xref: /dragonfly/sys/kern/kern_intr.c (revision e49a8a38)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  * $DragonFly: src/sys/kern/kern_intr.c,v 1.55 2008/09/01 12:49:00 sephe Exp $
28  *
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/sysctl.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/random.h>
39 #include <sys/serialize.h>
40 #include <sys/interrupt.h>
41 #include <sys/bus.h>
42 #include <sys/machintr.h>
43 
44 #include <machine/frame.h>
45 
46 #include <sys/interrupt.h>
47 
48 #include <sys/thread2.h>
49 #include <sys/mplock2.h>
50 
51 struct info_info;
52 
53 typedef struct intrec {
54     struct intrec *next;
55     struct intr_info *info;
56     inthand2_t	*handler;
57     void	*argument;
58     char	*name;
59     int		intr;
60     int		intr_flags;
61     struct lwkt_serialize *serializer;
62 } *intrec_t;
63 
64 struct intr_info {
65 	intrec_t	i_reclist;
66 	struct thread	i_thread;
67 	struct random_softc i_random;
68 	int		i_running;
69 	long		i_count;	/* interrupts dispatched */
70 	int		i_mplock_required;
71 	int		i_fast;
72 	int		i_slow;
73 	int		i_state;
74 	int		i_errorticks;
75 	unsigned long	i_straycount;
76 } intr_info_ary[MAX_INTS];
77 
78 int max_installed_hard_intr;
79 int max_installed_soft_intr;
80 
81 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
82 
83 /*
84  * Assert that callers into interrupt handlers don't return with
85  * dangling tokens, spinlocks, or mp locks.
86  */
87 #ifdef INVARIANTS
88 
89 #define TD_INVARIANTS_DECLARE   \
90         int spincount;          \
91         lwkt_tokref_t curstop
92 
93 #define TD_INVARIANTS_GET(td)                                   \
94         do {                                                    \
95                 spincount = (td)->td_gd->gd_spinlocks_wr;       \
96                 curstop = (td)->td_toks_stop;                   \
97         } while(0)
98 
99 #define TD_INVARIANTS_TEST(td, name)                                    \
100         do {                                                            \
101                 KASSERT(spincount == (td)->td_gd->gd_spinlocks_wr,      \
102                         ("spincount mismatch after interrupt handler %s", \
103                         name));                                         \
104                 KASSERT(curstop == (td)->td_toks_stop,                  \
105                         ("token count mismatch after interrupt handler %s", \
106                         name));                                         \
107         } while(0)
108 
109 #else
110 
111 /* !INVARIANTS */
112 
113 #define TD_INVARIANTS_DECLARE
114 #define TD_INVARIANTS_GET(td)
115 #define TD_INVARIANTS_TEST(td, name)
116 
117 #endif /* ndef INVARIANTS */
118 
119 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
120 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
121 static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
122 static void ithread_handler(void *arg);
123 static void ithread_emergency(void *arg);
124 static void report_stray_interrupt(int intr, struct intr_info *info);
125 static void int_moveto_destcpu(int *, int *, int);
126 static void int_moveto_origcpu(int, int);
127 
128 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
129 
130 static struct systimer emergency_intr_timer;
131 static struct thread emergency_intr_thread;
132 
133 #define ISTATE_NOTHREAD		0
134 #define ISTATE_NORMAL		1
135 #define ISTATE_LIVELOCKED	2
136 
137 static int livelock_limit = 40000;
138 static int livelock_lowater = 20000;
139 static int livelock_debug = -1;
140 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
141         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
142 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
143         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
144 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
145         CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
146 
147 static int emergency_intr_enable = 0;	/* emergency interrupt polling */
148 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
149 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
150         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
151 
152 static int emergency_intr_freq = 10;	/* emergency polling frequency */
153 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
154 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
155         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
156 
157 /*
158  * Sysctl support routines
159  */
160 static int
161 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
162 {
163 	int error, enabled;
164 
165 	enabled = emergency_intr_enable;
166 	error = sysctl_handle_int(oidp, &enabled, 0, req);
167 	if (error || req->newptr == NULL)
168 		return error;
169 	emergency_intr_enable = enabled;
170 	if (emergency_intr_enable) {
171 		systimer_adjust_periodic(&emergency_intr_timer,
172 					 emergency_intr_freq);
173 	} else {
174 		systimer_adjust_periodic(&emergency_intr_timer, 1);
175 	}
176 	return 0;
177 }
178 
179 static int
180 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
181 {
182         int error, phz;
183 
184         phz = emergency_intr_freq;
185         error = sysctl_handle_int(oidp, &phz, 0, req);
186         if (error || req->newptr == NULL)
187                 return error;
188         if (phz <= 0)
189                 return EINVAL;
190         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
191                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
192 
193         emergency_intr_freq = phz;
194 	if (emergency_intr_enable) {
195 		systimer_adjust_periodic(&emergency_intr_timer,
196 					 emergency_intr_freq);
197 	} else {
198 		systimer_adjust_periodic(&emergency_intr_timer, 1);
199 	}
200         return 0;
201 }
202 
203 /*
204  * Register an SWI or INTerrupt handler.
