xref: /dragonfly/sys/kern/kern_intr.c (revision cecb9aae)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  *
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/kernel.h>
34 #include <sys/sysctl.h>
35 #include <sys/thread.h>
36 #include <sys/proc.h>
37 #include <sys/random.h>
38 #include <sys/serialize.h>
39 #include <sys/interrupt.h>
40 #include <sys/bus.h>
41 #include <sys/machintr.h>
42 
43 #include <machine/frame.h>
44 
45 #include <sys/thread2.h>
46 #include <sys/mplock2.h>
47 
48 struct intr_info;
49 
50 typedef struct intrec {
51     struct intrec *next;
52     struct intr_info *info;
53     inthand2_t	*handler;
54     void	*argument;
55     char	*name;
56     int		intr;
57     int		intr_flags;
58     struct lwkt_serialize *serializer;
59 } *intrec_t;
60 
61 struct intr_info {
62 	intrec_t	i_reclist;
63 	struct thread	i_thread;
64 	struct random_softc i_random;
65 	int		i_running;
66 	long		i_count;	/* interrupts dispatched */
67 	int		i_mplock_required;
68 	int		i_fast;
69 	int		i_slow;
70 	int		i_state;
71 	int		i_errorticks;
72 	unsigned long	i_straycount;
73 	int		i_cpuid;
74 	int		i_intr;
75 };
76 
77 static struct intr_info intr_info_ary[MAXCPU][MAX_INTS];
78 static struct intr_info *swi_info_ary[MAX_SOFTINTS];
79 
80 static int max_installed_hard_intr[MAXCPU];
81 
82 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
83 
84 /*
85  * Assert that callers into interrupt handlers don't return with
86  * dangling tokens, spinlocks, or mp locks.
87  */
88 #ifdef INVARIANTS
89 
90 #define TD_INVARIANTS_DECLARE   \
91         int spincount;          \
92         lwkt_tokref_t curstop
93 
94 #define TD_INVARIANTS_GET(td)                                   \
95         do {                                                    \
96                 spincount = (td)->td_gd->gd_spinlocks;		\
97                 curstop = (td)->td_toks_stop;                   \
98         } while(0)
99 
100 #define TD_INVARIANTS_TEST(td, name)                                    \
101         do {                                                            \
102                 KASSERT(spincount == (td)->td_gd->gd_spinlocks,		\
103                         ("spincount mismatch after interrupt handler %s", \
104                         name));                                         \
105                 KASSERT(curstop == (td)->td_toks_stop,                  \
106                         ("token count mismatch after interrupt handler %s", \
107                         name));                                         \
108         } while(0)
109 
110 #else
111 
112 /* !INVARIANTS */
113 
114 #define TD_INVARIANTS_DECLARE
115 #define TD_INVARIANTS_GET(td)
116 #define TD_INVARIANTS_TEST(td, name)
117 
118 #endif /* ndef INVARIANTS */
119 
120 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
121 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
122 static void emergency_intr_timer_callback(systimer_t, int, struct intrframe *);
123 static void ithread_handler(void *arg);
124 static void ithread_emergency(void *arg);
125 static void report_stray_interrupt(struct intr_info *info, const char *func);
126 static void int_moveto_destcpu(int *, int);
127 static void int_moveto_origcpu(int, int);
128 static void sched_ithd_intern(struct intr_info *info);
129 
130 static struct systimer emergency_intr_timer[MAXCPU];
131 static struct thread emergency_intr_thread[MAXCPU];
132 
133 #define ISTATE_NOTHREAD		0
134 #define ISTATE_NORMAL		1
135 #define ISTATE_LIVELOCKED	2
136 
137 static int livelock_limit = 40000;
138 static int livelock_lowater = 20000;
139 static int livelock_debug = -1;
140 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
141         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
142 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
143         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
144 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
145         CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
146 
147 static int emergency_intr_enable = 0;	/* emergency interrupt polling */
148 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
149 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
150         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
151 
152 static int emergency_intr_freq = 10;	/* emergency polling frequency */
153 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
154 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
155         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
156 
157 /*
158  * Sysctl support routines
159  */
160 static int
161 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
162 {
163 	int error, enabled, cpuid, freq;
164 
165 	enabled = emergency_intr_enable;
166 	error = sysctl_handle_int(oidp, &enabled, 0, req);
167 	if (error || req->newptr == NULL)
168 		return error;
169 	emergency_intr_enable = enabled;
170 	if (emergency_intr_enable)
171 		freq = emergency_intr_freq;
172 	else
173 		freq = 1;
174 
175 	for (cpuid = 0; cpuid < ncpus; ++cpuid)
176 		systimer_adjust_periodic(&emergency_intr_timer[cpuid], freq);
177 	return 0;
178 }
179 
180 static int
181 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
182 {
183         int error, phz, cpuid, freq;
184 
185         phz = emergency_intr_freq;
186         error = sysctl_handle_int(oidp, &phz, 0, req);
187         if (error || req->newptr == NULL)
188                 return error;
189         if (phz <= 0)
190                 return EINVAL;
191         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
192                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
193 
194         emergency_intr_freq = phz;
195 	if (emergency_intr_enable)
196 		freq = emergency_intr_freq;
197 	else
198 		freq = 1;
199 
200 	for (cpuid = 0; cpuid < ncpus; ++cpuid)
201 		systimer_adjust_periodic(&emergency_intr_timer[cpuid], freq);
202         return 0;
203 }
204 
205 /*
206  * Register an SWI or INTerrupt handler.
