    --info->i_fast;
333 	else
334 	    --info->i_slow;
335 	if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
336 	    machintr_vector_teardown(intr);
337 
338 	/*
339 	 * Clear i_mplock_required if no handlers in the chain require the
340 	 * MP lock.
341 	 */
342 	for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
343 	    if ((rec0->intr_flags & INTR_MPSAFE) == 0)
344 		break;
345 	}
346 	if (rec0 == NULL)
347 	    info->i_mplock_required = 0;
348     }
349 
350     crit_exit();
351 
352     /*
353      * Free the record.
354      */
355     if (rec != NULL) {
356 	free(rec->name, M_DEVBUF);
357 	free(rec, M_DEVBUF);
358     } else {
359 	printf("warning: unregister_int: int %d handler for %s not found\n",
360 		intr, ((intrec_t)id)->name);
361     }
362 }
363 
364 const char *
365 get_registered_name(int intr)
366 {
367     intrec_t rec;
368 
369     if (intr < 0 || intr >= MAX_INTS)
370 	panic("register_int: bad intr %d", intr);
371 
372     if ((rec = intr_info_ary[intr].i_reclist) == NULL)
373 	return(NULL);
374     else if (rec->next)
375 	return("mux");
376     else
377 	return(rec->name);
378 }
379 
380 int
381 count_registered_ints(int intr)
382 {
383     struct intr_info *info;
384 
385     if (intr < 0 || intr >= MAX_INTS)
386 	panic("register_int: bad intr %d", intr);
387     info = &intr_info_ary[intr];
388     return(info->i_fast + info->i_slow);
389 }
390 
391 long
392 get_interrupt_counter(int intr)
393 {
394     struct intr_info *info;
395 
396     if (intr < 0 || intr >= MAX_INTS)
397 	panic("register_int: bad intr %d", intr);
398     info = &intr_info_ary[intr];
399     return(info->i_count);
400 }
401 
402 
403 void
404 swi_setpriority(int intr, int pri)
405 {
406     struct intr_info *info;
407 
408     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
409 	panic("register_swi: bad intr %d", intr);
410     info = &intr_info_ary[intr];
411     if (info->i_state != ISTATE_NOTHREAD)
412 	lwkt_setpri(&info->i_thread, pri);
413 }
414 
415 void
416 register_randintr(int intr)
417 {
418     struct intr_info *info;
419 
420     if (intr < 0 || intr >= MAX_INTS)
421 	panic("register_randintr: bad intr %d", intr);
422     info = &intr_info_ary[intr];
423     info->i_random.sc_intr = intr;
424     info->i_random.sc_enabled = 1;
425 }
426 
427 void
428 unregister_randintr(int intr)
429 {
430     struct intr_info *info;
431 
432     if (intr < 0 || intr >= MAX_INTS)
433 	panic("register_swi: bad intr %d", intr);
434     info = &intr_info_ary[intr];
435     info->i_random.sc_enabled = -1;
436 }
437 
438 int
439 next_registered_randintr(int intr)
440 {
441     struct intr_info *info;
442 
443     if (intr < 0 || intr >= MAX_INTS)
444 	panic("register_swi: bad intr %d", intr);
445     while (intr < MAX_INTS) {
446 	info = &intr_info_ary[intr];
447 	if (info->i_random.sc_enabled > 0)
448 	    break;
449 	++intr;
450     }
451     return(intr);
452 }
453 
454 /*
455  * Dispatch an interrupt.  If there's nothing to do we have a stray
456  * interrupt and can just return, leaving the interrupt masked.
457  *
458  * We need to schedule the interrupt and set its i_running bit.  If
459  * we are not on the interrupt thread's cpu we have to send a message
460  * to the correct cpu that will issue the desired action (interlocking
461  * with the interrupt thread's critical section).  We do NOT attempt to
462  * reschedule interrupts whos i_running bit is already set because
463  * this would prematurely wakeup a livelock-limited interrupt thread.
464  *
465  * i_running is only tested/set on the same cpu as the interrupt thread.
466  *
467  * We are NOT in a critical section, which will allow the scheduled
468  * interrupt to preempt us.  The MP lock might *NOT* be held here.
