xref: /dragonfly/sys/kern/kern_ktr.c (revision 62f7f702)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * The following copyright applies to the DDB command code:
36  *
37  * Copyright (c) 2000 John Baldwin <jhb@FreeBSD.org>
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the author nor the names of any co-contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 /*
65  * $DragonFly: src/sys/kern/kern_ktr.c,v 1.23 2008/02/12 23:33:23 corecode Exp $
66  */
67 /*
68  * Kernel tracepoint facility.
69  */
70 
71 #include "opt_ddb.h"
72 #include "opt_ktr.h"
73 
74 #include <sys/param.h>
75 #include <sys/cons.h>
76 #include <sys/kernel.h>
77 #include <sys/libkern.h>
78 #include <sys/proc.h>
79 #include <sys/sysctl.h>
80 #include <sys/ktr.h>
81 #include <sys/systm.h>
82 #include <sys/time.h>
83 #include <sys/malloc.h>
84 #include <sys/spinlock.h>
85 #include <sys/thread2.h>
86 #include <sys/spinlock2.h>
87 #include <sys/ctype.h>
88 
89 #include <machine/cpu.h>
90 #include <machine/cpufunc.h>
91 #include <machine/specialreg.h>
92 #include <machine/md_var.h>
93 
94 #include <ddb/ddb.h>
95 
96 #ifndef KTR_ENTRIES
97 #define	KTR_ENTRIES		2048
98 #endif
99 #define KTR_ENTRIES_MASK	(KTR_ENTRIES - 1)
100 
101 /*
102  * test logging support.  When ktr_testlogcnt is non-zero each synchronization
103  * interrupt will issue six back-to-back ktr logging messages on cpu 0
104  * so the user can determine KTR logging overheads.
105  */
106 #if !defined(KTR_TESTLOG)
107 #define KTR_TESTLOG	KTR_ALL
108 #endif
109 KTR_INFO_MASTER(testlog);
110 #if KTR_TESTLOG
111 KTR_INFO(KTR_TESTLOG, testlog, test1, 0, "test1", sizeof(void *) * 4);
112 KTR_INFO(KTR_TESTLOG, testlog, test2, 1, "test2", sizeof(void *) * 4);
113 KTR_INFO(KTR_TESTLOG, testlog, test3, 2, "test3", sizeof(void *) * 4);
114 KTR_INFO(KTR_TESTLOG, testlog, test4, 3, "test4", 0);
115 KTR_INFO(KTR_TESTLOG, testlog, test5, 4, "test5", 0);
116 KTR_INFO(KTR_TESTLOG, testlog, test6, 5, "test6", 0);
117 #ifdef SMP
118 KTR_INFO(KTR_TESTLOG, testlog, pingpong, 6, "pingpong", 0);
119 KTR_INFO(KTR_TESTLOG, testlog, pipeline, 7, "pipeline", 0);
120 #endif
121 KTR_INFO(KTR_TESTLOG, testlog, crit_beg, 8, "crit_beg", 0);
122 KTR_INFO(KTR_TESTLOG, testlog, crit_end, 9, "crit_end", 0);
123 KTR_INFO(KTR_TESTLOG, testlog, spin_beg, 10, "spin_beg", 0);
124 KTR_INFO(KTR_TESTLOG, testlog, spin_end, 11, "spin_end", 0);
125 #define logtest(name)	KTR_LOG(testlog_ ## name, 0, 0, 0, 0)
126 #define logtest_noargs(name)	KTR_LOG(testlog_ ## name)
127 #endif
128 
129 MALLOC_DEFINE(M_KTR, "ktr", "ktr buffers");
130 
131 SYSCTL_NODE(_debug, OID_AUTO, ktr, CTLFLAG_RW, 0, "ktr");
132 
133 int		ktr_entries = KTR_ENTRIES;
134 SYSCTL_INT(_debug_ktr, OID_AUTO, entries, CTLFLAG_RD, &ktr_entries, 0, "");
135 
136 int		ktr_version = KTR_VERSION;
137 SYSCTL_INT(_debug_ktr, OID_AUTO, version, CTLFLAG_RD, &ktr_version, 0, "");
138 
139 static int	ktr_stacktrace = 1;
140 SYSCTL_INT(_debug_ktr, OID_AUTO, stacktrace, CTLFLAG_RD, &ktr_stacktrace, 0, "");
141 
142 static int	ktr_resynchronize = 0;
143 SYSCTL_INT(_debug_ktr, OID_AUTO, resynchronize, CTLFLAG_RW, &ktr_resynchronize, 0, "");
144 
145 #if KTR_TESTLOG
146 static int	ktr_testlogcnt = 0;
147 SYSCTL_INT(_debug_ktr, OID_AUTO, testlogcnt, CTLFLAG_RW, &ktr_testlogcnt, 0, "");
148 static int	ktr_testipicnt = 0;
149 static int	ktr_testipicnt_remainder;
150 SYSCTL_INT(_debug_ktr, OID_AUTO, testipicnt, CTLFLAG_RW, &ktr_testipicnt, 0, "");
151 static int	ktr_testcritcnt = 0;
152 SYSCTL_INT(_debug_ktr, OID_AUTO, testcritcnt, CTLFLAG_RW, &ktr_testcritcnt, 0, "");
153 static int	ktr_testspincnt = 0;
154 SYSCTL_INT(_debug_ktr, OID_AUTO, testspincnt, CTLFLAG_RW, &ktr_testspincnt, 0, "");
155 #endif
156 
157 /*
158  * Give cpu0 a static buffer so the tracepoint facility can be used during
159  * early boot (note however that we still use a critical section, XXX).