207  */
208 void *
209 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
210 		struct lwkt_serialize *serializer, int cpuid)
211 {
212     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
213 	panic("register_swi: bad intr %d", intr);
214 
215     if (cpuid < 0)
216 	cpuid = intr % ncpus;
217     return(register_int(intr, handler, arg, name, serializer, 0, cpuid));
218 }
219 
220 void *
221 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name,
222 		struct lwkt_serialize *serializer, int cpuid)
223 {
224     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
225 	panic("register_swi: bad intr %d", intr);
226 
227     if (cpuid < 0)
228 	cpuid = intr % ncpus;
229     return(register_int(intr, handler, arg, name, serializer,
230         INTR_MPSAFE, cpuid));
231 }
232 
233 void *
234 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
235 		struct lwkt_serialize *serializer, int intr_flags, int cpuid)
236 {
237     struct intr_info *info;
238     struct intrec **list;
239     intrec_t rec;
240     int orig_cpuid;
241 
242     KKASSERT(cpuid >= 0 && cpuid < ncpus);
243 
244     if (intr < 0 || intr >= MAX_INTS)
245 	panic("register_int: bad intr %d", intr);
246     if (name == NULL)
247 	name = "???";
248     info = &intr_info_ary[cpuid][intr];
249 
250     /*
251      * Construct an interrupt handler record
252      */
253     rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
254     rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
255     strcpy(rec->name, name);
256 
257     rec->info = info;
258     rec->handler = handler;
259     rec->argument = arg;
260     rec->intr = intr;
261     rec->intr_flags = intr_flags;
262     rec->next = NULL;
263     rec->serializer = serializer;
264 
265     int_moveto_destcpu(&orig_cpuid, cpuid);
266 
267     /*
268      * Create an emergency polling thread and set up a systimer to wake
269      * it up.
270      */
271     if (emergency_intr_thread[cpuid].td_kstack == NULL) {
272 	lwkt_create(ithread_emergency, NULL, NULL,
273 		    &emergency_intr_thread[cpuid],
274 		    TDF_NOSTART | TDF_INTTHREAD, cpuid, "ithreadE %d",
275 		    cpuid);
276 	systimer_init_periodic_nq(&emergency_intr_timer[cpuid],
277 		    emergency_intr_timer_callback,
278 		    &emergency_intr_thread[cpuid],
279 		    (emergency_intr_enable ? emergency_intr_freq : 1));
280     }
281 
282     /*
283      * Create an interrupt thread if necessary, leave it in an unscheduled
284      * state.
285      */
286     if (info->i_state == ISTATE_NOTHREAD) {
287 	info->i_state = ISTATE_NORMAL;
288 	lwkt_create(ithread_handler, (void *)(intptr_t)intr, NULL,
289 		    &info->i_thread, TDF_NOSTART | TDF_INTTHREAD, cpuid,
290 		    "ithread%d %d", intr, cpuid);
291 	if (intr >= FIRST_SOFTINT)
292 	    lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
293 	else
294 	    lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
295 	info->i_thread.td_preemptable = lwkt_preempt;
296     }
297 
298     list = &info->i_reclist;
299 
300     /*
301      * Keep track of how many fast and slow interrupts we have.
302      * Set i_mplock_required if any handler in the chain requires
303      * the MP lock to operate.
304      */
305     if ((intr_flags & INTR_MPSAFE) == 0)
306 	info->i_mplock_required = 1;
307     if (intr_flags & INTR_CLOCK)
308 	++info->i_fast;
309     else
310 	++info->i_slow;
311 
312     /*
313      * Enable random number generation keying off of this interrupt.