205  */
206 void *
207 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
208 		struct lwkt_serialize *serializer)
209 {
210     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
211 	panic("register_swi: bad intr %d", intr);
212     return(register_int(intr, handler, arg, name, serializer, 0));
213 }
214 
215 void *
216 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name,
217 		struct lwkt_serialize *serializer)
218 {
219     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
220 	panic("register_swi: bad intr %d", intr);
221     return(register_int(intr, handler, arg, name, serializer, INTR_MPSAFE));
222 }
223 
224 void *
225 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
226 		struct lwkt_serialize *serializer, int intr_flags)
227 {
228     struct intr_info *info;
229     struct intrec **list;
230     intrec_t rec;
231     int orig_cpuid, cpuid;
232 
233     if (intr < 0 || intr >= MAX_INTS)
234 	panic("register_int: bad intr %d", intr);
235     if (name == NULL)
236 	name = "???";
237     info = &intr_info_ary[intr];
238 
239     /*
240      * Construct an interrupt handler record
241      */
242     rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
243     rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
244     strcpy(rec->name, name);
245 
246     rec->info = info;
247     rec->handler = handler;
248     rec->argument = arg;
249     rec->intr = intr;
250     rec->intr_flags = intr_flags;
251     rec->next = NULL;
252     rec->serializer = serializer;
253 
254     /*
255      * Create an emergency polling thread and set up a systimer to wake
256      * it up.
257      */
258     if (emergency_intr_thread.td_kstack == NULL) {
259 	lwkt_create(ithread_emergency, NULL, NULL, &emergency_intr_thread,
260 		    TDF_STOPREQ | TDF_INTTHREAD, -1, "ithread emerg");
261 	systimer_init_periodic_nq(&emergency_intr_timer,
262 		    emergency_intr_timer_callback, &emergency_intr_thread,
263 		    (emergency_intr_enable ? emergency_intr_freq : 1));
264     }
265 
266     int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
267 
268     /*
269      * Create an interrupt thread if necessary, leave it in an unscheduled
270      * state.
271      */
272     if (info->i_state == ISTATE_NOTHREAD) {
273 	info->i_state = ISTATE_NORMAL;
274 	lwkt_create(ithread_handler, (void *)(intptr_t)intr, NULL,
275 		    &info->i_thread, TDF_STOPREQ | TDF_INTTHREAD, -1,
276 		    "ithread %d", intr);
277 	if (intr >= FIRST_SOFTINT)
278 	    lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
279 	else
280 	    lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
281 	info->i_thread.td_preemptable = lwkt_preempt;
282     }
283 
284     list = &info->i_reclist;
285 
286     /*
287      * Keep track of how many fast and slow interrupts we have.
288      * Set i_mplock_required if any handler in the chain requires
289      * the MP lock to operate.
290      */
291     if ((intr_flags & INTR_MPSAFE) == 0)
292 	info->i_mplock_required = 1;
293     if (intr_flags & INTR_CLOCK)
294 	++info->i_fast;
295     else
296 	++info->i_slow;
297 
298     /*
299      * Enable random number generation keying off of this interrupt.
300      */
301     if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
302 	info->i_random.sc_enabled = 1;
303 	info->i_random.sc_intr = intr;
304     }
305 
306     /*
307      * Add the record to the interrupt list.