160  */
161 static struct	ktr_entry ktr_buf0[KTR_ENTRIES];
162 struct		ktr_entry *ktr_buf[MAXCPU] = { &ktr_buf0[0] };
163 int		ktr_idx[MAXCPU];
164 #ifdef SMP
165 static int	ktr_sync_state = 0;
166 static int	ktr_sync_count;
167 static int64_t	ktr_sync_tsc;
168 #endif
169 struct callout	ktr_resync_callout;
170 
171 #ifdef KTR_VERBOSE
172 int	ktr_verbose = KTR_VERBOSE;
173 TUNABLE_INT("debug.ktr.verbose", &ktr_verbose);
174 SYSCTL_INT(_debug_ktr, OID_AUTO, verbose, CTLFLAG_RW, &ktr_verbose, 0, "");
175 #endif
176 
177 static void ktr_resync_callback(void *dummy __unused);
178 
179 extern int64_t tsc_offsets[];
180 
181 static void
182 ktr_sysinit(void *dummy)
183 {
184 	int i;
185 
186 	for(i = 1; i < ncpus; ++i) {
187 		ktr_buf[i] = kmalloc(KTR_ENTRIES * sizeof(struct ktr_entry),
188 				    M_KTR, M_WAITOK | M_ZERO);
189 	}
190 	callout_init(&ktr_resync_callout);
191 	callout_reset(&ktr_resync_callout, hz / 10, ktr_resync_callback, NULL);
192 }
193 SYSINIT(ktr_sysinit, SI_BOOT2_KLD, SI_ORDER_ANY, ktr_sysinit, NULL);
194 
195 /*
196  * Try to resynchronize the TSC's for all cpus.  This is really, really nasty.
197  * We have to send an IPIQ message to all remote cpus, wait until they
198  * get into their IPIQ processing code loop, then do an even stricter hard
199  * loop to get the cpus as close to synchronized as we can to get the most
200  * accurate reading.
201  *
202  * This callback occurs on cpu0.
203  */
204 #if KTR_TESTLOG
205 static void ktr_pingpong_remote(void *dummy);
206 static void ktr_pipeline_remote(void *dummy);
207 #endif
208 
209 #if defined(SMP) && defined(_RDTSC_SUPPORTED_)
210 
211 static void ktr_resync_remote(void *dummy);
212 extern cpumask_t smp_active_mask;
213 
214 /*
215  * We use a callout callback instead of a systimer because we cannot afford
216  * to preempt anyone to do this, or we might deadlock a spin-lock or
217  * serializer between two cpus.