314      */
315     if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
316 	info->i_random.sc_enabled = 1;
317 	info->i_random.sc_intr = intr;
318     }
319 
320     /*
321      * Add the record to the interrupt list.
322      */
323     crit_enter();
324     while (*list != NULL)
325 	list = &(*list)->next;
326     *list = rec;
327     crit_exit();
328 
329     /*
330      * Update max_installed_hard_intr to make the emergency intr poll
331      * a bit more efficient.
332      */
333     if (intr < FIRST_SOFTINT) {
334 	if (max_installed_hard_intr[cpuid] <= intr)
335 	    max_installed_hard_intr[cpuid] = intr + 1;
336     }
337 
338     if (intr >= FIRST_SOFTINT)
339 	swi_info_ary[intr - FIRST_SOFTINT] = info;
340 
341     /*
342      * Setup the machine level interrupt vector
343      */
344     if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1)
345 	machintr_intr_setup(intr, intr_flags);
346 
347     int_moveto_origcpu(orig_cpuid, cpuid);
348 
349     return(rec);
350 }
351 
352 void
353 unregister_swi(void *id, int intr, int cpuid)
354 {
355     if (cpuid < 0)
356 	cpuid = intr % ncpus;
357 
358     unregister_int(id, cpuid);
359 }
360 
361 void
362 unregister_int(void *id, int cpuid)
363 {
364     struct intr_info *info;
365     struct intrec **list;
366     intrec_t rec;
367     int intr, orig_cpuid;
368 
369     KKASSERT(cpuid >= 0 && cpuid < ncpus);
370 
371     intr = ((intrec_t)id)->intr;
372 
373     if (intr < 0 || intr >= MAX_INTS)
374 	panic("register_int: bad intr %d", intr);
375 
376     info = &intr_info_ary[cpuid][intr];
377 
378     int_moveto_destcpu(&orig_cpuid, cpuid);
379 
380     /*
381      * Remove the interrupt descriptor, adjust the descriptor count,
382      * and teardown the machine level vector if this was the last interrupt.
383      */
384     crit_enter();
385     list = &info->i_reclist;
386     while ((rec = *list) != NULL) {
387 	if (rec == id)
388 	    break;
389 	list = &rec->next;
390     }
391     if (rec) {
392 	intrec_t rec0;
393 
394 	*list = rec->next;
395 	if (rec->intr_flags & INTR_CLOCK)
396 	    --info->i_fast;
397 	else
398 	    --info->i_slow;
399 	if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
400 	    machintr_intr_teardown(intr);
401 
402 	/*
403 	 * Clear i_mplock_required if no handlers in the chain require the
404 	 * MP lock.
405 	 */
406 	for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
407 	    if ((rec0->intr_flags & INTR_MPSAFE) == 0)
408 		break;
409 	}
410 	if (rec0 == NULL)
411 	    info->i_mplock_required = 0;
412     }
413 
414     if (intr >= FIRST_SOFTINT && info->i_reclist == NULL)
415 	swi_info_ary[intr - FIRST_SOFTINT] = NULL;
416 
417     crit_exit();
418 
419     int_moveto_origcpu(orig_cpuid, cpuid);
420 
421     /*
422      * Free the record.
423      */
424     if (rec != NULL) {
425 	kfree(rec->name, M_DEVBUF);
426 	kfree(rec, M_DEVBUF);
427     } else {
428 	kprintf("warning: unregister_int: int %d handler for %s not found\n",
429 		intr, ((intrec_t)id)->name);
430     }
431 }
432 
433 long
434 get_interrupt_counter(int intr, int cpuid)
435 {
436     struct intr_info *info;
437 
438     KKASSERT(cpuid >= 0 && cpuid < ncpus);
439 
440     if (intr < 0 || intr >= MAX_INTS)
441 	panic("register_int: bad intr %d", intr);
442     info = &intr_info_ary[cpuid][intr];
443     return(info->i_count);
444 }
445 
446 void
447 register_randintr(int intr)
448 {
449     struct intr_info *info;
450     int cpuid;
451 
452     if (intr < 0 || intr >= MAX_INTS)
453 	panic("register_randintr: bad intr %d", intr);
454 
455     for (cpuid = 0; cpuid < ncpus; ++cpuid) {
456 	info = &intr_info_ary[cpuid][intr];
457 	info->i_random.sc_intr = intr;
458 	info->i_random.sc_enabled = 1;
459     }
460 }
461 
462 void
463 unregister_randintr(int intr)
464 {
465     struct intr_info *info;
466     int cpuid;
467 
468     if (intr < 0 || intr >= MAX_INTS)
469 	panic("register_swi: bad intr %d", intr);
470 
471     for (cpuid = 0; cpuid < ncpus; ++cpuid) {
472 	info = &intr_info_ary[cpuid][intr];
473 	info->i_random.sc_enabled = -1;
474     }
475 }
476 
477 int
478 next_registered_randintr(int intr)
479 {
480     struct intr_info *info;
481 
482     if (intr < 0 || intr >= MAX_INTS)
483 	panic("register_swi: bad intr %d", intr);
484 
485     while (intr < MAX_INTS) {
486 	int cpuid;
487 
488 	for (cpuid = 0; cpuid < ncpus; ++cpuid) {
489 	    info = &intr_info_ary[cpuid][intr];
490 	    if (info->i_random.sc_enabled > 0)
491 		return intr;
492 	}
493 	++intr;
494     }
495     return intr;
496 }
497 
498 /*
499  * Dispatch an interrupt.  If there's nothing to do we have a stray
500  * interrupt and can just return, leaving the interrupt masked.
