xref: /dragonfly/sys/kern/kern_memio.c (revision 3c7e5806)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
36  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
37  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
38  */
39 
40 /*
41  * Memory special file
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/buf.h>
47 #include <sys/conf.h>
48 #include <sys/fcntl.h>
49 #include <sys/filio.h>
50 #include <sys/interrupt.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/memrange.h>
54 #include <sys/proc.h>
55 #include <sys/priv.h>
56 #include <sys/random.h>
57 #include <sys/signalvar.h>
58 #include <sys/uio.h>
59 #include <sys/vnode.h>
60 #include <sys/sysctl.h>
61 
62 #include <sys/signal2.h>
63 
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #include <vm/vm_extern.h>
67 
68 
69 static	d_open_t	mmopen;
70 static	d_close_t	mmclose;
71 static	d_read_t	mmread;
72 static	d_write_t	mmwrite;
73 static	d_ioctl_t	mmioctl;
74 #if 0
75 static	d_mmap_t	memmmap;
76 #endif
77 static	d_kqfilter_t	mmkqfilter;
78 static int memuksmap(cdev_t dev, vm_page_t fake);
79 
80 #define CDEV_MAJOR 2
81 static struct dev_ops mem_ops = {
82 	{ "mem", 0, D_MPSAFE | D_QUICK },
83 	.d_open =	mmopen,
84 	.d_close =	mmclose,
85 	.d_read =	mmread,
86 	.d_write =	mmwrite,
87 	.d_ioctl =	mmioctl,
88 	.d_kqfilter =	mmkqfilter,
89 #if 0
90 	.d_mmap =	memmmap,
91 #endif
92 	.d_uksmap =	memuksmap
93 };
94 
95 static struct dev_ops mem_ops_mem = {
96 	{ "mem", 0, D_MEM | D_MPSAFE | D_QUICK },
97 	.d_open =	mmopen,
98 	.d_close =	mmclose,
99 	.d_read =	mmread,
100 	.d_write =	mmwrite,
101 	.d_ioctl =	mmioctl,
102 	.d_kqfilter =	mmkqfilter,
103 #if 0
104 	.d_mmap =	memmmap,
105 #endif
106 	.d_uksmap =	memuksmap
107 };
108 
109 static struct dev_ops mem_ops_noq = {
110 	{ "mem", 0, D_MPSAFE },
111 	.d_open =	mmopen,
112 	.d_close =	mmclose,
113 	.d_read =	mmread,
114 	.d_write =	mmwrite,
115 	.d_ioctl =	mmioctl,
116 	.d_kqfilter =	mmkqfilter,
117 #if 0
118 	.d_mmap =	memmmap,
119 #endif
120 	.d_uksmap =	memuksmap
121 };
122 
123 static int rand_bolt;
124 static caddr_t	zbuf;
125 static cdev_t	zerodev = NULL;
126 static struct lock mem_lock = LOCK_INITIALIZER("memlk", 0, 0);
127 
128 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
129 static int mem_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
130 static int random_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
131 
132 struct mem_range_softc mem_range_softc;
133 
134 static int seedenable;
135 SYSCTL_INT(_kern, OID_AUTO, seedenable, CTLFLAG_RW, &seedenable, 0, "");
136 
137 static int
138 mmopen(struct dev_open_args *ap)
139 {
140 	cdev_t dev = ap->a_head.a_dev;
141 	int error;
142 
143 	switch (minor(dev)) {
144 	case 0:
145 	case 1:
146 		/*
147 		 * /dev/mem and /dev/kmem
148 		 */
149 		if (ap->a_oflags & FWRITE) {
150 			if (securelevel > 0 || kernel_mem_readonly)
151 				return (EPERM);
152 		}
153 		error = 0;
154 		break;
155 	case 6:
156 		/*
157 		 * /dev/kpmap can only be opened for reading.
