xref: /dragonfly/sys/kern/kern_memio.c (revision 1b722dce)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
40  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
41  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
42  * $DragonFly: src/sys/kern/kern_memio.c,v 1.32 2008/07/23 16:39:28 dillon Exp $
43  */
44 
45 /*
46  * Memory special file
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/buf.h>
52 #include <sys/conf.h>
53 #include <sys/fcntl.h>
54 #include <sys/filio.h>
55 #include <sys/kernel.h>
56 #include <sys/malloc.h>
57 #include <sys/memrange.h>
58 #include <sys/proc.h>
59 #include <sys/priv.h>
60 #include <sys/random.h>
61 #include <sys/signalvar.h>
62 #include <sys/signal2.h>
63 #include <sys/uio.h>
64 #include <sys/vnode.h>
65 
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_extern.h>
69 
70 
71 static	d_open_t	mmopen;
72 static	d_close_t	mmclose;
73 static	d_read_t	mmread;
74 static	d_write_t	mmwrite;
75 static	d_ioctl_t	mmioctl;
76 static	d_mmap_t	memmmap;
77 static	d_poll_t	mmpoll;
78 
79 #define CDEV_MAJOR 2
80 static struct dev_ops mem_ops = {
81 	{ "mem", CDEV_MAJOR, D_MEM },
82 	.d_open =	mmopen,
83 	.d_close =	mmclose,
84 	.d_read =	mmread,
85 	.d_write =	mmwrite,
86 	.d_ioctl =	mmioctl,
87 	.d_poll =	mmpoll,
88 	.d_mmap =	memmmap,
89 };
90 
91 static int rand_bolt;
92 static caddr_t	zbuf;
93 static cdev_t	zerodev = NULL;
94 
95 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
96 static int mem_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
97 static int random_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
98 
99 struct mem_range_softc mem_range_softc;
100 
101 
102 static int
103 mmopen(struct dev_open_args *ap)
104 {
105 	cdev_t dev = ap->a_head.a_dev;
106 	int error;
107 
108 	switch (minor(dev)) {
109 	case 0:
110 	case 1:
111 		if (ap->a_oflags & FWRITE) {
112 			if (securelevel > 0 || kernel_mem_readonly)
113 				return (EPERM);
114 		}
115 		error = 0;
116 		break;
117 	case 14:
118 		error = priv_check_cred(ap->a_cred, PRIV_ROOT, 0);
119 		if (error != 0)
120 			break;
121 		if (securelevel > 0 || kernel_mem_readonly) {
122 			error = EPERM;
123 			break;
124 		}
125 		error = cpu_set_iopl();
126 		break;
127 	default:
128 		error = 0;
129 		break;
130 	}
131 	return (error);
132 }
133 
134 static int
135 mmclose(struct dev_close_args *ap)
136 {
137 	cdev_t dev = ap->a_head.a_dev;
138 	int error;
139 
140 	switch (minor(dev)) {
141 	case 14:
142 		error = cpu_clr_iopl();
143 		break;
144 	default:
145 		error = 0;
146 		break;
147 	}
148 	return (error);
149 }
150 
151 
152 static int
153 mmrw(cdev_t dev, struct uio *uio, int flags)
154 {
155 	int o;
156 	u_int c, v;
157 	u_int poolsize;
158 	struct iovec *iov;
159 	int error = 0;
160 	caddr_t buf = NULL;
161 
162 	while (uio->uio_resid > 0 && error == 0) {
163 		iov = uio->uio_iov;
164 		if (iov->iov_len == 0) {
165 			uio->uio_iov++;
166 			uio->uio_iovcnt--;
167 			if (uio->uio_iovcnt < 0)
168 				panic("mmrw");
169 			continue;
170 		}
171 		switch (minor(dev)) {
172 		case 0:
173 			/*
174 			 * minor device 0 is physical memory, /dev/mem
175 			 */
176 			v = uio->uio_offset;
177 			v &= ~PAGE_MASK;
178 			pmap_kenter((vm_offset_t)ptvmmap, v);
179 			o = (int)uio->uio_offset & PAGE_MASK;
180 			c = (u_int)(PAGE_SIZE - ((uintptr_t)iov->iov_base & PAGE_MASK));
181 			c = min(c, (u_int)(PAGE_SIZE - o));
182 			c = min(c, (u_int)iov->iov_len);
183 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
184 			pmap_kremove((vm_offset_t)ptvmmap);
185 			continue;
186 
187 		case 1: {
188 			/*
189 			 * minor device 1 is kernel memory, /dev/kmem
190 			 */
191 			vm_offset_t saddr, eaddr;
192 			int prot;
193 
194 			c = iov->iov_len;
195 
196 			/*
197 			 * Make sure that all of the pages are currently
198 			 * resident so that we don't create any zero-fill
199 			 * pages.