501  *
502  * We need to schedule the interrupt and set its i_running bit.  If
503  * we are not on the interrupt thread's cpu we have to send a message
504  * to the correct cpu that will issue the desired action (interlocking
505  * with the interrupt thread's critical section).  We do NOT attempt to
506  * reschedule interrupts whos i_running bit is already set because
507  * this would prematurely wakeup a livelock-limited interrupt thread.
508  *
509  * i_running is only tested/set on the same cpu as the interrupt thread.
510  *
511  * We are NOT in a critical section, which will allow the scheduled
512  * interrupt to preempt us.  The MP lock might *NOT* be held here.
513  */
514 static void
515 sched_ithd_remote(void *arg)
516 {
517     sched_ithd_intern(arg);
518 }
519 
520 static void
521 sched_ithd_intern(struct intr_info *info)
522 {
523     ++info->i_count;
524     if (info->i_state != ISTATE_NOTHREAD) {
525 	if (info->i_reclist == NULL) {
526 	    report_stray_interrupt(info, "sched_ithd");
527 	} else {
528 	    if (info->i_thread.td_gd == mycpu) {
529 		if (info->i_running == 0) {
530 		    info->i_running = 1;
531 		    if (info->i_state != ISTATE_LIVELOCKED)
532 			lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
533 		}
534 	    } else {
535 		lwkt_send_ipiq(info->i_thread.td_gd, sched_ithd_remote, info);
536 	    }
537 	}
538     } else {
539 	report_stray_interrupt(info, "sched_ithd");
540     }
541 }
542 
543 void
544 sched_ithd_soft(int intr)
545 {
546 	struct intr_info *info;
547 
548 	KKASSERT(intr >= FIRST_SOFTINT && intr < MAX_INTS);
549 
550 	info = swi_info_ary[intr - FIRST_SOFTINT];
551 	if (info != NULL) {
552 		sched_ithd_intern(info);
553 	} else {
554 		kprintf("unregistered softint %d got scheduled on cpu%d\n",
555 		    intr, mycpuid);
556 	}
557 }
558 
559 void
560 sched_ithd_hard(int intr)
561 {
562 	KKASSERT(intr >= 0 && intr < MAX_HARDINTS);
563 	sched_ithd_intern(&intr_info_ary[mycpuid][intr]);
564 }
565 
566 #ifdef _KERNEL_VIRTUAL
567 
568 void
569 sched_ithd_hard_virtual(int intr)
570 {
571 	KKASSERT(intr >= 0 && intr < MAX_HARDINTS);
572 	sched_ithd_intern(&intr_info_ary[0][intr]);
573 }
574 
575 void *
576 register_int_virtual(int intr, inthand2_t *handler, void *arg, const char *name,
577     struct lwkt_serialize *serializer, int intr_flags)
578 {
579 	return register_int(intr, handler, arg, name, serializer, intr_flags, 0);
580 }
581 
582 void
583 unregister_int_virtual(void *id)
584 {
585 	unregister_int(id, 0);
586 }
587 
588 #endif	/* _KERN_VIRTUAL */
589 
590 static void
591 report_stray_interrupt(struct intr_info *info, const char *func)
592 {
593 	++info->i_straycount;
594 	if (info->i_straycount < 10) {
595 		if (info->i_errorticks == ticks)
596 			return;
597 		info->i_errorticks = ticks;
598 		kprintf("%s: stray interrupt %d on cpu%d\n",
599 		    func, info->i_intr, mycpuid);
600 	} else if (info->i_straycount == 10) {
601 		kprintf("%s: %ld stray interrupts %d on cpu%d - "
602 			"there will be no further reports\n", func,
603 			info->i_straycount, info->i_intr, mycpuid);
604 	}
605 }
606 
607 /*
608  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
609  * might not be held).