158 		 */
159 		if (ap->a_oflags & FWRITE)
160 			return (EPERM);
161 		error = 0;
162 		break;
163 	case 14:
164 		error = priv_check_cred(ap->a_cred, PRIV_ROOT, 0);
165 		if (error != 0)
166 			break;
167 		if (securelevel > 0 || kernel_mem_readonly) {
168 			error = EPERM;
169 			break;
170 		}
171 		error = cpu_set_iopl();
172 		break;
173 	default:
174 		error = 0;
175 		break;
176 	}
177 	return (error);
178 }
179 
180 static int
181 mmclose(struct dev_close_args *ap)
182 {
183 	cdev_t dev = ap->a_head.a_dev;
184 	int error;
185 
186 	switch (minor(dev)) {
187 	case 14:
188 		error = cpu_clr_iopl();
189 		break;
190 	default:
191 		error = 0;
192 		break;
193 	}
194 	return (error);
195 }
196 
197 
198 static int
199 mmrw(cdev_t dev, struct uio *uio, int flags)
200 {
201 	int o;
202 	u_int c;
203 	u_int poolsize;
204 	u_long v;
205 	struct iovec *iov;
206 	int error = 0;
207 	caddr_t buf = NULL;
208 
209 	while (uio->uio_resid > 0 && error == 0) {
210 		iov = uio->uio_iov;
211 		if (iov->iov_len == 0) {
212 			uio->uio_iov++;
213 			uio->uio_iovcnt--;
214 			if (uio->uio_iovcnt < 0)
215 				panic("mmrw");
216 			continue;
217 		}
218 		switch (minor(dev)) {
219 		case 0:
220 			/*
221 			 * minor device 0 is physical memory, /dev/mem
222 			 */
223 			v = uio->uio_offset;
224 			v &= ~(long)PAGE_MASK;
225 			pmap_kenter((vm_offset_t)ptvmmap, v);
226 			o = (int)uio->uio_offset & PAGE_MASK;
227 			c = (u_int)(PAGE_SIZE - ((uintptr_t)iov->iov_base & PAGE_MASK));
228 			c = min(c, (u_int)(PAGE_SIZE - o));
229 			c = min(c, (u_int)iov->iov_len);
230 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
231 			pmap_kremove((vm_offset_t)ptvmmap);
232 			continue;
233 
234 		case 1: {
235 			/*
236 			 * minor device 1 is kernel memory, /dev/kmem
237 			 */
238 			vm_offset_t saddr, eaddr;
239 			int prot;
240 
241 			c = iov->iov_len;
242 
243 			/*
244 			 * Make sure that all of the pages are currently
245 			 * resident so that we don't create any zero-fill
246 			 * pages.
247 			 */
248 			saddr = trunc_page(uio->uio_offset);
249 			eaddr = round_page(uio->uio_offset + c);
250 			if (saddr > eaddr)
251 				return EFAULT;
252 
253 			/*
254 			 * Make sure the kernel addresses are mapped.
255 			 * platform_direct_mapped() can be used to bypass
256 			 * default mapping via the page table (virtual kernels
257 			 * contain a lot of out-of-band data).
