xref: /dragonfly/sys/kern/kern_memio.c (revision 066b6da2)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
36  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
37  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
38  */
39 
40 /*
41  * Memory special file
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/buf.h>
47 #include <sys/conf.h>
48 #include <sys/fcntl.h>
49 #include <sys/filio.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/memrange.h>
53 #include <sys/proc.h>
54 #include <sys/priv.h>
55 #include <sys/random.h>
56 #include <sys/signalvar.h>
57 #include <sys/uio.h>
58 #include <sys/vnode.h>
59 #include <sys/sysctl.h>
60 
61 #include <sys/signal2.h>
62 #include <sys/mplock2.h>
63 
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #include <vm/vm_extern.h>
67 
68 
69 static	d_open_t	mmopen;
70 static	d_close_t	mmclose;
71 static	d_read_t	mmread;
72 static	d_write_t	mmwrite;
73 static	d_ioctl_t	mmioctl;
74 static	d_mmap_t	memmmap;
75 static	d_kqfilter_t	mmkqfilter;
76 
77 #define CDEV_MAJOR 2
78 static struct dev_ops mem_ops = {
79 	{ "mem", 0, D_MPSAFE },
80 	.d_open =	mmopen,
81 	.d_close =	mmclose,
82 	.d_read =	mmread,
83 	.d_write =	mmwrite,
84 	.d_ioctl =	mmioctl,
85 	.d_kqfilter =	mmkqfilter,
86 	.d_mmap =	memmmap,
87 };
88 
89 static int rand_bolt;
90 static caddr_t	zbuf;
91 static cdev_t	zerodev = NULL;
92 
93 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
94 static int mem_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
95 static int random_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
96 
97 struct mem_range_softc mem_range_softc;
98 
99 static int seedenable;
100 SYSCTL_INT(_kern, OID_AUTO, seedenable, CTLFLAG_RW, &seedenable, 0, "");
101 
102 static int
103 mmopen(struct dev_open_args *ap)
104 {
105 	cdev_t dev = ap->a_head.a_dev;
106 	int error;
107 
108 	switch (minor(dev)) {
109 	case 0:
110 	case 1:
111 		if (ap->a_oflags & FWRITE) {
112 			if (securelevel > 0 || kernel_mem_readonly)
113 				return (EPERM);
114 		}
115 		error = 0;
116 		break;
117 	case 14:
118 		error = priv_check_cred(ap->a_cred, PRIV_ROOT, 0);
119 		if (error != 0)
120 			break;
121 		if (securelevel > 0 || kernel_mem_readonly) {
122 			error = EPERM;
123 			break;
124 		}
125 		error = cpu_set_iopl();
126 		break;
127 	default:
128 		error = 0;
129 		break;
130 	}
131 	return (error);
132 }
133 
134 static int
135 mmclose(struct dev_close_args *ap)
136 {
137 	cdev_t dev = ap->a_head.a_dev;
138 	int error;
139 
140 	switch (minor(dev)) {
141 	case 14:
142 		error = cpu_clr_iopl();
143 		break;
144 	default:
145 		error = 0;
146 		break;
147 	}
148 	return (error);
149 }
150 
151 
152 static int
153 mmrw(cdev_t dev, struct uio *uio, int flags)
154 {
155 	int o;
156 	u_int c;
157 	u_int poolsize;
158 	u_long v;
159 	struct iovec *iov;
160 	int error = 0;
161 	caddr_t buf = NULL;
162 
163 	while (uio->uio_resid > 0 && error == 0) {
164 		iov = uio->uio_iov;
165 		if (iov->iov_len == 0) {
166 			uio->uio_iov++;
167 			uio->uio_iovcnt--;
168 			if (uio->uio_iovcnt < 0)
169 				panic("mmrw");
170 			continue;
171 		}
172 		switch (minor(dev)) {
173 		case 0:
174 			/*
175 			 * minor device 0 is physical memory, /dev/mem
176 			 */
177 			v = uio->uio_offset;
178 			v &= ~(long)PAGE_MASK;
179 			pmap_kenter((vm_offset_t)ptvmmap, v);
180 			o = (int)uio->uio_offset & PAGE_MASK;
181 			c = (u_int)(PAGE_SIZE - ((uintptr_t)iov->iov_base & PAGE_MASK));
182 			c = min(c, (u_int)(PAGE_SIZE - o));
183 			c = min(c, (u_int)iov->iov_len);
184 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
185 			pmap_kremove((vm_offset_t)ptvmmap);
186 			continue;
187 
188 		case 1: {
189 			/*
190 			 * minor device 1 is kernel memory, /dev/kmem
191 			 */
192 			vm_offset_t saddr, eaddr;
193 			int prot;
194 
195 			c = iov->iov_len;
196 
197 			/*
198 			 * Make sure that all of the pages are currently
199 			 * resident so that we don't create any zero-fill
200 			 * pages.