218  */
219 static
220 void
221 ktr_resync_callback(void *dummy __unused)
222 {
223 	int count;
224 
225 	KKASSERT(mycpu->gd_cpuid == 0);
226 
227 #if KTR_TESTLOG
228 	/*
229 	 * Test logging
230 	 */
231 	if (ktr_testlogcnt) {
232 		--ktr_testlogcnt;
233 		cpu_disable_intr();
234 		logtest(test1);
235 		logtest(test2);
236 		logtest(test3);
237 		logtest_noargs(test4);
238 		logtest_noargs(test5);
239 		logtest_noargs(test6);
240 		cpu_enable_intr();
241 	}
242 
243 	/*
244 	 * Test IPI messaging
245 	 */
246 	if (ktr_testipicnt && ktr_testipicnt_remainder == 0 && ncpus > 1) {
247 		ktr_testipicnt_remainder = ktr_testipicnt;
248 		ktr_testipicnt = 0;
249 		lwkt_send_ipiq_bycpu(1, ktr_pingpong_remote, NULL);
250 	}
251 
252 	/*
253 	 * Test critical sections
254 	 */
255 	if (ktr_testcritcnt) {
256 		crit_enter();
257 		crit_exit();
258 		logtest_noargs(crit_beg);
259 		for (count = ktr_testcritcnt; count; --count) {
260 			crit_enter();
261 			crit_exit();
262 		}
263 		logtest_noargs(crit_end);
264 		ktr_testcritcnt = 0;
265 	}
266 
267 	/*
268 	 * Test spinlock sections
269 	 */
270 	if (ktr_testspincnt) {
271 		struct spinlock spin;
272 
273 		spin_init(&spin);
274 		spin_lock_wr(&spin);
275 		spin_unlock_wr(&spin);
276 		logtest_noargs(spin_beg);
277 		for (count = ktr_testspincnt; count; --count) {
278 			spin_lock_wr(&spin);
279 			spin_unlock_wr(&spin);
280 		}
281 		logtest_noargs(spin_end);
282 		logtest_noargs(spin_beg);
283 		for (count = ktr_testspincnt; count; --count) {
284 			spin_lock_rd(&spin);
285 			spin_unlock_rd(&spin);
286 		}
287 		logtest_noargs(spin_end);
288 		ktr_testspincnt = 0;
289 	}
290 #endif
291 
292 	/*
293 	 * Resynchronize the TSC
294 	 */
295 	if (ktr_resynchronize == 0)
296 		goto done;
297 	if ((cpu_feature & CPUID_TSC) == 0)
298 		return;
299 
300 	/*
301 	 * Send the synchronizing IPI and wait for all cpus to get into
302 	 * their spin loop.  We must process incoming IPIs while waiting
303 	 * to avoid a deadlock.
304 	 */
305 	crit_enter();
306 	ktr_sync_count = 0;
307 	ktr_sync_state = 1;
308 	ktr_sync_tsc = rdtsc();
309 	count = lwkt_send_ipiq_mask(mycpu->gd_other_cpus & smp_active_mask,
310 				    (ipifunc1_t)ktr_resync_remote, NULL);
311 	while (ktr_sync_count != count)
312 		lwkt_process_ipiq();
313 
314 	/*
315 	 * Continuously update the TSC for cpu 0 while waiting for all other
316 	 * cpus to finish stage 2.
317 	 */
318 	cpu_disable_intr();
319 	ktr_sync_tsc = rdtsc();
320 	cpu_sfence();
321 	ktr_sync_state = 2;
322 	cpu_sfence();
323 	while (ktr_sync_count != 0) {
324 		ktr_sync_tsc = rdtsc();
325 		cpu_lfence();
326 		cpu_nop();
327 	}
328 	cpu_enable_intr();
329 	crit_exit();
330 	ktr_sync_state = 0;
331 done:
332 	callout_reset(&ktr_resync_callout, hz / 10, ktr_resync_callback, NULL);
333 }
334 
335 /*
336  * The remote-end of the KTR synchronization protocol runs on all cpus except
337  * cpu 0.  Since this is an IPI function, it is entered with the current
338  * thread in a critical section.
339  */
340 static void
341 ktr_resync_remote(void *dummy __unused)
342 {
343 	volatile int64_t tsc1 = ktr_sync_tsc;
344 	volatile int64_t tsc2;
345 
346 	/*
347 	 * Inform the master that we have entered our hard loop.
348 	 */
349 	KKASSERT(ktr_sync_state == 1);
350 	atomic_add_int(&ktr_sync_count, 1);
351 	while (ktr_sync_state == 1) {
352 		lwkt_process_ipiq();
353 	}
354 
355 	/*
356 	 * Now the master is in a hard loop, synchronize the TSC and
357 	 * we are done.