258 			 */
259 			prot = VM_PROT_READ;
260 			if (uio->uio_rw != UIO_READ)
261 				prot |= VM_PROT_WRITE;
262 			error = kvm_access_check(saddr, eaddr, prot);
263 			if (error)
264 				return (error);
265 			error = uiomove((caddr_t)(vm_offset_t)uio->uio_offset,
266 					(int)c, uio);
267 			continue;
268 		}
269 		case 2:
270 			/*
271 			 * minor device 2 (/dev/null) is EOF/RATHOLE
272 			 */
273 			if (uio->uio_rw == UIO_READ)
274 				return (0);
275 			c = iov->iov_len;
276 			break;
277 		case 3:
278 			/*
279 			 * minor device 3 (/dev/random) is source of filth
280 			 * on read, seeder on write
281 			 */
282 			if (buf == NULL)
283 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
284 			c = min(iov->iov_len, PAGE_SIZE);
285 			if (uio->uio_rw == UIO_WRITE) {
286 				error = uiomove(buf, (int)c, uio);
287 				if (error == 0 &&
288 				    seedenable &&
289 				    securelevel <= 0) {
290 					error = add_buffer_randomness_src(buf, c, RAND_SRC_SEEDING);
291 				} else if (error == 0) {
292 					error = EPERM;
293 				}
294 			} else {
295 				poolsize = read_random(buf, c);
296 				if (poolsize == 0) {
297 					if (buf)
298 						kfree(buf, M_TEMP);
299 					if ((flags & IO_NDELAY) != 0)
300 						return (EWOULDBLOCK);
301 					return (0);
302 				}
303 				c = min(c, poolsize);
304 				error = uiomove(buf, (int)c, uio);
305 			}
306 			continue;
307 		case 4:
308 			/*
309 			 * minor device 4 (/dev/urandom) is source of muck
310 			 * on read, writes are disallowed.
311 			 */
312 			c = min(iov->iov_len, PAGE_SIZE);
313 			if (uio->uio_rw == UIO_WRITE) {
314 				error = EPERM;
315 				break;
316 			}
317 			if (CURSIG(curthread->td_lwp) != 0) {
318 				/*
319 				 * Use tsleep() to get the error code right.
320 				 * It should return immediately.
321 				 */
322 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
323 				if (error != 0 && error != EWOULDBLOCK)
324 					continue;
325 			}
326 			if (buf == NULL)
327 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
328 			poolsize = read_random_unlimited(buf, c);
329 			c = min(c, poolsize);
330 			error = uiomove(buf, (int)c, uio);
331 			continue;
332 		/* case 5: read/write not supported, mmap only */
333 		/* case 6: read/write not supported, mmap only */
334 		case 12:
335 			/*
336 			 * minor device 12 (/dev/zero) is source of nulls
337 			 * on read, write are disallowed.
338 			 */
339 			if (uio->uio_rw == UIO_WRITE) {
340 				c = iov->iov_len;
341 				break;
342 			}
343 			if (zbuf == NULL) {
344 				zbuf = (caddr_t)kmalloc(PAGE_SIZE, M_TEMP,
345 				    M_WAITOK | M_ZERO);
346 			}
347 			c = min(iov->iov_len, PAGE_SIZE);
348 			error = uiomove(zbuf, (int)c, uio);
349 			continue;
350 		default:
351 			return (ENODEV);
352 		}
353 		if (error)
354 			break;
355 		iov->iov_base = (char *)iov->iov_base + c;
356 		iov->iov_len -= c;
357 		uio->uio_offset += c;
358 		uio->uio_resid -= c;
359 	}
360 	if (buf)
361 		kfree(buf, M_TEMP);
362 	return (error);
363 }
364 
365 static int
366 mmread(struct dev_read_args *ap)
367 {
368 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
369 }
370 
371 static int
372 mmwrite(struct dev_write_args *ap)
373 {
374 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
375 }
376 
377 /*******************************************************\
378 * allow user processes to MMAP some memory sections	*
379 * instead of going through read/write			*
380 \*******************************************************/
381 
382 static int user_kernel_mapping(int num, vm_ooffset_t offset,
383 				vm_ooffset_t *resultp);
384 
385 #if 0
386 
387 static int
388 memmmap(struct dev_mmap_args *ap)
389 {
390 	cdev_t dev = ap->a_head.a_dev;
391 	vm_ooffset_t result;
392 	int error;
393 
394 	switch (minor(dev)) {
395 	case 0:
396 		/*
397 		 * minor device 0 is physical memory