308      */
309     crit_enter();
310     while (*list != NULL)
311 	list = &(*list)->next;
312     *list = rec;
313     crit_exit();
314 
315     /*
316      * Update max_installed_hard_intr to make the emergency intr poll
317      * a bit more efficient.
318      */
319     if (intr < FIRST_SOFTINT) {
320 	if (max_installed_hard_intr <= intr)
321 	    max_installed_hard_intr = intr + 1;
322     } else {
323 	if (max_installed_soft_intr <= intr)
324 	    max_installed_soft_intr = intr + 1;
325     }
326 
327     /*
328      * Setup the machine level interrupt vector
329      */
330     if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1) {
331 	if (machintr_vector_setup(intr, intr_flags))
332 	    kprintf("machintr_vector_setup: failed on irq %d\n", intr);
333     }
334 
335     int_moveto_origcpu(orig_cpuid, cpuid);
336 
337     return(rec);
338 }
339 
340 void
341 unregister_swi(void *id)
342 {
343     unregister_int(id);
344 }
345 
346 void
347 unregister_int(void *id)
348 {
349     struct intr_info *info;
350     struct intrec **list;
351     intrec_t rec;
352     int intr, orig_cpuid, cpuid;
353 
354     intr = ((intrec_t)id)->intr;
355 
356     if (intr < 0 || intr >= MAX_INTS)
357 	panic("register_int: bad intr %d", intr);
358 
359     info = &intr_info_ary[intr];
360 
361     int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
362 
363     /*
364      * Remove the interrupt descriptor, adjust the descriptor count,
365      * and teardown the machine level vector if this was the last interrupt.
366      */
367     crit_enter();
368     list = &info->i_reclist;
369     while ((rec = *list) != NULL) {
370 	if (rec == id)
371 	    break;
372 	list = &rec->next;
373     }
374     if (rec) {
375 	intrec_t rec0;
376 
377 	*list = rec->next;
378 	if (rec->intr_flags & INTR_CLOCK)
379 	    --info->i_fast;
380 	else
381 	    --info->i_slow;
382 	if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
383 	    machintr_vector_teardown(intr);
384 
385 	/*
386 	 * Clear i_mplock_required if no handlers in the chain require the
387 	 * MP lock.
388 	 */
389 	for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
390 	    if ((rec0->intr_flags & INTR_MPSAFE) == 0)
391 		break;
392 	}
393 	if (rec0 == NULL)
394 	    info->i_mplock_required = 0;
395     }
396 
397     crit_exit();
398 
399     int_moveto_origcpu(orig_cpuid, cpuid);
400 
401     /*
402      * Free the record.
403      */
404     if (rec != NULL) {
405 	kfree(rec->name, M_DEVBUF);
406 	kfree(rec, M_DEVBUF);
407     } else {
408 	kprintf("warning: unregister_int: int %d handler for %s not found\n",
409 		intr, ((intrec_t)id)->name);
410     }
411 }
412 
413 const char *
414 get_registered_name(int intr)
415 {
416     intrec_t rec;
417 
418     if (intr < 0 || intr >= MAX_INTS)
419 	panic("register_int: bad intr %d", intr);
420 
421     if ((rec = intr_info_ary[intr].i_reclist) == NULL)
422 	return(NULL);
423     else if (rec->next)
424 	return("mux");
425     else
426 	return(rec->name);
427 }
428 
429 int
430 count_registered_ints(int intr)
431 {
432     struct intr_info *info;
433 
434     if (intr < 0 || intr >= MAX_INTS)
435 	panic("register_int: bad intr %d", intr);
436     info = &intr_info_ary[intr];
437     return(info->i_fast + info->i_slow);
438 }
439 
440 long
441 get_interrupt_counter(int intr)
442 {
443     struct intr_info *info;
444 
445     if (intr < 0 || intr >= MAX_INTS)
446 	panic("register_int: bad intr %d", intr);
447     info = &intr_info_ary[intr];
448     return(info->i_count);
449 }
450 
451 
452 void
453 swi_setpriority(int intr, int pri)
454 {
455     struct intr_info *info;
456 
457     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