201 			 */
202 			saddr = trunc_page(uio->uio_offset);
203 			eaddr = round_page(uio->uio_offset + c);
204 			if (saddr > eaddr)
205 				return EFAULT;
206 
207 			/*
208 			 * Make sure the kernel addresses are mapped.
209 			 * platform_direct_mapped() can be used to bypass
210 			 * default mapping via the page table (virtual kernels
211 			 * contain a lot of out-of-band data).
212 			 */
213 			prot = VM_PROT_READ;
214 			if (uio->uio_rw != UIO_READ)
215 				prot |= VM_PROT_WRITE;
216 			error = kvm_access_check(saddr, eaddr, prot);
217 			if (error)
218 				return (error);
219 			error = uiomove((caddr_t)(vm_offset_t)uio->uio_offset,
220 					(int)c, uio);
221 			continue;
222 		}
223 		case 2:
224 			/*
225 			 * minor device 2 (/dev/null) is EOF/RATHOLE
226 			 */
227 			if (uio->uio_rw == UIO_READ)
228 				return (0);
229 			c = iov->iov_len;
230 			break;
231 		case 3:
232 			/*
233 			 * minor device 3 (/dev/random) is source of filth
234 			 * on read, seeder on write
235 			 */
236 			if (buf == NULL)
237 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
238 			c = min(iov->iov_len, PAGE_SIZE);
239 			if (uio->uio_rw == UIO_WRITE) {
240 				error = uiomove(buf, (int)c, uio);
241 				if (error == 0 &&
242 				    seedenable &&
243 				    securelevel <= 0) {
244 					error = add_buffer_randomness_src(buf, c, RAND_SRC_SEEDING);
245 				} else if (error == 0) {
246 					error = EPERM;
247 				}
248 			} else {
249 				poolsize = read_random(buf, c);
250 				if (poolsize == 0) {
251 					if (buf)
252 						kfree(buf, M_TEMP);
253 					if ((flags & IO_NDELAY) != 0)
254 						return (EWOULDBLOCK);
255 					return (0);
256 				}
257 				c = min(c, poolsize);
258 				error = uiomove(buf, (int)c, uio);
259 			}
260 			continue;
261 		case 4:
262 			/*
263 			 * minor device 4 (/dev/urandom) is source of muck
264 			 * on read, writes are disallowed.
265 			 */
266 			c = min(iov->iov_len, PAGE_SIZE);
267 			if (uio->uio_rw == UIO_WRITE) {
268 				error = EPERM;
269 				break;
270 			}
271 			if (CURSIG(curthread->td_lwp) != 0) {
272 				/*
273 				 * Use tsleep() to get the error code right.
274 				 * It should return immediately.
275 				 */
276 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
277 				if (error != 0 && error != EWOULDBLOCK)
278 					continue;
279 			}
280 			if (buf == NULL)
281 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
282 			poolsize = read_random_unlimited(buf, c);
283 			c = min(c, poolsize);
284 			error = uiomove(buf, (int)c, uio);
285 			continue;
286 		case 12:
287 			/*
288 			 * minor device 12 (/dev/zero) is source of nulls
289 			 * on read, write are disallowed.