610  */
611 static void
612 ithread_livelock_wakeup(systimer_t st, int in_ipi __unused,
613     struct intrframe *frame __unused)
614 {
615     struct intr_info *info;
616 
617     info = &intr_info_ary[mycpuid][(int)(intptr_t)st->data];
618     if (info->i_state != ISTATE_NOTHREAD)
619 	lwkt_schedule(&info->i_thread);
620 }
621 
622 /*
623  * Schedule ithread within fast intr handler
624  *
625  * XXX Protect sched_ithd_hard() call with gd_intr_nesting_level?
626  * Interrupts aren't enabled, but still...
627  */
628 static __inline void
629 ithread_fast_sched(int intr, thread_t td)
630 {
631     ++td->td_nest_count;
632 
633     /*
634      * We are already in critical section, exit it now to
635      * allow preemption.
636      */
637     crit_exit_quick(td);
638     sched_ithd_hard(intr);
639     crit_enter_quick(td);
640 
641     --td->td_nest_count;
642 }
643 
644 /*
645  * This function is called directly from the ICU or APIC vector code assembly
646  * to process an interrupt.  The critical section and interrupt deferral
647  * checks have already been done but the function is entered WITHOUT
648  * a critical section held.  The BGL may or may not be held.
649  *
650  * Must return non-zero if we do not want the vector code to re-enable
651  * the interrupt (which we don't if we have to schedule the interrupt)
652  */
653 int ithread_fast_handler(struct intrframe *frame);
654 
655 int
656 ithread_fast_handler(struct intrframe *frame)
657 {
658     int intr;
659     struct intr_info *info;
660     struct intrec **list;
661     int must_schedule;
662     int got_mplock;
663     TD_INVARIANTS_DECLARE;
664     intrec_t rec, nrec;
665     globaldata_t gd;
666     thread_t td;
667 
668     intr = frame->if_vec;
669     gd = mycpu;
670     td = curthread;
671 
672     /* We must be in critical section. */
673     KKASSERT(td->td_critcount);
674 
675     info = &intr_info_ary[mycpuid][intr];
676 
677     /*
678      * If we are not processing any FAST interrupts, just schedule the thing.
679      */
680     if (info->i_fast == 0) {
681     	++gd->gd_cnt.v_intr;
682 	ithread_fast_sched(intr, td);
683 	return(1);
684     }
685 
686     /*
687      * This should not normally occur since interrupts ought to be
688      * masked if the ithread has been scheduled or is running.
689      */
690     if (info->i_running)
691 	return(1);
692 
693     /*
694      * Bump the interrupt nesting level to process any FAST interrupts.
695      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
696      * schedule the interrupt thread to deal with the issue instead.
697      *
698      * To reduce overhead, just leave the MP lock held once it has been
699      * obtained.
700      */
701     ++gd->gd_intr_nesting_level;
702     ++gd->gd_cnt.v_intr;
703     must_schedule = info->i_slow;
704     got_mplock = 0;
705 
706     TD_INVARIANTS_GET(td);
707     list = &info->i_reclist;
708 
709     for (rec = *list; rec; rec = nrec) {
710 	/* rec may be invalid after call */
711 	nrec = rec->next;
712 
713 	if (rec->intr_flags & INTR_CLOCK) {
714 	    if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
715 		if (try_mplock() == 0) {
716 		    /* Couldn't get the MP lock; just schedule it. */
717 		    must_schedule = 1;
718 		    break;
719 		}
720 		got_mplock = 1;
721 	    }
722 	    if (rec->serializer) {
723 		must_schedule += lwkt_serialize_handler_try(
724 					rec->serializer, rec->handler,
725 					rec->argument, frame);
726 	    } else {
727 		rec->handler(rec->argument, frame);
728 	    }
729 	    TD_INVARIANTS_TEST(td, rec->name);
730 	}
731     }
732 
733     /*
734      * Cleanup
735      */
736     --gd->gd_intr_nesting_level;
737     if (got_mplock)
738 	rel_mplock();
739 
740     /*
741      * If we had a problem, or mixed fast and slow interrupt handlers are
742      * registered, schedule the ithread to catch the missed records (it
743      * will just re-run all of them).  A return value of 0 indicates that
744      * all handlers have been run and the interrupt can be re-enabled, and
745      * a non-zero return indicates that the interrupt thread controls
746      * re-enablement.