458 	panic("register_swi: bad intr %d", intr);
459     info = &intr_info_ary[intr];
460     if (info->i_state != ISTATE_NOTHREAD)
461 	lwkt_setpri(&info->i_thread, pri);
462 }
463 
464 void
465 register_randintr(int intr)
466 {
467     struct intr_info *info;
468 
469     if (intr < 0 || intr >= MAX_INTS)
470 	panic("register_randintr: bad intr %d", intr);
471     info = &intr_info_ary[intr];
472     info->i_random.sc_intr = intr;
473     info->i_random.sc_enabled = 1;
474 }
475 
476 void
477 unregister_randintr(int intr)
478 {
479     struct intr_info *info;
480 
481     if (intr < 0 || intr >= MAX_INTS)
482 	panic("register_swi: bad intr %d", intr);
483     info = &intr_info_ary[intr];
484     info->i_random.sc_enabled = -1;
485 }
486 
487 int
488 next_registered_randintr(int intr)
489 {
490     struct intr_info *info;
491 
492     if (intr < 0 || intr >= MAX_INTS)
493 	panic("register_swi: bad intr %d", intr);
494     while (intr < MAX_INTS) {
495 	info = &intr_info_ary[intr];
496 	if (info->i_random.sc_enabled > 0)
497 	    break;
498 	++intr;
499     }
500     return(intr);
501 }
502 
503 /*
504  * Dispatch an interrupt.  If there's nothing to do we have a stray
505  * interrupt and can just return, leaving the interrupt masked.
506  *
507  * We need to schedule the interrupt and set its i_running bit.  If
508  * we are not on the interrupt thread's cpu we have to send a message
509  * to the correct cpu that will issue the desired action (interlocking
510  * with the interrupt thread's critical section).  We do NOT attempt to
511  * reschedule interrupts whos i_running bit is already set because
512  * this would prematurely wakeup a livelock-limited interrupt thread.
513  *
514  * i_running is only tested/set on the same cpu as the interrupt thread.
515  *
516  * We are NOT in a critical section, which will allow the scheduled
517  * interrupt to preempt us.  The MP lock might *NOT* be held here.
518  */
519 #ifdef SMP
520 
521 static void
522 sched_ithd_remote(void *arg)
523 {
524     sched_ithd((int)(intptr_t)arg);
525 }
526 
527 #endif
528 
529 void
530 sched_ithd(int intr)
531 {
532     struct intr_info *info;
533 
534     info = &intr_info_ary[intr];
535 
536     ++info->i_count;
537     if (info->i_state != ISTATE_NOTHREAD) {
538 	if (info->i_reclist == NULL) {
539 	    report_stray_interrupt(intr, info);
540 	} else {
541 #ifdef SMP
542 	    if (info->i_thread.td_gd == mycpu) {
543 		if (info->i_running == 0) {
544 		    info->i_running = 1;
545 		    if (info->i_state != ISTATE_LIVELOCKED)
546 			lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
547 		}
548 	    } else {
549 		lwkt_send_ipiq(info->i_thread.td_gd,
550 				sched_ithd_remote, (void *)(intptr_t)intr);
551 	    }
552 #else
553 	    if (info->i_running == 0) {
554 		info->i_running = 1;
555 		if (info->i_state != ISTATE_LIVELOCKED)
556 		    lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
557 	    }
558 #endif
559 	}
560     } else {
561 	report_stray_interrupt(intr, info);
562     }
563 }
564 
565 static void
566 report_stray_interrupt(int intr, struct intr_info *info)
567 {
568 	++info->i_straycount;
569 	if (info->i_straycount < 10) {
570 		if (info->i_errorticks == ticks)
571 			return;
572 		info->i_errorticks = ticks;
573 		kprintf("sched_ithd: stray interrupt %d on cpu %d\n",
574 			intr, mycpuid);
575 	} else if (info->i_straycount == 10) {
576 		kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - "
577 			"there will be no further reports\n",
578 			info->i_straycount, intr, mycpuid);
579 	}
580 }
581 
582 /*
583  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
584  * might not be held).