469  */
470 #ifdef SMP
471 
472 static void
473 sched_ithd_remote(void *arg)
474 {
475     sched_ithd((int)arg);
476 }
477 
478 #endif
479 
480 void
481 sched_ithd(int intr)
482 {
483     struct intr_info *info;
484 
485     info = &intr_info_ary[intr];
486 
487     ++info->i_count;
488     if (info->i_state != ISTATE_NOTHREAD) {
489 	if (info->i_reclist == NULL) {
490 	    printf("sched_ithd: stray interrupt %d\n", intr);
491 	} else {
492 #ifdef SMP
493 	    if (info->i_thread.td_gd == mycpu) {
494 		if (info->i_running == 0) {
495 		    info->i_running = 1;
496 		    if (info->i_state != ISTATE_LIVELOCKED)
497 			lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
498 		}
499 	    } else {
500 		lwkt_send_ipiq(info->i_thread.td_gd,
501 				sched_ithd_remote, (void *)intr);
502 	    }
503 #else
504 	    if (info->i_running == 0) {
505 		info->i_running = 1;
506 		if (info->i_state != ISTATE_LIVELOCKED)
507 		    lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
508 	    }
509 #endif
510 	}
511     } else {
512 	printf("sched_ithd: stray interrupt %d\n", intr);
513     }
514 }
515 
516 /*
517  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
518  * might not be held).
519  */
520 static void
521 ithread_livelock_wakeup(systimer_t st)
522 {
523     struct intr_info *info;
524 
525     info = &intr_info_ary[(int)st->data];
526     if (info->i_state != ISTATE_NOTHREAD)
527 	lwkt_schedule(&info->i_thread);
528 }
529 
530 /*
531  * This function is called drectly from the ICU or APIC vector code assembly
532  * to process an interrupt.  The critical section and interrupt deferral
533  * checks have already been done but the function is entered WITHOUT
534  * a critical section held.  The BGL may or may not be held.
535  *
536  * Must return non-zero if we do not want the vector code to re-enable
537  * the interrupt (which we don't if we have to schedule the interrupt)
538  */
539 int ithread_fast_handler(struct intrframe frame);
540 
541 int
542 ithread_fast_handler(struct intrframe frame)
543 {
544     int intr;
545     struct intr_info *info;
546     struct intrec **list;
547     int must_schedule;
548 #ifdef SMP
549     int got_mplock;
550 #endif
551     intrec_t rec, next_rec;
552     globaldata_t gd;
553 
554     intr = frame.if_vec;
555     gd = mycpu;
556 
557     info = &intr_info_ary[intr];
558 
559     /*
560      * If we are not processing any FAST interrupts, just schedule the thing.
561      * (since we aren't in a critical section, this can result in a
562      * preemption)
563      */
564     if (info->i_fast == 0) {
565 	sched_ithd(intr);
566 	return(1);
567     }
568 
569     /*
570      * This should not normally occur since interrupts ought to be
571      * masked if the ithread has been scheduled or is running.
572      */
573     if (info->i_running)
574 	return(1);
575 
576     /*
577      * Bump the interrupt nesting level to process any FAST interrupts.
578      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
579      * schedule the interrupt thread to deal with the issue instead.
580      *
581      * To reduce overhead, just leave the MP lock held once it has been
582      * obtained.
583      */
584     crit_enter_gd(gd);
585     ++gd->gd_intr_nesting_level;
586     ++gd->gd_cnt.v_intr;
587     must_schedule = info->i_slow;
588 #ifdef SMP
589     got_mplock = 0;
590 #endif
591 
592     list = &info->i_reclist;
593     for (rec = *list; rec; rec = next_rec) {
594 	next_rec = rec->next;	/* rec may be invalid after call */
595 
596 	if (rec->intr_flags & INTR_FAST) {
597 #ifdef SMP
598 	    if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
599 		if (try_mplock() == 0) {
600 		    int owner;
601 
602 		    /*
603 		     * If we couldn't get the MP lock try to forward it
604 		     * to the cpu holding the MP lock, setting must_schedule
605 		     * to -1 so we do not schedule and also do not unmask
606 		     * the interrupt.  Otherwise just schedule it.
