xref: /dragonfly/sys/kern/kern_ktr.c (revision 0ac6bf9d)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * The following copyright applies to the DDB command code:
36  *
37  * Copyright (c) 2000 John Baldwin <jhb@FreeBSD.org>
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the author nor the names of any co-contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 /*
65  * $DragonFly: src/sys/kern/kern_ktr.c,v 1.17 2006/09/05 03:48:12 dillon Exp $
66  */
67 /*
68  * Kernel tracepoint facility.
69  */
70 
71 #include "opt_ddb.h"
72 #include "opt_ktr.h"
73 
74 #include <sys/param.h>
75 #include <sys/cons.h>
76 #include <sys/kernel.h>
77 #include <sys/libkern.h>
78 #include <sys/proc.h>
79 #include <sys/sysctl.h>
80 #include <sys/ktr.h>
81 #include <sys/systm.h>
82 #include <sys/time.h>
83 #include <sys/malloc.h>
84 #include <sys/spinlock.h>
85 #include <sys/thread2.h>
86 #include <sys/spinlock2.h>
87 #include <sys/ctype.h>
88 
89 #include <machine/cpu.h>
90 #include <machine/cpufunc.h>
91 #include <machine/specialreg.h>
92 #include <machine/md_var.h>
93 
94 #include <ddb/ddb.h>
95 
96 #ifndef KTR_ENTRIES
97 #define	KTR_ENTRIES		2048
98 #endif
99 #define KTR_ENTRIES_MASK	(KTR_ENTRIES - 1)
100 
101 /*
102  * test logging support.  When ktr_testlogcnt is non-zero each synchronization
103  * interrupt will issue six back-to-back ktr logging messages on cpu 0
104  * so the user can determine KTR logging overheads.
105  */
106 #if !defined(KTR_TESTLOG)
107 #define KTR_TESTLOG	KTR_ALL
108 #endif
109 KTR_INFO_MASTER(testlog);
110 #if KTR_TESTLOG
111 KTR_INFO(KTR_TESTLOG, testlog, test1, 0, "test1", sizeof(void *) * 4);
112 KTR_INFO(KTR_TESTLOG, testlog, test2, 1, "test2", sizeof(void *) * 4);
113 KTR_INFO(KTR_TESTLOG, testlog, test3, 2, "test3", sizeof(void *) * 4);
114 KTR_INFO(KTR_TESTLOG, testlog, test4, 3, "test4", 0);
115 KTR_INFO(KTR_TESTLOG, testlog, test5, 4, "test5", 0);
116 KTR_INFO(KTR_TESTLOG, testlog, test6, 5, "test6", 0);
117 #ifdef SMP
118 KTR_INFO(KTR_TESTLOG, testlog, pingpong, 6, "pingpong", 0);
119 KTR_INFO(KTR_TESTLOG, testlog, pipeline, 7, "pipeline", 0);
120 #endif
121 KTR_INFO(KTR_TESTLOG, testlog, crit_beg, 8, "crit_beg", 0);
122 KTR_INFO(KTR_TESTLOG, testlog, crit_end, 9, "crit_end", 0);
123 KTR_INFO(KTR_TESTLOG, testlog, spin_beg, 10, "spin_beg", 0);
124 KTR_INFO(KTR_TESTLOG, testlog, spin_end, 11, "spin_end", 0);
125 #define logtest(name)	KTR_LOG(testlog_ ## name, 0, 0, 0, 0)
126 #define logtest_noargs(name)	KTR_LOG(testlog_ ## name)
127 #endif
128 
129 MALLOC_DEFINE(M_KTR, "ktr", "ktr buffers");
130 
131 SYSCTL_NODE(_debug, OID_AUTO, ktr, CTLFLAG_RW, 0, "ktr");
132 
133 static int32_t	ktr_cpumask = -1;
134 TUNABLE_INT("debug.ktr.cpumask", &ktr_cpumask);
135 SYSCTL_INT(_debug_ktr, OID_AUTO, cpumask, CTLFLAG_RW, &ktr_cpumask, 0, "");
136 
137 static int	ktr_entries = KTR_ENTRIES;
138 SYSCTL_INT(_debug_ktr, OID_AUTO, entries, CTLFLAG_RD, &ktr_entries, 0, "");
139 
140 static int	ktr_version = KTR_VERSION;
141 SYSCTL_INT(_debug_ktr, OID_AUTO, version, CTLFLAG_RD, &ktr_version, 0, "");