200 			 */
201 			saddr = trunc_page(uio->uio_offset);
202 			eaddr = round_page(uio->uio_offset + c);
203 			if (saddr > eaddr)
204 				return EFAULT;
205 
206 			/*
207 			 * Make sure the kernel addresses are mapped.
208 			 * platform_direct_mapped() can be used to bypass
209 			 * default mapping via the page table (virtual kernels
210 			 * contain a lot of out-of-band data).
211 			 */
212 			prot = VM_PROT_READ;
213 			if (uio->uio_rw != UIO_READ)
214 				prot |= VM_PROT_WRITE;
215 			error = kvm_access_check(saddr, eaddr, prot);
216 			if (error)
217 				return (error);
218 			error = uiomove((caddr_t)(vm_offset_t)uio->uio_offset,
219 					(int)c, uio);
220 			continue;
221 		}
222 		case 2:
223 			/*
224 			 * minor device 2 is EOF/RATHOLE
225 			 */
226 			if (uio->uio_rw == UIO_READ)
227 				return (0);
228 			c = iov->iov_len;
229 			break;
230 		case 3:
231 			/*
232 			 * minor device 3 (/dev/random) is source of filth
233 			 * on read, seeder on write
234 			 */
235 			if (buf == NULL)
236 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
237 			c = min(iov->iov_len, PAGE_SIZE);
238 			if (uio->uio_rw == UIO_WRITE) {
239 				error = uiomove(buf, (int)c, uio);
240 				if (error == 0)
241 					error = add_buffer_randomness(buf, c);
242 			} else {
243 				poolsize = read_random(buf, c);
244 				if (poolsize == 0) {
245 					if (buf)
246 						kfree(buf, M_TEMP);
247 					if ((flags & IO_NDELAY) != 0)
248 						return (EWOULDBLOCK);
249 					return (0);
250 				}
251 				c = min(c, poolsize);
252 				error = uiomove(buf, (int)c, uio);
253 			}
254 			continue;
255 		case 4:
256 			/*
257 			 * minor device 4 (/dev/urandom) is source of muck
258 			 * on read, writes are disallowed.
259 			 */
260 			c = min(iov->iov_len, PAGE_SIZE);
261 			if (uio->uio_rw == UIO_WRITE) {
262 				error = EPERM;
263 				break;
264 			}
265 			if (CURSIG(curthread->td_lwp) != 0) {
266 				/*
267 				 * Use tsleep() to get the error code right.
268 				 * It should return immediately.
269 				 */
270 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
271 				if (error != 0 && error != EWOULDBLOCK)
272 					continue;
273 			}
274 			if (buf == NULL)
275 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
276 			poolsize = read_random_unlimited(buf, c);
277 			c = min(c, poolsize);
278 			error = uiomove(buf, (int)c, uio);
279 			continue;
280 		case 12:
281 			/*
282 			 * minor device 12 (/dev/zero) is source of nulls
283 			 * on read, write are disallowed.