585  */
586 static void
587 ithread_livelock_wakeup(systimer_t st)
588 {
589     struct intr_info *info;
590 
591     info = &intr_info_ary[(int)(intptr_t)st->data];
592     if (info->i_state != ISTATE_NOTHREAD)
593 	lwkt_schedule(&info->i_thread);
594 }
595 
596 /*
597  * Schedule ithread within fast intr handler
598  *
599  * XXX Protect sched_ithd() call with gd_intr_nesting_level?
600  * Interrupts aren't enabled, but still...
601  */
602 static __inline void
603 ithread_fast_sched(int intr, thread_t td)
604 {
605     ++td->td_nest_count;
606 
607     /*
608      * We are already in critical section, exit it now to
609      * allow preemption.
610      */
611     crit_exit_quick(td);
612     sched_ithd(intr);
613     crit_enter_quick(td);
614 
615     --td->td_nest_count;
616 }
617 
618 /*
619  * This function is called directly from the ICU or APIC vector code assembly
620  * to process an interrupt.  The critical section and interrupt deferral
621  * checks have already been done but the function is entered WITHOUT
622  * a critical section held.  The BGL may or may not be held.
623  *
624  * Must return non-zero if we do not want the vector code to re-enable
625  * the interrupt (which we don't if we have to schedule the interrupt)
626  */
627 int ithread_fast_handler(struct intrframe *frame);
628 
629 int
630 ithread_fast_handler(struct intrframe *frame)
631 {
632     int intr;
633     struct intr_info *info;
634     struct intrec **list;
635     int must_schedule;
636 #ifdef SMP
637     int got_mplock;
638 #endif
639     TD_INVARIANTS_DECLARE;
640     intrec_t rec, nrec;
641     globaldata_t gd;
642     thread_t td;
643 
644     intr = frame->if_vec;
645     gd = mycpu;
646     td = curthread;
647 
648     /* We must be in critical section. */
649     KKASSERT(td->td_critcount);
650 
651     info = &intr_info_ary[intr];
652 
653     /*
654      * If we are not processing any FAST interrupts, just schedule the thing.
655      */
656     if (info->i_fast == 0) {
657     	++gd->gd_cnt.v_intr;
658 	ithread_fast_sched(intr, td);
659 	return(1);
660     }
661 
662     /*
663      * This should not normally occur since interrupts ought to be
664      * masked if the ithread has been scheduled or is running.
665      */
666     if (info->i_running)
667 	return(1);
668 
669     /*
670      * Bump the interrupt nesting level to process any FAST interrupts.
671      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
672      * schedule the interrupt thread to deal with the issue instead.
673      *
674      * To reduce overhead, just leave the MP lock held once it has been
675      * obtained.
676      */
677     ++gd->gd_intr_nesting_level;
678     ++gd->gd_cnt.v_intr;
679     must_schedule = info->i_slow;
680 #ifdef SMP
681     got_mplock = 0;
682 #endif
683 
684     TD_INVARIANTS_GET(td);
685     list = &info->i_reclist;
686 
687     for (rec = *list; rec; rec = nrec) {
688 	/* rec may be invalid after call */
689 	nrec = rec->next;
690 
691 	if (rec->intr_flags & INTR_CLOCK) {
692 #ifdef SMP
693 	    if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
694 		if (try_mplock() == 0) {
695 		    /* Couldn't get the MP lock; just schedule it. */
696 		    must_schedule = 1;
697 		    break;
698 		}
699 		got_mplock = 1;
700 	    }
701 #endif
702 	    if (rec->serializer) {
703 		must_schedule += lwkt_serialize_handler_try(
704 					rec->serializer, rec->handler,
705 					rec->argument, frame);
706 	    } else {
707 		rec->handler(rec->argument, frame);
708 	    }
709 	    TD_INVARIANTS_TEST(td, rec->name);
710 	}
711     }
712 
713     /*
714      * Cleanup
715      */
716     --gd->gd_intr_nesting_level;
717 #ifdef SMP
718     if (got_mplock)
719 	rel_mplock();
720 #endif
721 
722     /*
723      * If we had a problem, or mixed fast and slow interrupt handlers are
724      * registered, schedule the ithread to catch the missed records (it
725      * will just re-run all of them).  A return value of 0 indicates that
726      * all handlers have been run and the interrupt can be re-enabled, and
727      * a non-zero return indicates that the interrupt thread controls
728      * re-enablement.