747      */
748     if (must_schedule > 0)
749 	ithread_fast_sched(intr, td);
750     else if (must_schedule == 0)
751 	++info->i_count;
752     return(must_schedule);
753 }
754 
755 /*
756  * Interrupt threads run this as their main loop.
757  *
758  * The handler begins execution outside a critical section and no MP lock.
759  *
760  * The i_running state starts at 0.  When an interrupt occurs, the hardware
761  * interrupt is disabled and sched_ithd_hard() The HW interrupt remains
762  * disabled until all routines have run.  We then call ithread_done() to
763  * reenable the HW interrupt and deschedule us until the next interrupt.
764  *
765  * We are responsible for atomically checking i_running and ithread_done()
766  * is responsible for atomically checking for platform-specific delayed
767  * interrupts.  i_running for our irq is only set in the context of our cpu,
768  * so a critical section is a sufficient interlock.
769  */
770 #define LIVELOCK_TIMEFRAME(freq)	((freq) >> 2)	/* 1/4 second */
771 
772 static void
773 ithread_handler(void *arg)
774 {
775     struct intr_info *info;
776     int use_limit;
777     __uint32_t lseconds;
778     int intr, cpuid = mycpuid;
779     int mpheld;
780     struct intrec **list;
781     intrec_t rec, nrec;
782     globaldata_t gd;
783     struct systimer ill_timer;	/* enforced freq. timer */
784     u_int ill_count;		/* interrupt livelock counter */
785     TD_INVARIANTS_DECLARE;
786 
787     ill_count = 0;
788     intr = (int)(intptr_t)arg;
789     info = &intr_info_ary[cpuid][intr];
790     list = &info->i_reclist;
791 
792     /*
793      * The loop must be entered with one critical section held.  The thread
794      * does not hold the mplock on startup.
795      */
796     gd = mycpu;
797     lseconds = gd->gd_time_seconds;
798     crit_enter_gd(gd);
799     mpheld = 0;
800 
801     for (;;) {
802 	/*
803 	 * The chain is only considered MPSAFE if all its interrupt handlers
804 	 * are MPSAFE.  However, if intr_mpsafe has been turned off we
805 	 * always operate with the BGL.
806 	 */
807 	if (info->i_mplock_required != mpheld) {
808 	    if (info->i_mplock_required) {
809 		KKASSERT(mpheld == 0);
810 		get_mplock();
811 		mpheld = 1;
812 	    } else {
813 		KKASSERT(mpheld != 0);
814 		rel_mplock();
815 		mpheld = 0;
816 	    }
817 	}
818 
819 	TD_INVARIANTS_GET(gd->gd_curthread);
820 
821 	/*
822 	 * If an interrupt is pending, clear i_running and execute the
823 	 * handlers.  Note that certain types of interrupts can re-trigger
824 	 * and set i_running again.
825 	 *
826 	 * Each handler is run in a critical section.  Note that we run both
827 	 * FAST and SLOW designated service routines.
828 	 */
829 	if (info->i_running) {
830 	    ++ill_count;
831 	    info->i_running = 0;
832 
833 	    if (*list == NULL)
834 		report_stray_interrupt(info, "ithread_handler");
835 
836 	    for (rec = *list; rec; rec = nrec) {
837 		/* rec may be invalid after call */
838 		nrec = rec->next;
839 		if (rec->serializer) {
840 		    lwkt_serialize_handler_call(rec->serializer, rec->handler,
841 						rec->argument, NULL);
842 		} else {
843 		    rec->handler(rec->argument, NULL);
844 		}
845 		TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
846 	    }
847 	}
848 
849 	/*
850 	 * This is our interrupt hook to add rate randomness to the random
851 	 * number generator.
852 	 */
853 	if (info->i_random.sc_enabled > 0)
854 	    add_interrupt_randomness(intr);
855 
856 	/*
857 	 * Unmask the interrupt to allow it to trigger again.  This only
858 	 * applies to certain types of interrupts (typ level interrupts).
859 	 * This can result in the interrupt retriggering, but the retrigger
860 	 * will not be processed until we cycle our critical section.
861 	 *
862 	 * Only unmask interrupts while handlers are installed.  It is
863 	 * possible to hit a situation where no handlers are installed
864 	 * due to a device driver livelocking and then tearing down its
865 	 * interrupt on close (the parallel bus being a good example).