607 		     */
608 		    owner = owner_mplock();
609 		    if (owner >= 0 && owner != gd->gd_cpuid) {
610 			lwkt_send_ipiq_bycpu(owner, forward_fastint_remote,
611 						(void *)intr);
612 			must_schedule = -1;
613 			++gd->gd_cnt.v_forwarded_ints;
614 		    } else {
615 			must_schedule = 1;
616 		    }
617 		    break;
618 		}
619 		got_mplock = 1;
620 	    }
621 #endif
622 	    if (rec->serializer) {
623 		must_schedule += lwkt_serialize_handler_try(
624 					rec->serializer, rec->handler,
625 					rec->argument, &frame);
626 	    } else {
627 		rec->handler(rec->argument, &frame);
628 	    }
629 	}
630     }
631 
632     /*
633      * Cleanup
634      */
635     --gd->gd_intr_nesting_level;
636 #ifdef SMP
637     if (got_mplock)
638 	rel_mplock();
639 #endif
640     crit_exit_gd(gd);
641 
642     /*
643      * If we had a problem, schedule the thread to catch the missed
644      * records (it will just re-run all of them).  A return value of 0
645      * indicates that all handlers have been run and the interrupt can
646      * be re-enabled, and a non-zero return indicates that the interrupt
647      * thread controls re-enablement.
648      */
649     if (must_schedule > 0)
650 	sched_ithd(intr);
651     else if (must_schedule == 0)
652 	++info->i_count;
653     return(must_schedule);
654 }
655 
656 #if 0
657 
658 6: ;                                                                    \
659         /* could not get the MP lock, forward the interrupt */          \
660         movl    mp_lock, %eax ;          /* check race */               \
661         cmpl    $MP_FREE_LOCK,%eax ;                                    \
662         je      2b ;                                                    \
663         incl    PCPU(cnt)+V_FORWARDED_INTS ;                            \
664         subl    $12,%esp ;                                              \
665         movl    $irq_num,8(%esp) ;                                      \
666         movl    $forward_fastint_remote,4(%esp) ;                       \
667         movl    %eax,(%esp) ;                                           \
668         call    lwkt_send_ipiq_bycpu ;                                  \
669         addl    $12,%esp ;                                              \
670         jmp     5f ;
671 
672 #endif
673 
674 
675 /*
676  * Interrupt threads run this as their main loop.
677  *
678  * The handler begins execution outside a critical section and with the BGL
679  * held.
680  *
681  * The i_running state starts at 0.  When an interrupt occurs, the hardware
682  * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
683  * until all routines have run.  We then call ithread_done() to reenable
684  * the HW interrupt and deschedule us until the next interrupt.
685  *
686  * We are responsible for atomically checking i_running and ithread_done()
687  * is responsible for atomically checking for platform-specific delayed
688  * interrupts.  i_running for our irq is only set in the context of our cpu,
689  * so a critical section is a sufficient interlock.
690  */
691 #define LIVELOCK_TIMEFRAME(freq)	((freq) >> 2)	/* 1/4 second */
692 
693 static void
694 ithread_handler(void *arg)
695 {
696     struct intr_info *info;
697     int use_limit;
698     int lticks;
699     int lcount;
700     int intr;
701     int mpheld;
702     struct intrec **list;
703     intrec_t rec, nrec;
704     globaldata_t gd;
705     struct systimer ill_timer;	/* enforced freq. timer */
706     u_int ill_count;		/* interrupt livelock counter */
707 
708     ill_count = 0;
709     lticks = ticks;
710     lcount = 0;
711     intr = (int)arg;
712     info = &intr_info_ary[intr];
713     list = &info->i_reclist;
714     gd = mycpu;
715 
716     /*
717      * The loop must be entered with one critical section held.  The thread
718      * is created with TDF_MPSAFE so the MP lock is not held on start.
719      */
720     crit_enter_gd(gd);
721     mpheld = 0;
722 
723     for (;;) {
724 	/*
725 	 * The chain is only considered MPSAFE if all its interrupt handlers
726 	 * are MPSAFE.  However, if intr_mpsafe has been turned off we
727 	 * always operate with the BGL.