398 		 */
399 		ap->a_result = atop(ap->a_offset);
400 		error = 0;
401 		break;
402 	case 1:
403 		/*
404 		 * minor device 1 is kernel memory
405 		 */
406 		ap->a_result = atop(vtophys(ap->a_offset));
407 		error = 0;
408 		break;
409 	case 5:
410 	case 6:
411 		/*
412 		 * minor device 5 is /dev/upmap (see sys/upmap.h)
413 		 * minor device 6 is /dev/kpmap (see sys/upmap.h)
414 		 */
415 		result = 0;
416 		error = user_kernel_mapping(minor(dev), ap->a_offset, &result);
417 		ap->a_result = atop(result);
418 		break;
419 	default:
420 		error = EINVAL;
421 		break;
422 	}
423 	return error;
424 }
425 
426 #endif
427 
428 static int
429 memuksmap(cdev_t dev, vm_page_t fake)
430 {
431 	vm_ooffset_t result;
432 	int error;
433 
434 	switch (minor(dev)) {
435 	case 0:
436 		/*
437 		 * minor device 0 is physical memory
438 		 */
439 		fake->phys_addr = ptoa(fake->pindex);
440 		error = 0;
441 		break;
442 	case 1:
443 		/*
444 		 * minor device 1 is kernel memory
445 		 */
446 		fake->phys_addr = vtophys(ptoa(fake->pindex));
447 		error = 0;
448 		break;
449 	case 5:
450 	case 6:
451 		/*
452 		 * minor device 5 is /dev/upmap (see sys/upmap.h)
453 		 * minor device 6 is /dev/kpmap (see sys/upmap.h)
454 		 */
455 		result = 0;
456 		error = user_kernel_mapping(minor(dev),
457 					    ptoa(fake->pindex), &result);
458 		fake->phys_addr = result;
459 		break;
460 	default:
461 		error = EINVAL;
462 		break;
463 	}
464 	return error;
465 }
466 
467 static int
468 mmioctl(struct dev_ioctl_args *ap)
469 {
470 	cdev_t dev = ap->a_head.a_dev;
471 	int error;
472 
473 	lockmgr(&mem_lock, LK_EXCLUSIVE);
474 
475 	switch (minor(dev)) {
476 	case 0:
477 		error = mem_ioctl(dev, ap->a_cmd, ap->a_data,
478 				  ap->a_fflag, ap->a_cred);
479 		break;
480 	case 3:
481 	case 4:
482 		error = random_ioctl(dev, ap->a_cmd, ap->a_data,
483 				     ap->a_fflag, ap->a_cred);
484 		break;
485 	default:
486 		error = ENODEV;
487 		break;
488 	}
489 
490 	lockmgr(&mem_lock, LK_RELEASE);
491 
492 	return (error);
493 }
494 
495 /*
496  * Operations for changing memory attributes.
497  *
498  * This is basically just an ioctl shim for mem_range_attr_get
499  * and mem_range_attr_set.
500  */
501 static int
502 mem_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
503 {
504 	int nd, error = 0;
505 	struct mem_range_op *mo = (struct mem_range_op *)data;
506 	struct mem_range_desc *md;
507 
508 	/* is this for us? */
509 	if ((cmd != MEMRANGE_GET) &&
510 	    (cmd != MEMRANGE_SET))
511 		return (ENOTTY);
512 
513 	/* any chance we can handle this? */
514 	if (mem_range_softc.mr_op == NULL)
515 		return (EOPNOTSUPP);
516 
517 	/* do we have any descriptors? */
518 	if (mem_range_softc.mr_ndesc == 0)
519 		return (ENXIO);
520 
521 	switch (cmd) {
522 	case MEMRANGE_GET:
523 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
524 		if (nd > 0) {
525 			md = (struct mem_range_desc *)
526 				kmalloc(nd * sizeof(struct mem_range_desc),
527 				       M_MEMDESC, M_WAITOK);
528 			error = mem_range_attr_get(md, &nd);
529 			if (!error)
530 				error = copyout(md, mo->mo_desc,
531 					nd * sizeof(struct mem_range_desc));
532 			kfree(md, M_MEMDESC);
533 		} else {
534 			nd = mem_range_softc.mr_ndesc;
535 		}
536 		mo->mo_arg[0] = nd;
537 		break;
538 
539 	case MEMRANGE_SET:
540 		md = (struct mem_range_desc *)kmalloc(sizeof(struct mem_range_desc),
541 						    M_MEMDESC, M_WAITOK);
542 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
543 		/* clamp description string */
544 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
545 		if (error == 0)
546 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
547 		kfree(md, M_MEMDESC);
548 		break;
549 	}
550 	return (error);
551 }
552 
553 /*
554  * Implementation-neutral, kernel-callable functions for manipulating
555  * memory range attributes.