729      */
730     if (must_schedule > 0)
731 	ithread_fast_sched(intr, td);
732     else if (must_schedule == 0)
733 	++info->i_count;
734     return(must_schedule);
735 }
736 
737 /*
738  * Interrupt threads run this as their main loop.
739  *
740  * The handler begins execution outside a critical section and no MP lock.
741  *
742  * The i_running state starts at 0.  When an interrupt occurs, the hardware
743  * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
744  * until all routines have run.  We then call ithread_done() to reenable
745  * the HW interrupt and deschedule us until the next interrupt.
746  *
747  * We are responsible for atomically checking i_running and ithread_done()
748  * is responsible for atomically checking for platform-specific delayed
749  * interrupts.  i_running for our irq is only set in the context of our cpu,
750  * so a critical section is a sufficient interlock.
751  */
752 #define LIVELOCK_TIMEFRAME(freq)	((freq) >> 2)	/* 1/4 second */
753 
754 static void
755 ithread_handler(void *arg)
756 {
757     struct intr_info *info;
758     int use_limit;
759     __uint32_t lseconds;
760     int intr;
761     int mpheld;
762     struct intrec **list;
763     intrec_t rec, nrec;
764     globaldata_t gd;
765     struct systimer ill_timer;	/* enforced freq. timer */
766     u_int ill_count;		/* interrupt livelock counter */
767     TD_INVARIANTS_DECLARE;
768 
769     ill_count = 0;
770     intr = (int)(intptr_t)arg;
771     info = &intr_info_ary[intr];
772     list = &info->i_reclist;
773 
774     /*
775      * The loop must be entered with one critical section held.  The thread
776      * does not hold the mplock on startup.
777      */
778     gd = mycpu;
779     lseconds = gd->gd_time_seconds;
780     crit_enter_gd(gd);
781     mpheld = 0;
782 
783     for (;;) {
784 	/*
785 	 * The chain is only considered MPSAFE if all its interrupt handlers
786 	 * are MPSAFE.  However, if intr_mpsafe has been turned off we
787 	 * always operate with the BGL.
788 	 */
789 #ifdef SMP
790 	if (info->i_mplock_required != mpheld) {
791 	    if (info->i_mplock_required) {
792 		KKASSERT(mpheld == 0);
793 		get_mplock();
794 		mpheld = 1;
795 	    } else {
796 		KKASSERT(mpheld != 0);
797 		rel_mplock();
798 		mpheld = 0;
799 	    }
800 	}
801 #endif
802 
803 	TD_INVARIANTS_GET(gd->gd_curthread);
804 
805 	/*
806 	 * If an interrupt is pending, clear i_running and execute the
807 	 * handlers.  Note that certain types of interrupts can re-trigger
808 	 * and set i_running again.
809 	 *
810 	 * Each handler is run in a critical section.  Note that we run both
811 	 * FAST and SLOW designated service routines.
812 	 */
813 	if (info->i_running) {
814 	    ++ill_count;
815 	    info->i_running = 0;
816 
817 	    if (*list == NULL)
818 		report_stray_interrupt(intr, info);
819 
820 	    for (rec = *list; rec; rec = nrec) {
821 		/* rec may be invalid after call */
822 		nrec = rec->next;
823 		if (rec->serializer) {
824 		    lwkt_serialize_handler_call(rec->serializer, rec->handler,
825 						rec->argument, NULL);
826 		} else {
827 		    rec->handler(rec->argument, NULL);
828 		}
829 		TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
830 	    }
831 	}
832 
833 	/*
834 	 * This is our interrupt hook to add rate randomness to the random
835 	 * number generator.
836 	 */
837 	if (info->i_random.sc_enabled > 0)
838 	    add_interrupt_randomness(intr);
839 
840 	/*
841 	 * Unmask the interrupt to allow it to trigger again.  This only
842 	 * applies to certain types of interrupts (typ level interrupts).
843 	 * This can result in the interrupt retriggering, but the retrigger
844 	 * will not be processed until we cycle our critical section.
845 	 *
846 	 * Only unmask interrupts while handlers are installed.  It is
847 	 * possible to hit a situation where no handlers are installed
848 	 * due to a device driver livelocking and then tearing down its
849 	 * interrupt on close (the parallel bus being a good example).