142 
143 static int	ktr_stacktrace = 1;
144 SYSCTL_INT(_debug_ktr, OID_AUTO, stacktrace, CTLFLAG_RD, &ktr_stacktrace, 0, "");
145 
146 static int	ktr_resynchronize = 0;
147 SYSCTL_INT(_debug_ktr, OID_AUTO, resynchronize, CTLFLAG_RW, &ktr_resynchronize, 0, "");
148 
149 #if KTR_TESTLOG
150 static int	ktr_testlogcnt = 0;
151 SYSCTL_INT(_debug_ktr, OID_AUTO, testlogcnt, CTLFLAG_RW, &ktr_testlogcnt, 0, "");
152 static int	ktr_testipicnt = 0;
153 static int	ktr_testipicnt_remainder;
154 SYSCTL_INT(_debug_ktr, OID_AUTO, testipicnt, CTLFLAG_RW, &ktr_testipicnt, 0, "");
155 static int	ktr_testcritcnt = 0;
156 SYSCTL_INT(_debug_ktr, OID_AUTO, testcritcnt, CTLFLAG_RW, &ktr_testcritcnt, 0, "");
157 static int	ktr_testspincnt = 0;
158 SYSCTL_INT(_debug_ktr, OID_AUTO, testspincnt, CTLFLAG_RW, &ktr_testspincnt, 0, "");
159 #endif
160 
161 /*
162  * Give cpu0 a static buffer so the tracepoint facility can be used during
163  * early boot (note however that we still use a critical section, XXX).
164  */
165 static struct	ktr_entry ktr_buf0[KTR_ENTRIES];
166 static struct	ktr_entry *ktr_buf[MAXCPU] = { &ktr_buf0[0] };
167 static int	ktr_idx[MAXCPU];
168 #ifdef SMP
169 static int	ktr_sync_state = 0;
170 static int	ktr_sync_count;
171 static int64_t	ktr_sync_tsc;
172 #endif
173 struct callout	ktr_resync_callout;
174 
175 #ifdef KTR_VERBOSE
176 int	ktr_verbose = KTR_VERBOSE;
177 TUNABLE_INT("debug.ktr.verbose", &ktr_verbose);
178 SYSCTL_INT(_debug_ktr, OID_AUTO, verbose, CTLFLAG_RW, &ktr_verbose, 0, "");
179 #endif
180 
181 extern int64_t tsc_offsets[];
182 
183 static void
184 ktr_sysinit(void *dummy)
185 {
186 	int i;
187 
188 	for(i = 1; i < ncpus; ++i) {
189 		ktr_buf[i] = kmalloc(KTR_ENTRIES * sizeof(struct ktr_entry),
190 				    M_KTR, M_WAITOK | M_ZERO);
191 	}
192 }
193 SYSINIT(ktr_sysinit, SI_SUB_INTRINSIC, SI_ORDER_FIRST, ktr_sysinit, NULL);
194 
195 /*
196  * Try to resynchronize the TSC's for all cpus.  This is really, really nasty.
197  * We have to send an IPIQ message to all remote cpus, wait until they
198  * get into their IPIQ processing code loop, then do an even stricter hard
199  * loop to get the cpus as close to synchronized as we can to get the most
200  * accurate reading.
201  *
202  * This callback occurs on cpu0.
203  */
204 static void ktr_resync_callback(void *dummy);
205 #if KTR_TESTLOG
206 static void ktr_pingpong_remote(void *dummy);
207 static void ktr_pipeline_remote(void *dummy);
208 #endif
209 
210 static void
211 ktr_resyncinit(void *dummy)
212 {
213 	callout_init(&ktr_resync_callout);
214 	callout_reset(&ktr_resync_callout, hz / 10, ktr_resync_callback, NULL);
215 }
216 SYSINIT(ktr_resync, SI_SUB_FINISH_SMP+1, SI_ORDER_ANY, ktr_resyncinit, NULL);
217 
218 #ifdef SMP
219 
220 static void ktr_resync_remote(void *dummy);
221 extern cpumask_t smp_active_mask;
222 
223 /*
224  * We use a callout callback instead of a systimer because we cannot afford
225  * to preempt anyone to do this, or we might deadlock a spin-lock or
226  * serializer between two cpus.