556  */
557 int
558 mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
559 {
560 	/* can we handle this? */
561 	if (mem_range_softc.mr_op == NULL)
562 		return (EOPNOTSUPP);
563 
564 	if (*arg == 0) {
565 		*arg = mem_range_softc.mr_ndesc;
566 	} else {
567 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
568 	}
569 	return (0);
570 }
571 
572 int
573 mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
574 {
575 	/* can we handle this? */
576 	if (mem_range_softc.mr_op == NULL)
577 		return (EOPNOTSUPP);
578 
579 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
580 }
581 
582 void
583 mem_range_AP_init(void)
584 {
585 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
586 		mem_range_softc.mr_op->initAP(&mem_range_softc);
587 }
588 
589 static int
590 random_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
591 {
592 	int error;
593 	int intr;
594 
595 	/*
596 	 * Even inspecting the state is privileged, since it gives a hint
597 	 * about how easily the randomness might be guessed.
598 	 */
599 	error = 0;
600 
601 	switch (cmd) {
602 	/* Really handled in upper layer */
603 	case FIOASYNC:
604 		break;
605 	case MEM_SETIRQ:
606 		intr = *(int16_t *)data;
607 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
608 			break;
609 		if (intr < 0 || intr >= MAX_INTS)
610 			return (EINVAL);
611 		register_randintr(intr);
612 		break;
613 	case MEM_CLEARIRQ:
614 		intr = *(int16_t *)data;
615 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
616 			break;
617 		if (intr < 0 || intr >= MAX_INTS)
618 			return (EINVAL);
619 		unregister_randintr(intr);
620 		break;
621 	case MEM_RETURNIRQ:
622 		error = ENOTSUP;
623 		break;
624 	case MEM_FINDIRQ:
625 		intr = *(int16_t *)data;
626 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
627 			break;
628 		if (intr < 0 || intr >= MAX_INTS)
629 			return (EINVAL);
630 		intr = next_registered_randintr(intr);
631 		if (intr == MAX_INTS)
632 			return (ENOENT);
633 		*(u_int16_t *)data = intr;
634 		break;
635 	default:
636 		error = ENOTSUP;
637 		break;
638 	}
639 	return (error);
640 }
641 
642 static int
643 mm_filter_read(struct knote *kn, long hint)
644 {
645 	return (1);
646 }
647 
648 static int
649 mm_filter_write(struct knote *kn, long hint)
650 {
651 	return (1);
652 }
653 
654 static void
655 dummy_filter_detach(struct knote *kn) {}
656 
657 /* Implemented in kern_nrandom.c */
658 static struct filterops random_read_filtops =
659         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, random_filter_read };
660 
661 static struct filterops mm_read_filtops =
662         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_read };
663 
664 static struct filterops mm_write_filtops =
665         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_write };
666 
667 static int
668 mmkqfilter(struct dev_kqfilter_args *ap)
669 {
670 	struct knote *kn = ap->a_kn;
671 	cdev_t dev = ap->a_head.a_dev;
672 
673 	ap->a_result = 0;
674 	switch (kn->kn_filter) {
675 	case EVFILT_READ:
676 		switch (minor(dev)) {
677 		case 3:
678 			kn->kn_fop = &random_read_filtops;
679 			break;
680 		default:
681 			kn->kn_fop = &mm_read_filtops;
682 			break;
683 		}
684 		break;
685 	case EVFILT_WRITE:
686 		kn->kn_fop = &mm_write_filtops;
687 		break;
688 	default:
689 		ap->a_result = EOPNOTSUPP;
690 		return (0);
691 	}
692 
693 	return (0);
694 }
695 
696 int
697 iszerodev(cdev_t dev)
698 {
699 	return (zerodev == dev);
700 }
701 
702 /*
703  * /dev/upmap and /dev/kpmap.