358 	 */
359 	cpu_disable_intr();
360 	KKASSERT(ktr_sync_state == 2);
361 	tsc2 = ktr_sync_tsc;
362 	if (tsc2 > tsc1)
363 		tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc2;
364 	atomic_subtract_int(&ktr_sync_count, 1);
365 	cpu_enable_intr();
366 }
367 
368 #if KTR_TESTLOG
369 
370 static
371 void
372 ktr_pingpong_remote(void *dummy __unused)
373 {
374 	int other_cpu;
375 
376 	logtest_noargs(pingpong);
377 	other_cpu = 1 - mycpu->gd_cpuid;
378 	if (ktr_testipicnt_remainder) {
379 		--ktr_testipicnt_remainder;
380 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pingpong_remote, NULL);
381 	} else {
382 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
383 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
384 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
385 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
386 		lwkt_send_ipiq_bycpu(other_cpu, ktr_pipeline_remote, NULL);
387 	}
388 }
389 
390 static
391 void
392 ktr_pipeline_remote(void *dummy __unused)
393 {
394 	logtest_noargs(pipeline);
395 }
396 
397 #endif
398 
399 #else	/* !SMP */
400 
401 /*
402  * The resync callback for UP doesn't do anything other then run the test
403  * log messages.  If test logging is not enabled, don't bother resetting
404  * the callout.
405  */
406 static
407 void
408 ktr_resync_callback(void *dummy __unused)
409 {
410 #if KTR_TESTLOG
411 	/*
412 	 * Test logging
413 	 */
414 	if (ktr_testlogcnt) {
415 		--ktr_testlogcnt;
416 		cpu_disable_intr();
417 		logtest(test1);
418 		logtest(test2);
419 		logtest(test3);
420 		logtest_noargs(test4);
421 		logtest_noargs(test5);
422 		logtest_noargs(test6);
423 		cpu_enable_intr();
424 	}
425 	callout_reset(&ktr_resync_callout, hz / 10, ktr_resync_callback, NULL);
426 #endif
427 }
428 
429 #endif
430 
431 /*
432  * KTR_WRITE_ENTRY - Primary entry point for kernel trace logging
433  */
434 static __inline
435 void
436 ktr_write_entry(struct ktr_info *info, const char *file, int line,
437 		const void *ptr)
438 {
439 	struct ktr_entry *entry;
440 	int cpu;
441 
442 	cpu = mycpu->gd_cpuid;
443 	if (!ktr_buf[cpu])
444 		return;
445 
446 	crit_enter();
447 	entry = ktr_buf[cpu] + (ktr_idx[cpu] & KTR_ENTRIES_MASK);
448 	++ktr_idx[cpu];
449 #ifdef _RDTSC_SUPPORTED_
450 	if (cpu_feature & CPUID_TSC) {
451 #ifdef SMP
452 		entry->ktr_timestamp = rdtsc() - tsc_offsets[cpu];
453 #else
454 		entry->ktr_timestamp = rdtsc();
455 #endif
456 	} else
457 #endif
458 	{
459 		entry->ktr_timestamp = get_approximate_time_t();
460 	}
461 	entry->ktr_info = info;
462 	entry->ktr_file = file;
463 	entry->ktr_line = line;
464 	crit_exit();
465 	if (info->kf_data_size > KTR_BUFSIZE)
466 		bcopyi(ptr, entry->ktr_data, KTR_BUFSIZE);
467 	else if (info->kf_data_size)
468 		bcopyi(ptr, entry->ktr_data, info->kf_data_size);
469 	if (ktr_stacktrace)
470 		cpu_ktr_caller(entry);
471 #ifdef KTR_VERBOSE
472 	if (ktr_verbose && info->kf_format) {
473 #ifdef SMP
474 		kprintf("cpu%d ", cpu);
475 #endif
476 		if (ktr_verbose > 1) {
477 			kprintf("%s.%d\t", entry->ktr_file, entry->ktr_line);
478 		}
479 		kvprintf(info->kf_format, ptr);
480 		kprintf("\n");
481 	}
482 #endif
483 }
484 
485 void
486 ktr_log(struct ktr_info *info, const char *file, int line, ...)