728 	 */
729 #ifdef SMP
730 	if (intr_mpsafe == 0) {
731 	    if (mpheld == 0) {
732 		get_mplock();
733 		mpheld = 1;
734 	    }
735 	} else if (info->i_mplock_required != mpheld) {
736 	    if (info->i_mplock_required) {
737 		KKASSERT(mpheld == 0);
738 		get_mplock();
739 		mpheld = 1;
740 	    } else {
741 		KKASSERT(mpheld != 0);
742 		rel_mplock();
743 		mpheld = 0;
744 	    }
745 	}
746 #endif
747 
748 	/*
749 	 * If an interrupt is pending, clear i_running and execute the
750 	 * handlers.  Note that certain types of interrupts can re-trigger
751 	 * and set i_running again.
752 	 *
753 	 * Each handler is run in a critical section.  Note that we run both
754 	 * FAST and SLOW designated service routines.
755 	 */
756 	if (info->i_running) {
757 	    ++ill_count;
758 	    info->i_running = 0;
759 
760 	    for (rec = *list; rec; rec = nrec) {
761 		nrec = rec->next;
762 		if (rec->serializer) {
763 		    lwkt_serialize_handler_call(rec->serializer, rec->handler,
764 						rec->argument, NULL);
765 		} else {
766 		    rec->handler(rec->argument, NULL);
767 		}
768 	    }
769 	}
770 
771 	/*
772 	 * This is our interrupt hook to add rate randomness to the random
773 	 * number generator.
774 	 */
775 	if (info->i_random.sc_enabled > 0)
776 	    add_interrupt_randomness(intr);
777 
778 	/*
779 	 * Unmask the interrupt to allow it to trigger again.  This only
780 	 * applies to certain types of interrupts (typ level interrupts).
781 	 * This can result in the interrupt retriggering, but the retrigger
782 	 * will not be processed until we cycle our critical section.
783 	 *
784 	 * Only unmask interrupts while handlers are installed.  It is
785 	 * possible to hit a situation where no handlers are installed
786 	 * due to a device driver livelocking and then tearing down its
787 	 * interrupt on close (the parallel bus being a good example).
788 	 */
789 	if (*list)
790 	    machintr_intren(intr);
791 
792 	/*
793 	 * Do a quick exit/enter to catch any higher-priority interrupt
794 	 * sources, such as the statclock, so thread time accounting
795 	 * will still work.  This may also cause an interrupt to re-trigger.
796 	 */
797 	crit_exit_gd(gd);
798 	crit_enter_gd(gd);
799 
800 	/*
801 	 * LIVELOCK STATE MACHINE
802 	 */
803 	switch(info->i_state) {
804 	case ISTATE_NORMAL:
805 	    /*
806 	     * Calculate a running average every tick.
807 	     */
808 	    if (lticks != ticks) {
809 		lticks = ticks;
810 		ill_count -= ill_count / hz;
811 	    }
812 
813 	    /*
814 	     * If we did not exceed the frequency limit, we are done.
815 	     * If the interrupt has not retriggered we deschedule ourselves.
816 	     */
817 	    if (ill_count <= livelock_limit) {
818 		if (info->i_running == 0) {
819 		    lwkt_deschedule_self(gd->gd_curthread);
820 		    lwkt_switch();
821 		}
822 		break;
823 	    }
824 
825 	    /*
826 	     * Otherwise we are livelocked.  Set up a periodic systimer
827 	     * to wake the thread up at the limit frequency.
828 	     */
829 	    printf("intr %d at %d > %d hz, livelocked limit engaged!\n",
830 		   intr, ill_count, livelock_limit);
831 	    info->i_state = ISTATE_LIVELOCKED;
832 	    if ((use_limit = livelock_limit) < 100)
833 		use_limit = 100;
834 	    else if (use_limit > 500000)
835 		use_limit = 500000;
836 	    systimer_init_periodic(&ill_timer, ithread_livelock_wakeup,
837 				   (void *)intr, use_limit);
838 	    lcount = 0;
839 	    /* fall through */
840 	case ISTATE_LIVELOCKED:
841 	    /*
842 	     * Wait for our periodic timer to go off.  Since the interrupt
843 	     * has re-armed it can still set i_running, but it will not
844 	     * reschedule us while we are in a livelocked state.
845 	     */
846 	    lwkt_deschedule_self(gd->gd_curthread);
847 	    lwkt_switch();
848 
849 	    /*
850 	     * Check to see if the livelock condition no longer applies.