850 	 */
851 	if (*list)
852 	    machintr_intren(intr);
853 
854 	/*
855 	 * Do a quick exit/enter to catch any higher-priority interrupt
856 	 * sources, such as the statclock, so thread time accounting
857 	 * will still work.  This may also cause an interrupt to re-trigger.
858 	 */
859 	crit_exit_gd(gd);
860 	crit_enter_gd(gd);
861 
862 	/*
863 	 * LIVELOCK STATE MACHINE
864 	 */
865 	switch(info->i_state) {
866 	case ISTATE_NORMAL:
867 	    /*
868 	     * Reset the count each second.
869 	     */
870 	    if (lseconds != gd->gd_time_seconds) {
871 		lseconds = gd->gd_time_seconds;
872 		ill_count = 0;
873 	    }
874 
875 	    /*
876 	     * If we did not exceed the frequency limit, we are done.
877 	     * If the interrupt has not retriggered we deschedule ourselves.
878 	     */
879 	    if (ill_count <= livelock_limit) {
880 		if (info->i_running == 0) {
881 		    lwkt_deschedule_self(gd->gd_curthread);
882 		    lwkt_switch();
883 		}
884 		break;
885 	    }
886 
887 	    /*
888 	     * Otherwise we are livelocked.  Set up a periodic systimer
889 	     * to wake the thread up at the limit frequency.
890 	     */
891 	    kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n",
892 		   intr, ill_count, livelock_limit);
893 	    info->i_state = ISTATE_LIVELOCKED;
894 	    if ((use_limit = livelock_limit) < 100)
895 		use_limit = 100;
896 	    else if (use_limit > 500000)
897 		use_limit = 500000;
898 	    systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
899 				      (void *)(intptr_t)intr, use_limit);
900 	    /* fall through */
901 	case ISTATE_LIVELOCKED:
902 	    /*
903 	     * Wait for our periodic timer to go off.  Since the interrupt
904 	     * has re-armed it can still set i_running, but it will not
905 	     * reschedule us while we are in a livelocked state.
906 	     */
907 	    lwkt_deschedule_self(gd->gd_curthread);
908 	    lwkt_switch();
909 
910 	    /*
911 	     * Check once a second to see if the livelock condition no
912 	     * longer applies.
913 	     */
914 	    if (lseconds != gd->gd_time_seconds) {
915 		lseconds = gd->gd_time_seconds;
916 		if (ill_count < livelock_lowater) {
917 		    info->i_state = ISTATE_NORMAL;
918 		    systimer_del(&ill_timer);
919 		    kprintf("intr %d at %d/%d hz, livelock removed\n",
920 			   intr, ill_count, livelock_lowater);
921 		} else if (livelock_debug == intr ||
922 			   (bootverbose && cold)) {
923 		    kprintf("intr %d at %d/%d hz, in livelock\n",
924 			   intr, ill_count, livelock_lowater);
925 		}
926 		ill_count = 0;
927 	    }
928 	    break;
929 	}
930     }
931     /* not reached */
932 }
933 
934 /*
935  * Emergency interrupt polling thread.  The thread begins execution
936  * outside a critical section with the BGL held.
937  *
938  * If emergency interrupt polling is enabled, this thread will
939  * execute all system interrupts not marked INTR_NOPOLL at the
940  * specified polling frequency.
941  *
942  * WARNING!  This thread runs *ALL* interrupt service routines that
943  * are not marked INTR_NOPOLL, which basically means everything except
944  * the 8254 clock interrupt and the ATA interrupt.  It has very high
945  * overhead and should only be used in situations where the machine
946  * cannot otherwise be made to work.  Due to the severe performance
947  * degredation, it should not be enabled on production machines.