227  */
228 static
229 void
230 ktr_resync_callback(void *dummy __unused)
231 {
232 	int count;
233 
234 	KKASSERT(mycpu->gd_cpuid == 0);
235 
236 #if KTR_TESTLOG
237 	/*
238 	 * Test logging
239 	 */
240 	if (ktr_testlogcnt) {
241 		--ktr_testlogcnt;
242 		cpu_disable_intr();
243 		logtest(test1);
244 		logtest(test2);
245 		logtest(test3);
246 		logtest_noargs(test4);
247 		logtest_noargs(test5);
248 		logtest_noargs(test6);
249 		cpu_enable_intr();
250 	}
251 
252 	/*
253 	 * Test IPI messaging
254 	 */
255 	if (ktr_testipicnt && ktr_testipicnt_remainder == 0 && ncpus > 1) {
256 		ktr_testipicnt_remainder = ktr_testipicnt;
257 		ktr_testipicnt = 0;
258 		lwkt_send_ipiq_bycpu(1, ktr_pingpong_remote, NULL);
259 	}
260 
261 	/*
262 	 * Test critical sections
263 	 */
264 	if (ktr_testcritcnt) {
265 		crit_enter();
266 		crit_exit();
267 		logtest_noargs(crit_beg);
268 		for (count = ktr_testcritcnt; count; --count) {
269 			crit_enter();
270 			crit_exit();
271 		}
272 		logtest_noargs(crit_end);
273 		ktr_testcritcnt = 0;
274 	}
275 
276 	/*
277 	 * Test spinlock sections
278 	 */
279 	if (ktr_testspincnt) {
280 		struct spinlock spin;
281 
282 		spin_init(&spin);
283 		spin_lock_wr(&spin);
284 		spin_unlock_wr(&spin);
285 		logtest_noargs(spin_beg);
286 		for (count = ktr_testspincnt; count; --count) {
287 			spin_lock_wr(&spin);
288 			spin_unlock_wr(&spin);
289 		}
290 		logtest_noargs(spin_end);
291 		logtest_noargs(spin_beg);
292 		for (count = ktr_testspincnt; count; --count) {
293 			spin_lock_rd(&spin);
294 			spin_unlock_rd(&spin);
295 		}
296 		logtest_noargs(spin_end);
297 		ktr_testspincnt = 0;
298 	}
299 #endif
300 
301 	/*
302 	 * Resynchronize the TSC
303 	 */
304 	if (ktr_resynchronize == 0)
305 		goto done;
306 	if ((cpu_feature & CPUID_TSC) == 0)
307 		return;
308 
309 	/*
310 	 * Send the synchronizing IPI and wait for all cpus to get into
311 	 * their spin loop.  We must process incoming IPIs while waiting
312 	 * to avoid a deadlock.
313 	 */
314 	crit_enter();
315 	ktr_sync_count = 0;
316 	ktr_sync_state = 1;
317 	ktr_sync_tsc = rdtsc();
318 	count = lwkt_send_ipiq_mask(mycpu->gd_other_cpus & smp_active_mask,
319 				    (ipifunc1_t)ktr_resync_remote, NULL);
320 	while (ktr_sync_count != count)
321 		lwkt_process_ipiq();
322 
323 	/*
324 	 * Continuously update the TSC for cpu 0 while waiting for all other
325 	 * cpus to finish stage 2.
326 	 */
327 	cpu_disable_intr();
328 	ktr_sync_tsc = rdtsc();
329 	cpu_sfence();
330 	ktr_sync_state = 2;
331 	cpu_sfence();
332 	while (ktr_sync_count != 0) {
333 		ktr_sync_tsc = rdtsc();
334 		cpu_lfence();
335 		cpu_nop();
336 	}
337 	cpu_enable_intr();
338 	crit_exit();
339 	ktr_sync_state = 0;
340 done:
341 	callout_reset(&ktr_resync_callout, hz / 10, ktr_resync_callback, NULL);
342 }
343 
344 /*
345  * The remote-end of the KTR synchronization protocol runs on all cpus except
346  * cpu 0.  Since this is an IPI function, it is entered with the current
347  * thread in a critical section.
348  */
349 static void
350 ktr_resync_remote(void *dummy __unused)
351 {
352 	volatile int64_t tsc1 = ktr_sync_tsc;
353 	volatile int64_t tsc2;
354 
355 	/*
356 	 * Inform the master that we have entered our hard loop.
357 	 */
358 	KKASSERT(ktr_sync_state == 1);
359 	atomic_add_int(&ktr_sync_count, 1);
360 	while (ktr_sync_state == 1) {
361 		lwkt_process_ipiq();
362 	}
363 
364 	/*
365 	 * Now the master is in a hard loop, synchronize the TSC and
366 	 * we are done.