487 {
488 	__va_list va;
489 
490 	if (panicstr == NULL) {
491 		__va_start(va, line);
492 		ktr_write_entry(info, file, line, va);
493 		__va_end(va);
494 	}
495 }
496 
497 void
498 ktr_log_ptr(struct ktr_info *info, const char *file, int line, const void *ptr)
499 {
500 	if (panicstr == NULL) {
501 		ktr_write_entry(info, file, line, ptr);
502 	}
503 }
504 
505 #ifdef DDB
506 
507 #define	NUM_LINES_PER_PAGE	19
508 
509 struct tstate {
510 	int	cur;
511 	int	first;
512 };
513 
514 static	int db_ktr_verbose;
515 static	int db_mach_vtrace(int cpu, struct ktr_entry *kp, int idx);
516 
517 DB_SHOW_COMMAND(ktr, db_ktr_all)
518 {
519 	int a_flag = 0;
520 	int c;
521 	int nl = 0;
522 	int i;
523 	struct tstate tstate[MAXCPU];
524 	int printcpu = -1;
525 
526 	for(i = 0; i < ncpus; i++) {
527 		tstate[i].first = -1;
528 		tstate[i].cur = ktr_idx[i] & KTR_ENTRIES_MASK;
529 	}
530 	db_ktr_verbose = 0;
531 	while ((c = *(modif++)) != '\0') {
532 		if (c == 'v') {
533 			db_ktr_verbose = 1;
534 		}
535 		else if (c == 'a') {
536 			a_flag = 1;
537 		}
538 		else if (c == 'c') {
539 			printcpu = 0;
540 			while ((c = *(modif++)) != '\0') {
541 				if (isdigit(c)) {
542 					printcpu *= 10;
543 					printcpu += c - '0';
544 				}
545 				else {
546 					modif++;
547 					break;
548 				}
549 			}
550 			modif--;
551 		}
552 	}
553 	if (printcpu > ncpus - 1) {
554 		db_printf("Invalid cpu number\n");
555 		return;
556 	}
557 	/*
558 	 * Lopp throug all the buffers and print the content of them, sorted
559 	 * by the timestamp.
560 	 */
561 	while (1) {
562 		int counter;
563 		u_int64_t highest_ts;
564 		int highest_cpu;
565 		struct ktr_entry *kp;
566 
567 		if (a_flag == 1 && cncheckc() != -1)
568 			return;
569 		highest_ts = 0;
570 		highest_cpu = -1;
571 		/*
572 		 * Find the lowest timestamp
573 		 */
574 		for (i = 0, counter = 0; i < ncpus; i++) {
575 			if (ktr_buf[i] == NULL)
576 				continue;
577 			if (printcpu != -1 && printcpu != i)
578 				continue;
579 			if (tstate[i].cur == -1) {
580 				counter++;
581 				if (counter == ncpus) {
582 					db_printf("--- End of trace buffer ---\n");
583 					return;
584 				}
585 				continue;
586 			}
587 			if (ktr_buf[i][tstate[i].cur].ktr_timestamp > highest_ts) {
588 				highest_ts = ktr_buf[i][tstate[i].cur].ktr_timestamp;
589 				highest_cpu = i;
590 			}
591 		}
592 		i = highest_cpu;
593 		KKASSERT(i != -1);
594 		kp = &ktr_buf[i][tstate[i].cur];
595 		if (tstate[i].first == -1)
596 			tstate[i].first = tstate[i].cur;
597 		if (--tstate[i].cur < 0)
598 			tstate[i].cur = KTR_ENTRIES - 1;
599 		if (tstate[i].first == tstate[i].cur) {
600 			db_mach_vtrace(i, kp, tstate[i].cur + 1);
601 			tstate[i].cur = -1;
602 			continue;
603 		}
604 		if (ktr_buf[i][tstate[i].cur].ktr_info == NULL)
605 			tstate[i].cur = -1;
606 		if (db_more(&nl) == -1)
607 			break;
608 		if (db_mach_vtrace(i, kp, tstate[i].cur + 1) == 0)
609 			tstate[i].cur = -1;
610 	}
611 }
612 
613 static int
614 db_mach_vtrace(int cpu, struct ktr_entry *kp, int idx)
615 {
616 	if (kp->ktr_info == NULL)
617 		return(0);
618 #ifdef SMP
619 	db_printf("cpu%d ", cpu);
620 #endif
621 	db_printf("%d: ", idx);
622 	if (db_ktr_verbose) {
623 		db_printf("%10.10lld %s.%d\t", (long long)kp->ktr_timestamp,
624 		    kp->ktr_file, kp->ktr_line);
625 	}
626 	db_printf("%s\t", kp->ktr_info->kf_name);
627 	db_printf("from(%p,%p) ", kp->ktr_caller1, kp->ktr_caller2);
628 	if (kp->ktr_info->kf_format) {
629 		int32_t *args = kp->ktr_data;
630 		db_printf(kp->ktr_info->kf_format,
631 			  args[0], args[1], args[2], args[3],
632 			  args[4], args[5], args[6], args[7],
633 			  args[8], args[9], args[10], args[11]);
634 
635 	}
636 	db_printf("\n");
637 
638 	return(1);
639 }
640 
641 #endif	/* DDB */
642