866 	 */
867 	if (intr < FIRST_SOFTINT && *list)
868 	    machintr_intr_enable(intr);
869 
870 	/*
871 	 * Do a quick exit/enter to catch any higher-priority interrupt
872 	 * sources, such as the statclock, so thread time accounting
873 	 * will still work.  This may also cause an interrupt to re-trigger.
874 	 */
875 	crit_exit_gd(gd);
876 	crit_enter_gd(gd);
877 
878 	/*
879 	 * LIVELOCK STATE MACHINE
880 	 */
881 	switch(info->i_state) {
882 	case ISTATE_NORMAL:
883 	    /*
884 	     * Reset the count each second.
885 	     */
886 	    if (lseconds != gd->gd_time_seconds) {
887 		lseconds = gd->gd_time_seconds;
888 		ill_count = 0;
889 	    }
890 
891 	    /*
892 	     * If we did not exceed the frequency limit, we are done.
893 	     * If the interrupt has not retriggered we deschedule ourselves.
894 	     */
895 	    if (ill_count <= livelock_limit) {
896 		if (info->i_running == 0) {
897 		    lwkt_deschedule_self(gd->gd_curthread);
898 		    lwkt_switch();
899 		}
900 		break;
901 	    }
902 
903 	    /*
904 	     * Otherwise we are livelocked.  Set up a periodic systimer
905 	     * to wake the thread up at the limit frequency.
906 	     */
907 	    kprintf("intr %d on cpu%d at %d/%d hz, livelocked limit engaged!\n",
908 		    intr, cpuid, ill_count, livelock_limit);
909 	    info->i_state = ISTATE_LIVELOCKED;
910 	    if ((use_limit = livelock_limit) < 100)
911 		use_limit = 100;
912 	    else if (use_limit > 500000)
913 		use_limit = 500000;
914 	    systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
915 				      (void *)(intptr_t)intr, use_limit);
916 	    /* fall through */
917 	case ISTATE_LIVELOCKED:
918 	    /*
919 	     * Wait for our periodic timer to go off.  Since the interrupt
920 	     * has re-armed it can still set i_running, but it will not
921 	     * reschedule us while we are in a livelocked state.
922 	     */
923 	    lwkt_deschedule_self(gd->gd_curthread);
924 	    lwkt_switch();
925 
926 	    /*
927 	     * Check once a second to see if the livelock condition no
928 	     * longer applies.
929 	     */
930 	    if (lseconds != gd->gd_time_seconds) {
931 		lseconds = gd->gd_time_seconds;
932 		if (ill_count < livelock_lowater) {
933 		    info->i_state = ISTATE_NORMAL;
934 		    systimer_del(&ill_timer);
935 		    kprintf("intr %d on cpu%d at %d/%d hz, livelock removed\n",
936 			    intr, cpuid, ill_count, livelock_lowater);
937 		} else if (livelock_debug == intr ||
938 			   (bootverbose && cold)) {
939 		    kprintf("intr %d on cpu%d at %d/%d hz, in livelock\n",
940 			    intr, cpuid, ill_count, livelock_lowater);
941 		}
942 		ill_count = 0;
943 	    }
944 	    break;
945 	}
946     }
947     /* NOT REACHED */
948 }
949 
950 /*
951  * Emergency interrupt polling thread.  The thread begins execution
952  * outside a critical section with the BGL held.
953  *
954  * If emergency interrupt polling is enabled, this thread will
955  * execute all system interrupts not marked INTR_NOPOLL at the
956  * specified polling frequency.
957  *
958  * WARNING!  This thread runs *ALL* interrupt service routines that
959  * are not marked INTR_NOPOLL, which basically means everything except
960  * the 8254 clock interrupt and the ATA interrupt.  It has very high
961  * overhead and should only be used in situations where the machine
962  * cannot otherwise be made to work.  Due to the severe performance
963  * degredation, it should not be enabled on production machines.
964  */
965 static void
966 ithread_emergency(void *arg __unused)
967 {
968     globaldata_t gd = mycpu;
969     struct intr_info *info;
970     intrec_t rec, nrec;
971     int intr, cpuid = mycpuid;
972     TD_INVARIANTS_DECLARE;
973 
974     get_mplock();
975     crit_enter_gd(gd);
976     TD_INVARIANTS_GET(gd->gd_curthread);
977 
978     for (;;) {
979 	for (intr = 0; intr < max_installed_hard_intr[cpuid]; ++intr) {
980 	    info = &intr_info_ary[cpuid][intr];
981 	    for (rec = info->i_reclist; rec; rec = nrec) {
982 		/* rec may be invalid after call */
983 		nrec = rec->next;
984 		if ((rec->intr_flags & INTR_NOPOLL) == 0) {
985 		    if (rec->serializer) {
986 			lwkt_serialize_handler_try(rec->serializer,
987 						rec->handler, rec->argument, NULL);
988 		    } else {
989 			rec->handler(rec->argument, NULL);
990 		    }
991 		    TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
992 		}
993 	    }
994 	}
995 	lwkt_deschedule_self(gd->gd_curthread);
996 	lwkt_switch();
997     }
998     /* NOT REACHED */
999 }
1000 
1001 /*
1002  * Systimer callback - schedule the emergency interrupt poll thread
1003  * 		       if emergency polling is enabled.