851 	     * The interrupt must be able to operate normally for one
852 	     * full second before we restore normal operation.
853 	     */
854 	    if (lticks != ticks) {
855 		lticks = ticks;
856 		if (ill_count < livelock_lowater) {
857 		    if (++lcount >= hz) {
858 			info->i_state = ISTATE_NORMAL;
859 			systimer_del(&ill_timer);
860 			printf("intr %d at %d < %d hz, livelock removed\n",
861 			       intr, ill_count, livelock_lowater);
862 		    }
863 		} else {
864 		    lcount = 0;
865 		}
866 		ill_count -= ill_count / hz;
867 	    }
868 	    break;
869 	}
870     }
871     /* not reached */
872 }
873 
874 /*
875  * Emergency interrupt polling thread.  The thread begins execution
876  * outside a critical section with the BGL held.
877  *
878  * If emergency interrupt polling is enabled, this thread will
879  * execute all system interrupts not marked INTR_NOPOLL at the
880  * specified polling frequency.
881  *
882  * WARNING!  This thread runs *ALL* interrupt service routines that
883  * are not marked INTR_NOPOLL, which basically means everything except
884  * the 8254 clock interrupt and the ATA interrupt.  It has very high
885  * overhead and should only be used in situations where the machine
886  * cannot otherwise be made to work.  Due to the severe performance
887  * degredation, it should not be enabled on production machines.
888  */
889 static void
890 ithread_emergency(void *arg __unused)
891 {
892     struct intr_info *info;
893     intrec_t rec, nrec;
894     int intr;
895 
896     for (;;) {
897 	for (intr = 0; intr < max_installed_hard_intr; ++intr) {
898 	    info = &intr_info_ary[intr];
899 	    for (rec = info->i_reclist; rec; rec = nrec) {
900 		if ((rec->intr_flags & INTR_NOPOLL) == 0) {
901 		    if (rec->serializer) {
902 			lwkt_serialize_handler_call(rec->serializer,
903 						rec->handler, rec->argument, NULL);
904 		    } else {
905 			rec->handler(rec->argument, NULL);
906 		    }
907 		}
908 		nrec = rec->next;
909 	    }
910 	}
911 	lwkt_deschedule_self(curthread);
912 	lwkt_switch();
913     }
914 }
915 
916 /*
917  * Systimer callback - schedule the emergency interrupt poll thread
918  * 		       if emergency polling is enabled.
919  */
920 static
921 void
922 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
923 {
924     if (emergency_intr_enable)
925 	lwkt_schedule(info->data);
926 }
927 
928 /*
929  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
930  * The data for this machine dependent, and the declarations are in machine
931  * dependent code.  The layout of intrnames and intrcnt however is machine
932  * independent.
933  *
934  * We do not know the length of intrcnt and intrnames at compile time, so
935  * calculate things at run time.
936  */
937 
938 static int
939 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
940 {
941     struct intr_info *info;
942     intrec_t rec;
943     int error = 0;
944     int len;
945     int intr;
946     char buf[64];
947 
948     for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
949 	info = &intr_info_ary[intr];
950 
951 	len = 0;
952 	buf[0] = 0;
953 	for (rec = info->i_reclist; rec; rec = rec->next) {
954 	    snprintf(buf + len, sizeof(buf) - len, "%s%s",
955 		(len ? "/" : ""), rec->name);
956 	    len += strlen(buf + len);
957 	}
958 	if (len == 0) {
959 	    snprintf(buf, sizeof(buf), "irq%d", intr);
960 	    len = strlen(buf);
961 	}
962 	error = SYSCTL_OUT(req, buf, len + 1);
963     }
964     return (error);
965 }
966 
967 
968 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
969 	NULL, 0, sysctl_intrnames, "", "Interrupt Names");
970 
971 static int
972 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
973 {
974     struct intr_info *info;
975     int error = 0;
976     int intr;
977 
978     for (intr = 0; intr < max_installed_hard_intr; ++intr) {
979 	info = &intr_info_ary[intr];
980 
981 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
982 	if (error)
983 		goto failed;
984     }
985     for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
986 	info = &intr_info_ary[intr];
987 
988 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
989 	if (error)
990 		goto failed;
991     }
992 failed:
993     return(error);
994 }
995 
996 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
997 	NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
998 
999