948  */
949 static void
950 ithread_emergency(void *arg __unused)
951 {
952     struct intr_info *info;
953     intrec_t rec, nrec;
954     int intr;
955     thread_t td __debugvar = curthread;
956     TD_INVARIANTS_DECLARE;
957 
958     get_mplock();
959     TD_INVARIANTS_GET(td);
960 
961     for (;;) {
962 	for (intr = 0; intr < max_installed_hard_intr; ++intr) {
963 	    info = &intr_info_ary[intr];
964 	    for (rec = info->i_reclist; rec; rec = nrec) {
965 		/* rec may be invalid after call */
966 		nrec = rec->next;
967 		if ((rec->intr_flags & INTR_NOPOLL) == 0) {
968 		    if (rec->serializer) {
969 			lwkt_serialize_handler_try(rec->serializer,
970 						rec->handler, rec->argument, NULL);
971 		    } else {
972 			rec->handler(rec->argument, NULL);
973 		    }
974 		    TD_INVARIANTS_TEST(td, rec->name);
975 		}
976 	    }
977 	}
978 	lwkt_deschedule_self(curthread);
979 	lwkt_switch();
980     }
981 }
982 
983 /*
984  * Systimer callback - schedule the emergency interrupt poll thread
985  * 		       if emergency polling is enabled.
986  */
987 static
988 void
989 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
990 {
991     if (emergency_intr_enable)
992 	lwkt_schedule(info->data);
993 }
994 
995 int
996 ithread_cpuid(int intr)
997 {
998 	const struct intr_info *info;
999 
1000 	KKASSERT(intr >= 0 && intr < MAX_INTS);
1001 	info = &intr_info_ary[intr];
1002 
1003 	if (info->i_state == ISTATE_NOTHREAD)
1004 		return -1;
1005 	return info->i_thread.td_gd->gd_cpuid;
1006 }
1007 
1008 /*
1009  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1010  * The data for this machine dependent, and the declarations are in machine
1011  * dependent code.  The layout of intrnames and intrcnt however is machine
1012  * independent.
1013  *
1014  * We do not know the length of intrcnt and intrnames at compile time, so
1015  * calculate things at run time.
1016  */
1017 
1018 static int
1019 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1020 {
1021     struct intr_info *info;
1022     intrec_t rec;
1023     int error = 0;
1024     int len;
1025     int intr;
1026     char buf[64];
1027 
1028     for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
1029 	info = &intr_info_ary[intr];
1030 
1031 	len = 0;
1032 	buf[0] = 0;
1033 	for (rec = info->i_reclist; rec; rec = rec->next) {
1034 	    ksnprintf(buf + len, sizeof(buf) - len, "%s%s",
1035 		(len ? "/" : ""), rec->name);
1036 	    len += strlen(buf + len);
1037 	}
1038 	if (len == 0) {
1039 	    ksnprintf(buf, sizeof(buf), "irq%d", intr);
1040 	    len = strlen(buf);
1041 	}
1042 	error = SYSCTL_OUT(req, buf, len + 1);
1043     }
1044     return (error);
1045 }
1046 
1047 
1048 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1049 	NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1050 
1051 static int
1052 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1053 {
1054     struct intr_info *info;
1055     int error = 0;
1056     int intr;
1057 
1058     for (intr = 0; intr < max_installed_hard_intr; ++intr) {
1059 	info = &intr_info_ary[intr];
1060 
1061 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1062 	if (error)
1063 		goto failed;
1064     }
1065     for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
1066 	info = &intr_info_ary[intr];
1067 
1068 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1069 	if (error)
1070 		goto failed;
1071     }
1072 failed:
1073     return(error);
1074 }
1075 
1076 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1077 	NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1078 
1079 static void
1080 int_moveto_destcpu(int *orig_cpuid0, int *cpuid0, int intr)
1081 {
1082     int orig_cpuid = mycpuid, cpuid;
1083     char envpath[32];
1084 
1085     cpuid = orig_cpuid;
1086     ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr);
1087     kgetenv_int(envpath, &cpuid);
1088     if (cpuid >= ncpus)
1089 	cpuid = orig_cpuid;
1090 
1091     if (cpuid != orig_cpuid)
1092 	lwkt_migratecpu(cpuid);
1093 
1094     *orig_cpuid0 = orig_cpuid;
1095     *cpuid0 = cpuid;
1096 }
1097 
1098 static void
1099 int_moveto_origcpu(int orig_cpuid, int cpuid)
1100 {
1101     if (cpuid != orig_cpuid)
1102 	lwkt_migratecpu(orig_cpuid);
1103 }
1104