367 	 */
368 	cpu_disable_intr();
369 	KKASSERT(ktr_sync_state == 2);
370 	tsc2 = ktr_sync_tsc;
371 	if (tsc2 > tsc1)
372 		tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc2;
373 	atomic_subtract_int(&ktr_sync_count, 1);
374 	cpu_enable_intr();
375 }
376 
377 #if KTR_TESTLOG
378 
379 static
380 void
381 ktr_pingpong_remote(void *dummy __unused)
382 {
383 	int other_cpu;
384 
385 	logtest_noargs(pingpong);
386 	other_cpu = 1 - mycpu->gd_cpuid;
387 	if (ktr_testipicnt_remainder) {
388 		--ktr_testipicnt_remainder;
389 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pingpong_remote, NULL);
390 	} else {
391 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
392 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
393 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
394 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
395 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
396 	}
397 }
398 
399 static
400 void
401 ktr_pipeline_remote(void *dummy __unused)
402 {
403 	logtest_noargs(pipeline);
404 }
405 
406 #endif
407 
408 #else	/* !SMP */
409 
410 /*
411  * The resync callback for UP doesn't do anything other then run the test
412  * log messages.  If test logging is not enabled, don't bother resetting
413  * the callout.
414  */
415 static
416 void
417 ktr_resync_callback(void *dummy __unused)
418 {
419 #if KTR_TESTLOG
420 	/*
421 	 * Test logging
422 	 */
423 	if (ktr_testlogcnt) {
424 		--ktr_testlogcnt;
425 		cpu_disable_intr();
426 		logtest(test1);
427 		logtest(test2);
428 		logtest(test3);
429 		logtest_noargs(test4);
430 		logtest_noargs(test5);
431 		logtest_noargs(test6);
432 		cpu_enable_intr();
433 	}
434 	callout_reset(&ktr_resync_callout, hz / 10, ktr_resync_callback, NULL);
435 #endif
436 }
437 
438 #endif
439 
440 /*
441  * KTR_WRITE_ENTRY - Primary entry point for kernel trace logging
442  */
443 static __inline
444 void
445 ktr_write_entry(struct ktr_info *info, const char *file, int line,
446 		const void *ptr)
447 {
448 	struct ktr_entry *entry;
449 	int cpu;
450 
451 	cpu = mycpu->gd_cpuid;
452 	if (!ktr_buf[cpu])
453 		return;
454 
455 	crit_enter();
456 	entry = ktr_buf[cpu] + (ktr_idx[cpu] & KTR_ENTRIES_MASK);
457 	++ktr_idx[cpu];
458 	if (cpu_feature & CPUID_TSC) {
459 #ifdef SMP
460 		entry->ktr_timestamp = rdtsc() - tsc_offsets[cpu];
461 #else
462 		entry->ktr_timestamp = rdtsc();
463 #endif
464 	} else {
465 		entry->ktr_timestamp = get_approximate_time_t();
466 	}
467 	entry->ktr_info = info;
468 	entry->ktr_file = file;
469 	entry->ktr_line = line;
470 	crit_exit();
471 	if (info->kf_data_size > KTR_BUFSIZE)
472 		bcopyi(ptr, entry->ktr_data, KTR_BUFSIZE);
473 	else if (info->kf_data_size)
474 		bcopyi(ptr, entry->ktr_data, info->kf_data_size);
475 	if (ktr_stacktrace)
476 		cpu_ktr_caller(entry);
477 #ifdef KTR_VERBOSE
478 	if (ktr_verbose && info->kf_format) {
479 #ifdef SMP
480 		printf("cpu%d ", cpu);
481 #endif
482 		if (ktr_verbose > 1) {
483 			printf("%s.%d\t", entry->ktr_file, entry->ktr_line);
484 		}
485 		vprintf(info->kf_format, ptr);
486 		printf("\n");
487 	}
488 #endif
489 }
490 
491 void
492 ktr_log(struct ktr_info *info, const char *file, int line, ...)