704  */
705 static int
706 user_kernel_mapping(int num, vm_ooffset_t offset, vm_ooffset_t *resultp)
707 {
708 	struct proc *p;
709 	int error;
710 	int invfork;
711 
712 	if ((p = curproc) == NULL)
713 		return (EINVAL);
714 
715 	/*
716 	 * If this is a child currently in vfork the pmap is shared with
717 	 * the parent!  We need to actually set-up the parent's p_upmap,
718 	 * not the child's, and we need to set the invfork flag.  Userland
719 	 * will probably adjust its static state so it must be consistent
720 	 * with the parent or userland will be really badly confused.
721 	 *
722 	 * (this situation can happen when user code in vfork() calls
723 	 *  libc's getpid() or some other function which then decides
724 	 *  it wants the upmap).
725 	 */
726 	if (p->p_flags & P_PPWAIT) {
727 		p = p->p_pptr;
728 		if (p == NULL)
729 			return (EINVAL);
730 		invfork = 1;
731 	} else {
732 		invfork = 0;
733 	}
734 
735 	error = EINVAL;
736 
737 	switch(num) {
738 	case 5:
739 		/*
740 		 * /dev/upmap - maps RW per-process shared user-kernel area.
741 		 */
742 		if (p->p_upmap == NULL)
743 			proc_usermap(p, invfork);
744 		else if (invfork)
745 			p->p_upmap->invfork = invfork;
746 
747 		if (p->p_upmap &&
748 		    offset < roundup2(sizeof(*p->p_upmap), PAGE_SIZE)) {
749 			/* only good for current process */
750 			*resultp = pmap_kextract((vm_offset_t)p->p_upmap +
751 						 offset);
752 			error = 0;
753 		}
754 		break;
755 	case 6:
756 		/*
757 		 * /dev/kpmap - maps RO shared kernel global page
758 		 */
759 		if (kpmap &&
760 		    offset < roundup2(sizeof(*kpmap), PAGE_SIZE)) {
761 			*resultp = pmap_kextract((vm_offset_t)kpmap +
762 						 offset);
763 			error = 0;
764 		}
765 		break;
766 	default:
767 		break;
768 	}
769 	return error;
770 }
771 
772 static void
773 mem_drvinit(void *unused)
774 {
775 
776 	/* Initialise memory range handling */
777 	if (mem_range_softc.mr_op != NULL)
778 		mem_range_softc.mr_op->init(&mem_range_softc);
779 
780 	make_dev(&mem_ops_mem, 0, UID_ROOT, GID_KMEM, 0640, "mem");
781 	make_dev(&mem_ops_mem, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
782 	make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
783 	make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
784 	make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
785 	make_dev(&mem_ops, 5, UID_ROOT, GID_WHEEL, 0666, "upmap");
786 	make_dev(&mem_ops, 6, UID_ROOT, GID_WHEEL, 0444, "kpmap");
787 	zerodev = make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
788 	make_dev(&mem_ops_noq, 14, UID_ROOT, GID_WHEEL, 0600, "io");
789 }
790 
791 SYSINIT(memdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR, mem_drvinit,
792     NULL);
793 
794