284 			 */
285 			if (uio->uio_rw == UIO_WRITE) {
286 				c = iov->iov_len;
287 				break;
288 			}
289 			if (zbuf == NULL) {
290 				zbuf = (caddr_t)kmalloc(PAGE_SIZE, M_TEMP,
291 				    M_WAITOK | M_ZERO);
292 			}
293 			c = min(iov->iov_len, PAGE_SIZE);
294 			error = uiomove(zbuf, (int)c, uio);
295 			continue;
296 		default:
297 			return (ENODEV);
298 		}
299 		if (error)
300 			break;
301 		iov->iov_base = (char *)iov->iov_base + c;
302 		iov->iov_len -= c;
303 		uio->uio_offset += c;
304 		uio->uio_resid -= c;
305 	}
306 	if (buf)
307 		kfree(buf, M_TEMP);
308 	return (error);
309 }
310 
311 static int
312 mmread(struct dev_read_args *ap)
313 {
314 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
315 }
316 
317 static int
318 mmwrite(struct dev_write_args *ap)
319 {
320 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
321 }
322 
323 
324 
325 
326 
327 /*******************************************************\
328 * allow user processes to MMAP some memory sections	*
329 * instead of going through read/write			*
330 \*******************************************************/
331 
332 static int
333 memmmap(struct dev_mmap_args *ap)
334 {
335 	cdev_t dev = ap->a_head.a_dev;
336 
337 	switch (minor(dev)) {
338 	case 0:
339 		/*
340 		 * minor device 0 is physical memory
341 		 */
342 #if defined(__i386__)
343         	ap->a_result = i386_btop(ap->a_offset);
344 #elif defined(__amd64__)
345 		ap->a_result = amd64_btop(ap->a_offset);
346 #endif
347 		return 0;
348 	case 1:
349 		/*
350 		 * minor device 1 is kernel memory
351 		 */
352 #if defined(__i386__)
353         	ap->a_result = i386_btop(vtophys(ap->a_offset));
354 #elif defined(__amd64__)
355         	ap->a_result = amd64_btop(vtophys(ap->a_offset));
356 #endif
357 		return 0;
358 
359 	default:
360 		return EINVAL;
361 	}
362 }
363 
364 static int
365 mmioctl(struct dev_ioctl_args *ap)
366 {
367 	cdev_t dev = ap->a_head.a_dev;
368 
369 	switch (minor(dev)) {
370 	case 0:
371 		return mem_ioctl(dev, ap->a_cmd, ap->a_data,
372 				 ap->a_fflag, ap->a_cred);
373 	case 3:
374 	case 4:
375 		return random_ioctl(dev, ap->a_cmd, ap->a_data,
376 				    ap->a_fflag, ap->a_cred);
377 	}
378 	return (ENODEV);
379 }
380 
381 /*
382  * Operations for changing memory attributes.
383  *
384  * This is basically just an ioctl shim for mem_range_attr_get
385  * and mem_range_attr_set.
386  */
387 static int
388 mem_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
389 {
390 	int nd, error = 0;
391 	struct mem_range_op *mo = (struct mem_range_op *)data;
392 	struct mem_range_desc *md;
393 
394 	/* is this for us? */
395 	if ((cmd != MEMRANGE_GET) &&
396 	    (cmd != MEMRANGE_SET))
397 		return (ENOTTY);
398 
399 	/* any chance we can handle this? */
400 	if (mem_range_softc.mr_op == NULL)
401 		return (EOPNOTSUPP);
402 
403 	/* do we have any descriptors? */
404 	if (mem_range_softc.mr_ndesc == 0)
405 		return (ENXIO);
406 
407 	switch (cmd) {
408 	case MEMRANGE_GET:
409 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
410 		if (nd > 0) {
411 			md = (struct mem_range_desc *)
412 				kmalloc(nd * sizeof(struct mem_range_desc),
413 				       M_MEMDESC, M_WAITOK);
414 			error = mem_range_attr_get(md, &nd);
415 			if (!error)
416 				error = copyout(md, mo->mo_desc,
417 					nd * sizeof(struct mem_range_desc));
418 			kfree(md, M_MEMDESC);
419 		} else {
420 			nd = mem_range_softc.mr_ndesc;
421 		}
422 		mo->mo_arg[0] = nd;
423 		break;
424 
425 	case MEMRANGE_SET:
426 		md = (struct mem_range_desc *)kmalloc(sizeof(struct mem_range_desc),
427 						    M_MEMDESC, M_WAITOK);
428 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
429 		/* clamp description string */
430 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
431 		if (error == 0)
432 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
433 		kfree(md, M_MEMDESC);
434 		break;
435 	}
436 	return (error);
437 }
438 
439 /*
440  * Implementation-neutral, kernel-callable functions for manipulating
441  * memory range attributes.