290 			 */
291 			if (uio->uio_rw == UIO_WRITE) {
292 				c = iov->iov_len;
293 				break;
294 			}
295 			if (zbuf == NULL) {
296 				zbuf = (caddr_t)kmalloc(PAGE_SIZE, M_TEMP,
297 				    M_WAITOK | M_ZERO);
298 			}
299 			c = min(iov->iov_len, PAGE_SIZE);
300 			error = uiomove(zbuf, (int)c, uio);
301 			continue;
302 		default:
303 			return (ENODEV);
304 		}
305 		if (error)
306 			break;
307 		iov->iov_base = (char *)iov->iov_base + c;
308 		iov->iov_len -= c;
309 		uio->uio_offset += c;
310 		uio->uio_resid -= c;
311 	}
312 	if (buf)
313 		kfree(buf, M_TEMP);
314 	return (error);
315 }
316 
317 static int
318 mmread(struct dev_read_args *ap)
319 {
320 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
321 }
322 
323 static int
324 mmwrite(struct dev_write_args *ap)
325 {
326 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
327 }
328 
329 
330 
331 
332 
333 /*******************************************************\
334 * allow user processes to MMAP some memory sections	*
335 * instead of going through read/write			*
336 \*******************************************************/
337 
338 static int
339 memmmap(struct dev_mmap_args *ap)
340 {
341 	cdev_t dev = ap->a_head.a_dev;
342 
343 	switch (minor(dev)) {
344 	case 0:
345 		/*
346 		 * minor device 0 is physical memory
347 		 */
348 #if defined(__i386__)
349         	ap->a_result = i386_btop(ap->a_offset);
350 #elif defined(__x86_64__)
351 		ap->a_result = x86_64_btop(ap->a_offset);
352 #endif
353 		return 0;
354 	case 1:
355 		/*
356 		 * minor device 1 is kernel memory
357 		 */
358 #if defined(__i386__)
359         	ap->a_result = i386_btop(vtophys(ap->a_offset));
360 #elif defined(__x86_64__)
361         	ap->a_result = x86_64_btop(vtophys(ap->a_offset));
362 #endif
363 		return 0;
364 
365 	default:
366 		return EINVAL;
367 	}
368 }
369 
370 static int
371 mmioctl(struct dev_ioctl_args *ap)
372 {
373 	cdev_t dev = ap->a_head.a_dev;
374 	int error;
375 
376 	get_mplock();
377 
378 	switch (minor(dev)) {
379 	case 0:
380 		error = mem_ioctl(dev, ap->a_cmd, ap->a_data,
381 				  ap->a_fflag, ap->a_cred);
382 		break;
383 	case 3:
384 	case 4:
385 		error = random_ioctl(dev, ap->a_cmd, ap->a_data,
386 				     ap->a_fflag, ap->a_cred);
387 		break;
388 	default:
389 		error = ENODEV;
390 		break;
391 	}
392 
393 	rel_mplock();
394 	return (error);
395 }
396 
397 /*
398  * Operations for changing memory attributes.
399  *
400  * This is basically just an ioctl shim for mem_range_attr_get
401  * and mem_range_attr_set.
402  */
403 static int
404 mem_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
405 {
406 	int nd, error = 0;
407 	struct mem_range_op *mo = (struct mem_range_op *)data;
408 	struct mem_range_desc *md;
409 
410 	/* is this for us? */
411 	if ((cmd != MEMRANGE_GET) &&
412 	    (cmd != MEMRANGE_SET))
413 		return (ENOTTY);
414 
415 	/* any chance we can handle this? */
416 	if (mem_range_softc.mr_op == NULL)
417 		return (EOPNOTSUPP);
418 
419 	/* do we have any descriptors? */
420 	if (mem_range_softc.mr_ndesc == 0)
421 		return (ENXIO);
422 
423 	switch (cmd) {
424 	case MEMRANGE_GET:
425 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
426 		if (nd > 0) {
427 			md = (struct mem_range_desc *)
428 				kmalloc(nd * sizeof(struct mem_range_desc),
429 				       M_MEMDESC, M_WAITOK);
430 			error = mem_range_attr_get(md, &nd);
431 			if (!error)
432 				error = copyout(md, mo->mo_desc,
433 					nd * sizeof(struct mem_range_desc));
434 			kfree(md, M_MEMDESC);
435 		} else {
436 			nd = mem_range_softc.mr_ndesc;
437 		}
438 		mo->mo_arg[0] = nd;
439 		break;
440 
441 	case MEMRANGE_SET:
442 		md = (struct mem_range_desc *)kmalloc(sizeof(struct mem_range_desc),
443 						    M_MEMDESC, M_WAITOK);
444 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
445 		/* clamp description string */
446 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
447 		if (error == 0)
448 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
449 		kfree(md, M_MEMDESC);
450 		break;
451 	}
452 	return (error);
453 }
454 
455 /*
456  * Implementation-neutral, kernel-callable functions for manipulating
457  * memory range attributes.