1004  */
1005 static
1006 void
1007 emergency_intr_timer_callback(systimer_t info, int in_ipi __unused,
1008     struct intrframe *frame __unused)
1009 {
1010     if (emergency_intr_enable)
1011 	lwkt_schedule(info->data);
1012 }
1013 
1014 /*
1015  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1016  * The data for this machine dependent, and the declarations are in machine
1017  * dependent code.  The layout of intrnames and intrcnt however is machine
1018  * independent.
1019  *
1020  * We do not know the length of intrcnt and intrnames at compile time, so
1021  * calculate things at run time.
1022  */
1023 
1024 static int
1025 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1026 {
1027     struct intr_info *info;
1028     intrec_t rec;
1029     int error = 0;
1030     int len;
1031     int intr, cpuid;
1032     char buf[64];
1033 
1034     for (cpuid = 0; cpuid < ncpus; ++cpuid) {
1035 	for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
1036 	    info = &intr_info_ary[cpuid][intr];
1037 
1038 	    len = 0;
1039 	    buf[0] = 0;
1040 	    for (rec = info->i_reclist; rec; rec = rec->next) {
1041 		ksnprintf(buf + len, sizeof(buf) - len, "%s%s",
1042 		    (len ? "/" : ""), rec->name);
1043 		len += strlen(buf + len);
1044 	    }
1045 	    if (len == 0) {
1046 		ksnprintf(buf, sizeof(buf), "irq%d", intr);
1047 		len = strlen(buf);
1048 	    }
1049 	    error = SYSCTL_OUT(req, buf, len + 1);
1050 	}
1051     }
1052     return (error);
1053 }
1054 
1055 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1056 	NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1057 
1058 static int
1059 sysctl_intrcnt_all(SYSCTL_HANDLER_ARGS)
1060 {
1061     struct intr_info *info;
1062     int error = 0;
1063     int intr, cpuid;
1064 
1065     for (cpuid = 0; cpuid < ncpus; ++cpuid) {
1066 	for (intr = 0; intr < MAX_INTS; ++intr) {
1067 	    info = &intr_info_ary[cpuid][intr];
1068 
1069 	    error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1070 	    if (error)
1071 		goto failed;
1072 	}
1073     }
1074 failed:
1075     return(error);
1076 }
1077 
1078 SYSCTL_PROC(_hw, OID_AUTO, intrcnt_all, CTLTYPE_OPAQUE | CTLFLAG_RD,
1079 	NULL, 0, sysctl_intrcnt_all, "", "Interrupt Counts");
1080 
1081 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1082 	NULL, 0, sysctl_intrcnt_all, "", "Interrupt Counts");
1083 
1084 static void
1085 int_moveto_destcpu(int *orig_cpuid0, int cpuid)
1086 {
1087     int orig_cpuid = mycpuid;
1088 
1089     if (cpuid != orig_cpuid)
1090 	lwkt_migratecpu(cpuid);
1091 
1092     *orig_cpuid0 = orig_cpuid;
1093 }
1094 
1095 static void
1096 int_moveto_origcpu(int orig_cpuid, int cpuid)
1097 {
1098     if (cpuid != orig_cpuid)
1099 	lwkt_migratecpu(orig_cpuid);
1100 }
1101 
1102 static void
1103 intr_init(void *dummy __unused)
1104 {
1105 	int cpuid;
1106 
1107 	kprintf("Initialize MI interrupts\n");
1108 
1109 	for (cpuid = 0; cpuid < ncpus; ++cpuid) {
1110 		int intr;
1111 
1112 		for (intr = 0; intr < MAX_INTS; ++intr) {
1113 			struct intr_info *info = &intr_info_ary[cpuid][intr];
1114 
1115 			info->i_cpuid = cpuid;
1116 			info->i_intr = intr;
1117 		}
1118 	}
1119 }
1120 SYSINIT(intr_init, SI_BOOT2_FINISH_PIC, SI_ORDER_ANY, intr_init, NULL);
1121