442  */
443 int
444 mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
445 {
446 	/* can we handle this? */
447 	if (mem_range_softc.mr_op == NULL)
448 		return (EOPNOTSUPP);
449 
450 	if (*arg == 0) {
451 		*arg = mem_range_softc.mr_ndesc;
452 	} else {
453 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
454 	}
455 	return (0);
456 }
457 
458 int
459 mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
460 {
461 	/* can we handle this? */
462 	if (mem_range_softc.mr_op == NULL)
463 		return (EOPNOTSUPP);
464 
465 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
466 }
467 
468 #ifdef SMP
469 void
470 mem_range_AP_init(void)
471 {
472 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
473 		return (mem_range_softc.mr_op->initAP(&mem_range_softc));
474 }
475 #endif
476 
477 static int
478 random_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
479 {
480 	int error;
481 	int intr;
482 
483 	/*
484 	 * Even inspecting the state is privileged, since it gives a hint
485 	 * about how easily the randomness might be guessed.
486 	 */
487 	error = 0;
488 
489 	switch (cmd) {
490 	/* Really handled in upper layer */
491 	case FIOASYNC:
492 		break;
493 	case MEM_SETIRQ:
494 		intr = *(int16_t *)data;
495 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
496 			break;
497 		if (intr < 0 || intr >= MAX_INTS)
498 			return (EINVAL);
499 		register_randintr(intr);
500 		break;
501 	case MEM_CLEARIRQ:
502 		intr = *(int16_t *)data;
503 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
504 			break;
505 		if (intr < 0 || intr >= MAX_INTS)
506 			return (EINVAL);
507 		unregister_randintr(intr);
508 		break;
509 	case MEM_RETURNIRQ:
510 		error = ENOTSUP;
511 		break;
512 	case MEM_FINDIRQ:
513 		intr = *(int16_t *)data;
514 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
515 			break;
516 		if (intr < 0 || intr >= MAX_INTS)
517 			return (EINVAL);
518 		intr = next_registered_randintr(intr);
519 		if (intr == MAX_INTS)
520 			return (ENOENT);
521 		*(u_int16_t *)data = intr;
522 		break;
523 	default:
524 		error = ENOTSUP;
525 		break;
526 	}
527 	return (error);
528 }
529 
530 int
531 mmpoll(struct dev_poll_args *ap)
532 {
533 	cdev_t dev = ap->a_head.a_dev;
534 	int revents;
535 
536 	switch (minor(dev)) {
537 	case 3:		/* /dev/random */
538 		revents = random_poll(dev, ap->a_events);
539 		break;
540 	case 4:		/* /dev/urandom */
541 	default:
542 		revents = seltrue(dev, ap->a_events);
543 		break;
544 	}
545 	ap->a_events = revents;
546 	return (0);
547 }
548 
549 int
550 iszerodev(cdev_t dev)
551 {
552 	return (zerodev == dev);
553 }
554 
555 static void
556 mem_drvinit(void *unused)
557 {
558 
559 	/* Initialise memory range handling */
560 	if (mem_range_softc.mr_op != NULL)
561 		mem_range_softc.mr_op->init(&mem_range_softc);
562 
563 	make_dev(&mem_ops, 0, UID_ROOT, GID_KMEM, 0640, "mem");
564 	make_dev(&mem_ops, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
565 	make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
566 	make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
567 	make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
568 	zerodev = make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
569 	make_dev(&mem_ops, 14, UID_ROOT, GID_WHEEL, 0600, "io");
570 }
571 
572 SYSINIT(memdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,mem_drvinit,NULL)
573 
574