458  */
459 int
460 mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
461 {
462 	/* can we handle this? */
463 	if (mem_range_softc.mr_op == NULL)
464 		return (EOPNOTSUPP);
465 
466 	if (*arg == 0) {
467 		*arg = mem_range_softc.mr_ndesc;
468 	} else {
469 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
470 	}
471 	return (0);
472 }
473 
474 int
475 mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
476 {
477 	/* can we handle this? */
478 	if (mem_range_softc.mr_op == NULL)
479 		return (EOPNOTSUPP);
480 
481 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
482 }
483 
484 void
485 mem_range_AP_init(void)
486 {
487 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
488 		mem_range_softc.mr_op->initAP(&mem_range_softc);
489 }
490 
491 static int
492 random_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
493 {
494 	int error;
495 	int intr;
496 
497 	/*
498 	 * Even inspecting the state is privileged, since it gives a hint
499 	 * about how easily the randomness might be guessed.
500 	 */
501 	error = 0;
502 
503 	switch (cmd) {
504 	/* Really handled in upper layer */
505 	case FIOASYNC:
506 		break;
507 	case MEM_SETIRQ:
508 		intr = *(int16_t *)data;
509 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
510 			break;
511 		if (intr < 0 || intr >= MAX_INTS)
512 			return (EINVAL);
513 		register_randintr(intr);
514 		break;
515 	case MEM_CLEARIRQ:
516 		intr = *(int16_t *)data;
517 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
518 			break;
519 		if (intr < 0 || intr >= MAX_INTS)
520 			return (EINVAL);
521 		unregister_randintr(intr);
522 		break;
523 	case MEM_RETURNIRQ:
524 		error = ENOTSUP;
525 		break;
526 	case MEM_FINDIRQ:
527 		intr = *(int16_t *)data;
528 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
529 			break;
530 		if (intr < 0 || intr >= MAX_INTS)
531 			return (EINVAL);
532 		intr = next_registered_randintr(intr);
533 		if (intr == MAX_INTS)
534 			return (ENOENT);
535 		*(u_int16_t *)data = intr;
536 		break;
537 	default:
538 		error = ENOTSUP;
539 		break;
540 	}
541 	return (error);
542 }
543 
544 static int
545 mm_filter_read(struct knote *kn, long hint)
546 {
547 	return (1);
548 }
549 
550 static int
551 mm_filter_write(struct knote *kn, long hint)
552 {
553 	return (1);
554 }
555 
556 static void
557 dummy_filter_detach(struct knote *kn) {}
558 
559 /* Implemented in kern_nrandom.c */
560 static struct filterops random_read_filtops =
561         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, random_filter_read };
562 
563 static struct filterops mm_read_filtops =
564         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_read };
565 
566 static struct filterops mm_write_filtops =
567         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_write };
568 
569 int
570 mmkqfilter(struct dev_kqfilter_args *ap)
571 {
572 	struct knote *kn = ap->a_kn;
573 	cdev_t dev = ap->a_head.a_dev;
574 
575 	ap->a_result = 0;
576 	switch (kn->kn_filter) {
577 	case EVFILT_READ:
578 		switch (minor(dev)) {
579 		case 3:
580 			kn->kn_fop = &random_read_filtops;
581 			break;
582 		default:
583 			kn->kn_fop = &mm_read_filtops;
584 			break;
585 		}
586 		break;
587 	case EVFILT_WRITE:
588 		kn->kn_fop = &mm_write_filtops;
589 		break;
590 	default:
591 		ap->a_result = EOPNOTSUPP;
592 		return (0);
593 	}
594 
595 	return (0);
596 }
597 
598 int
599 iszerodev(cdev_t dev)
600 {
601 	return (zerodev == dev);
602 }
603 
604 static void
605 mem_drvinit(void *unused)
606 {
607 
608 	/* Initialise memory range handling */
609 	if (mem_range_softc.mr_op != NULL)
610 		mem_range_softc.mr_op->init(&mem_range_softc);
611 
612 	make_dev(&mem_ops, 0, UID_ROOT, GID_KMEM, 0640, "mem");
613 	make_dev(&mem_ops, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
614 	make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
615 	make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
616 	make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
617 	zerodev = make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
618 	make_dev(&mem_ops, 14, UID_ROOT, GID_WHEEL, 0600, "io");
619 }
620 
621 SYSINIT(memdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,mem_drvinit,NULL)
622 
623