493 {
494 	__va_list va;
495 
496 	if (panicstr == NULL) {
497 		__va_start(va, line);
498 		ktr_write_entry(info, file, line, va);
499 		__va_end(va);
500 	}
501 }
502 
503 void
504 ktr_log_ptr(struct ktr_info *info, const char *file, int line, const void *ptr)
505 {
506 	if (panicstr == NULL) {
507 		ktr_write_entry(info, file, line, ptr);
508 	}
509 }
510 
511 #ifdef DDB
512 
513 #define	NUM_LINES_PER_PAGE	19
514 
515 struct tstate {
516 	int	cur;
517 	int	first;
518 };
519 
520 static	int db_ktr_verbose;
521 static	int db_mach_vtrace(int cpu, struct ktr_entry *kp, int idx);
522 
523 DB_SHOW_COMMAND(ktr, db_ktr_all)
524 {
525 	int a_flag = 0;
526 	int c;
527 	int nl = 0;
528 	int i;
529 	struct tstate tstate[MAXCPU];
530 	int printcpu = -1;
531 
532 	for(i = 0; i < ncpus; i++) {
533 		tstate[i].first = -1;
534 		tstate[i].cur = ktr_idx[i] & KTR_ENTRIES_MASK;
535 	}
536 	db_ktr_verbose = 0;
537 	while ((c = *(modif++)) != '\0') {
538 		if (c == 'v') {
539 			db_ktr_verbose = 1;
540 		}
541 		else if (c == 'a') {
542 			a_flag = 1;
543 		}
544 		else if (c == 'c') {
545 			printcpu = 0;
546 			while ((c = *(modif++)) != '\0') {
547 				if (isdigit(c)) {
548 					printcpu *= 10;
549 					printcpu += c - '0';
550 				}
551 				else {
552 					modif++;
553 					break;
554 				}
555 			}
556 			modif--;
557 		}
558 	}
559 	if (printcpu > ncpus - 1) {
560 		db_printf("Invalid cpu number\n");
561 		return;
562 	}
563 	/*
564 	 * Lopp throug all the buffers and print the content of them, sorted
565 	 * by the timestamp.
566 	 */
567 	while (1) {
568 		int counter;
569 		u_int64_t highest_ts;
570 		int highest_cpu;
571 		struct ktr_entry *kp;
572 
573 		if (a_flag == 1 && cncheckc() != -1)
574 			return;
575 		highest_ts = 0;
576 		highest_cpu = -1;
577 		/*
578 		 * Find the lowest timestamp
579 		 */
580 		for (i = 0, counter = 0; i < ncpus; i++) {
581 			if (ktr_buf[i] == NULL)
582 				continue;
583 			if (printcpu != -1 && printcpu != i)
584 				continue;
585 			if (tstate[i].cur == -1) {
586 				counter++;
587 				if (counter == ncpus) {
588 					db_printf("--- End of trace buffer ---\n");
589 					return;
590 				}
591 				continue;
592 			}
593 			if (ktr_buf[i][tstate[i].cur].ktr_timestamp > highest_ts) {
594 				highest_ts = ktr_buf[i][tstate[i].cur].ktr_timestamp;
595 				highest_cpu = i;
596 			}
597 		}
598 		i = highest_cpu;
599 		KKASSERT(i != -1);
600 		kp = &ktr_buf[i][tstate[i].cur];
601 		if (tstate[i].first == -1)
602 			tstate[i].first = tstate[i].cur;
603 		if (--tstate[i].cur < 0)
604 			tstate[i].cur = KTR_ENTRIES - 1;
605 		if (tstate[i].first == tstate[i].cur) {
606 			db_mach_vtrace(i, kp, tstate[i].cur + 1);
607 			tstate[i].cur = -1;
608 			continue;
609 		}
610 		if (ktr_buf[i][tstate[i].cur].ktr_info == NULL)
611 			tstate[i].cur = -1;
612 		if (db_more(&nl) == -1)
613 			break;
614 		if (db_mach_vtrace(i, kp, tstate[i].cur + 1) == 0)
615 			tstate[i].cur = -1;
616 	}
617 }
618 
619 static int
620 db_mach_vtrace(int cpu, struct ktr_entry *kp, int idx)
621 {
622 	if (kp->ktr_info == NULL)
623 		return(0);
624 #ifdef SMP
625 	db_printf("cpu%d ", cpu);
626 #endif
627 	db_printf("%d: ", idx);
628 	if (db_ktr_verbose) {
629 		db_printf("%10.10lld %s.%d\t", (long long)kp->ktr_timestamp,
630 		    kp->ktr_file, kp->ktr_line);
631 	}
632 	db_printf("%s\t", kp->ktr_info->kf_name);
633 	db_printf("from(%p,%p) ", kp->ktr_caller1, kp->ktr_caller2);
634 	if (kp->ktr_info->kf_format) {
635 		int32_t *args = kp->ktr_data;
636 		db_printf(kp->ktr_info->kf_format,
637 			  args[0], args[1], args[2], args[3],
638 			  args[4], args[5], args[6], args[7],
639 			  args[8], args[9], args[10], args[11]);
640 
641 	}
642 	db_printf("\n");
643 
644 	return(1);
645 }
646 
647 #endif	/* DDB */
648